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On an extrapolation theorem of Carleson—Sjolin with
applications to a.e. convergence of Fourier series

by
FERNANDO SORIA* (Madrid)

Absiract, A weak type version of Yano's extrapolation theorem is presented which improves
a result of Carleson and $jolin about almost everywhere convergence of Fourier-Walsh series.

§ 0. Introduction. Let (2, u) be an arbitrary measure space. A well-known
result due to Yano [Y] (see also Zygmund [Z]) states that if u{€) < oo, T is
a continuous linear operator from () into (), 1 <p < ps and for some
fixed m = 0, T satisfies the estimate

(1) 1T Alle < CO—1)" (A,
for every measurable subset 4 of 2 and with C independent of 4 and p, then we
can “extrapolate” and conclude that T acts continuously from L{1 +log™ L){(€)
into I} (). .

1t is not hard to see that the result remains true if Tis assumed to be
sublinear and estimate (1) is replaced by the weaker assumption

¥y 1T les < C(Pﬁl)_"‘#_(A)”"-
In this case, the condition “x(Q) < 0o” is not even needed. (See § 3 for a simple
proof of this fact.)

In 1967, extending the fundamental work of Carleson [Ca], R. Hunt [H]
found the following basic estimate for the maximal operator, $*, associated to
the partial sums of Fourier series: _

B) tu{xe: S*y, >t < Cplrp—1)"'u(4t?, 1 <p< o, t>0,
where (Q, w) represents here the one-dimensional torus with the usual Lebesgue
measure. This, combined with the inequality

@ 171l < plp— 1)~ suplep{x: LF (> 17,
. >0 :

gives an estimate for S* like (2) with m = 2 and, therefore, Yano's extrapolation
theorem ensures the a.e. convergence of Fourier series for functions in
L(log™ L) '

* Work supported in part by a grant of the NSF at the University of Chicago.
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In 1969, P. Sjélin [Sj] proved (3) for the maximal operator associated this
time to the partial sums of Walsh series. However, he avoided the use of (4),
which introduces an extra power in the dependence of the constant on p.
Instead of that, he investigated, jointly with Carleson, the possibility of
obtaining an extrapolation theorem, similar to Yano's, directly from the weak
type estimate (3). Their result is the following:

THEOREM 1. Assume that p{€2) < co. Let T be a continuous sublinear
operator on I7({2) which satisfies

6 tu{xe@: [Tl > " < Co~1)7"wA), 1<p<2, t>0,

Jor every measurable subset A = Q and with C independent of A, p and t. Then
there exist two constants, ¢, and c,, so that if

J(f) = [1/l(og™ | flog*log" |fdu < 1/2,
0 .
we have
plxe @ 1T () > 0 TN} < eI (N,
In particular, T maps L(log* L)(log™log™ L) continuously into weak-L'.

The immediate consequence of Theorem 1 is that the Fourier—Waish series
of every function in L{log* L){log*log™ L) converges a.e.

In this paper we study the extrapolation properties of sublinear operators
satisfying restricted weak type (p, p) estimates, with a given growth on the
constants as p — 1. After some preliminary definitions and notation in § 1, we
give in §2 a simple proof of a more general form of Carleson-Sjblin’s
extrapolation theorem which holds for wider classes of functions. These classes,
as will be seen, naturally arise as “extrapolation spaces”. Applications to a.e.
convergence of Fourier series are presented.

Some previous work in this direction can be found in [S1] (see also [$2])
where applications to the theory of differentiation of integrals are given. In
addition to more generality, in this paper we eliminate the artificial use of
“special functions”. (Using the terminology in [H-T], fis a special junction if
there exist a set 4 < 2 and another function s(x), with 1/2 < {s(x)| < 1, so that
J = sx,.) Special functions were first considered by Hunt and Taibleson [H-T],
following a suggestion of E. Stein, to give a simple proof of the a.e. convergence
of Fourier series for L(log™ L)(log* log™ L)-functions in the ring of integers of
a local field, but this required the establishment of an estimate like (3) with y,
replaced by an arbitrary special function. :

In the last section we analyze in more detail the properties of one of the
extrapolation spaces; namely, the one which arises in connection with restricted
weak type (1, 1) estimates. :
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§ 1. Preliminaries. For a measurable function f we define its distribution

function as
A(t) = p{xeQ: |fX)| >t}, t>0.

Now, given a positive, increasing and concave function ¢ defined on [0, p(€)]
with @(0) = 0, we define the function space B, as the class of all measurable
functions for which the functional

07l = E(p(if(r))dr

is finite (). The conditions imposed on ¢ make || |, & norm and B, a Banach
space. In fact, if @eC ([0, 4(Q)]) we have, by a “change of variables™,

1Al = If*(S)rp’(s)ds,

where f* is the nonincreasing rearrangement of f, and, therefore, we are under
the conditions stated by G. G. Lorentz [L] in order for || ||, to be a norm.
In particular, if we set
@,(8) = s(1 +log™ 1/5)",

for some m = 0, with (%) < ¢! ~™, then one can easily prove that B, is the

familiar Orlicz-Lorentz space L(1+log™L)™ This is_ true  even if

e'™™ < () < o, but in this case || |, is not a norm (s1-nce‘ P8} is not

concave on [0, o), except when m = 0). To avoid this technicality one could

consider instead of ¢,, its smallest increasing concave envelope.
Associated to B, we will consider the following subspace:

B = {£: 1112 = | ol )(1+log(Lfll /e ol @N)de < 0}

For every ¢ as above, || ||} is 2 quasi-norm and B has a structure of
a quasi-Banach space. To see this, observe that for fe B} we have

(6) 1% < N({250(A 20} — ) < (201 ~1og2)IIF1IE,

where given a numerical sequence a = {4}, We have defined

N(a) = ¥l (1 +1og(¥ la/a).

Now, the inequality || +gll* < K(|flI%+ligll), for some constant K, .followg
from (6) and the facts that A,.,(25) < A;(s)+7,(s), that ¢ 15 subadditive an
that for two sequences a = {a,} and b= {b,} one has

N(a,+b)) < (1 +log2)(N(@)+ N(D)).

(*) The notation in this paper is slightly different from that in [S1}
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(See Taibleson—~Weiss [T-W].)
Also, a simple change of variables using the fact that 1,(t) =

lleflig = lelllA Nz,

The proof of the completeness of B} is standard.

Ap(lelt) gives

for every scalar c.

§ 2. Extrapolation results. In this section we will consider a fixed function

¢ defined on [0, u(©)] which is increasing, concave and satisfies (0) = 0 and

@(s) > 5. Observe that the last condition implies in particular that B, < L.
We can now state

TaeoREM 2. Let ¢ be as above and define @(y) = &~ ' @(e' 7). Assume that
T is a sublinear operator satisfying the following estimate:

(7 tp{xe: [Ty, () >t} < CO((p— 17" )u(A)™,

Vit >0 gnd ¥ A with C independent of t, A and p. Then T maps continuously
B into weak-L}, i.e., there exists an absolute constant Cg such that

@®) tu{xeQ: |1Tf ()| > 1} < Gl g,  V/SeBs.

Proof Given a measurable set A4 of positive measure,
p = 1+(1+log* pu(4)"*)~". Then (7) implies in the case u(4) <1

tufxef: |Tia(dl > £} < CO(t+logu(d) ™ ) (Al
= Coplu(A)u(AyP~1 < Cep(u(4).

1, we have p =2 and, hence,
CO(Lpu(A)? < Co(t)u(d) <

where we have used in the last inequality the hypothesis 5 <
cases we obtain

l<p<2,

we let

In the case u(4) =
tp{xe@: |T(x) >t} < Co(1) o(u(4)),
@(s). Thus, in both

©) t,u{xe.Q: |T(¢(M(A))"1xd)(x)|> t} < C

where C' = max(Ce, Co(1)).
We will also need the following simple result in measure theory due to E.
Stein and N. Weiss [S-NW] (see [T-W] for the formulation presented here):

Lemma 3. Let {g,} be a sequence of functions uniformly bounded in weak-L,
ie.,

tu{xe@: g (] > 1} < C,

with C" independent of k and t. Then, for every numerical sequence f = {f,}, with
N(B) < o0, g = Y Bg, converges in weak-I' and, moreover,

tui{xeQ: [g(x)| >t} < 6C"N(f).
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The conclusion of Theorem 2 is now an immediate consequence of
estimate (9), Lemma 3 and the following

Lemma 4. If fix)> 0 belongs to B, there exist a double sequence

{Exj}iez.jz1 of measurable sets and a double sequence P = {fi}iezj>1 O
positive numbers such that

(10) =3 2 Buo (ﬂ(Ek,j})_lek'j(x} ae.
keZ j21
and, moreover,

1n N < CIif13
Jor some universal constant C"',

Proof. For a given function g¢g=0, we
Eg)=1{x: 2*<g(x) <2*"'} and g¢* =g — 3,22 Xee
0<g*(x) < g(x)/2 ae.

Now, fix feBE. A

n=1,2,... Clearly,
(12)

will  write
In particular,

Define f, = = {* and, inductively, f,:,=7; %

f=farr+ szxEk,j,

1€j€nkeZ

where we have set E;; = E,(f). Also, f,+1(x) < £,(x)/2 and, by induction,
i1 () < 270D f(x) ae. Vn Hence, (12) implies (10) with B ; = 2% @ (u(Ex. ).
In order .to prove (11), we will show below that if ; = {Bxj}rez, then

N{B) € 2N({N(B)} en)-
Assuming this first, we deduce from (6)
N(B) < 2N({(2/(1—log2) I£12};)
< 2N({(2/(~log2) 27 111113},)
= (4/(1-log 2)) N ({27} MIS 112,

where we have used in the last inequality the fact that each B} is a lattice space.
This gives (11) with C”" = (4/(1—1log2)}¥,;»27/ (1 +jlog2). m

Proof of (13). By a homogeneity argument we may assume without loss
of gencrahty that 3,51 N(B)) = 1. This also implies 3';»1 ) kez fi,; < 1. Therefore,

N < ST +loghif)
= § }kzﬁk.,(l +log (¥ B/ B} —log (% Be)
<SING)+ouSA) < Z(NE)+0: (V)
< '{; Po (V) = 2NN B o). m

13)
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Observe that if ¢ = ¢, then @((p—1)""') = (p—1)"™ and, therefore, in the
case 4 (Q) < oo, m =1and ¢ = @,, condition (5) automatically implies (7). This
fact, together with the following result on ihe relationship between classes
B} and some other function spaces “close” to B, show how Theorem
2 generalizes the conclusion in Theorem 1:

ProprosiTION 3. If f is a measurable function with finite support such that

(14) :f(p(lf(t))(l+10.g+log+ (4, (1)~ 1)dt < oo,

then feBE.

In particular, if ¢ = ¢,, for some m =0, (14) is equivalent to
[ A,@®+1og*ey"(1-+log*log™ ) dt < 0.
6}

Thus, Proposition 5 gives as a trivial consequence:

(L(ng+ L)m (10g+ 10g+ L))locally = (B;m}k:cnlly .

The above inclusion is proper as has been shown m [S1]. Indeed, for every
& > 0 there are functions in B} with compact support which do not belong to
Log™ L™ (log*log™ L)*.

Proof of Proposition 5. Let 4 be the support of f. Observe that if (14)
holds, f e B,. We will assume, without loss of generality, that || f||, =1 and
write

COROLLARY 6.

||f||$=(Ef +FI +g)w1(tfp(if(r)))d.t/tm11+12+13,
where E, = [0, €], Ezz{t>e: f(t))~—1)-z}’

to (i, () > (log(4
E, = (¢, c0)—E,, Then

©

I, < o, (tu(A)dt/t < o,

<

8

L < [ oA, )(1+210g* Tog* (4,007 ") dt < oo,
Notice also that 2, (6) < || f|l,/t < 1/t since || /]I,
@ (A, @) < (r(ogt)*)~", and, therefore,

from (14).

< || f1l,- Hence, if t € E4 we have

I, < [ (1+2loglogt)(t{logty) 'dt < 0. m

Remarks. 1. It is worth while to point out that.in the finite case, say

U@ <1, and ¢ = ¢,, BY isin some sense the largest extrapolation space for
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sublinear operators satisfying estimate (7) in Theorem 2. In fact, conditions (7)
and (8) are in this case equivalent, for if f = y, then (8) gives

tu{xeQ: [T, () > t} < Gyl ik, < 2C 1 (4) (1+10g(I/H(A}))m
< Cop(A) (mp/ (p— 1)) e/ (A~ 11
<C.p—1mu(Yr, 1<p<2.

2. Given a quasi-Banach function space B, with g-norm || |l and
containing the simple functions we say that a sublinear operator T, mapping
simple functions into measurable ones, is of weak type (B, L) if the follomng
inequality holds:

tu{xeQ: |Tf(x) >t} < Cl|flls,

(and € independent of f'and t). We say that T is of restricted weak type (B, yif
the above holds for characteristic functions of sets.

V[ simple

With these definitions we can summarize some of the previous results in
the following

TuroreM 7. Fix m = 0, The following are equivalent for T sublinedr:

(a) T is of restricted weak type (If, '), 1 < p <2, with constant (p n-m
ie.,

tui{xe @ | T, (x)| > 1} < Cyp—1)7" u(4)'".
(b) T is of restricted weak type (B,,, ), ie.,
tu{xe®: [Tl > 1} < Colixallo, = C2@m{a(4)-
(0) Tis of weak type (B%, . L), ie,
tu{xeQ: |Tf () > 1} < G5
Proof (a)=(c) is just Theorem 2. (c)<>(b) follows from the fact that

- ixall?. = ?fpm (n (A)j(l +log 1/t)dt = 20, {n(4)) = 21l ll,,.
]

Finally, (c)= (a) comes from the observation made in Remark 1. =m

From the equivalence of (b) and (c) it is natural to consider Bf as
“restricted-L(log™* L),

§ 3. Applications. As has been implicit throughout this paper, one of the
first consequences of Theorem 2 is the followmg

COROLLARY 8. The Fourier series of each function in B

This was also announced in [S1] but the extrapolation theorem in that
paper required the use of “special functions”.

converges a.e.

4 — Studia Mathematica 94.3
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The arguments in Theorem 2 can also be used to give a simple proof of
Yano’s theorem, in fact of the following stronger result:

PrOPOSITION 9. With the noiation of Theorem 2, if
(16) Tl < COp—1)")u(d'?, VAL,
then

ITfllLe < C Ul f Tl
in particular, when @ = @,, for some m 2 0 conditions (16) and (2) are equivalent.

Proof. As in Theorem 2, (16) implies || T{p (1(4) ™ 'z )||.: < Cq» and
therefore, decomposing f = 0 as in Lemma 4 we obtain

Tl < Cozgzk(f)(lfj(zk)) < 2GC, “f”(p
j

This yields Proposition 9 since every function is a linear combination of
positive functions. =

§ 4. “Restricted-I} *. For reasons which will be more clear later, it is
interesting to single out the class B}, “restricted-I1”. Recall that ¢4 (t) = ¢ and,
therefore, B,, = I'. Also, observe that conditions (7) and (8) read in this case

(7) ti{xeQ: T, () > 1} < Cu(A),
() tu{xeQ: |TfX) > 1} < c'}:zf(t)(l+1og(;|f||1/m,(z)))dr.

(7') can be rephrased by saying that T is of restricted weak type (1, 1) as defined
by Stein-Weiss [S-GW]. .

An interesting feature of B was investigated in [S1] where it was proved
that B% is the rearrangement-invariant envelope of certain “block spaces™
introduced by M. Taibleson and G. Weiss in connection with a.e. convergence
of Fourier series.

Another feature of B¥, that we would like to present here deals with the
following characterization of A4; weights for the Hardy-Littlewood maximal
function M:

PROPOSITION 10. Let 2 = R", w(x) a positive function defined on R" und set
u=w(x)dx. Then the following are equivalent:

(a) w belongs to Muckenhoupt's class A,.
(b} M maps B} = B} (R", wdx) continuously into weak-L! (wdx).

The proof is easy and will be omitted. (See e.g. [G-R] to get some
familiarity with the theory of weights) This proposition represents a re-
statement of something which is well known. It is worth while, nevertheless, te
compare this with a result in [C-H-K] which states the equivalence between
M being bounded from IP!(wdx} into weak-I'(wdx) and the condition

E/IQ| < Cw(E)/w(Q)):",

l<p<oo,
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which must hold for every cube Q, every subset E — Q and an absolute
constant C. The limiting case p =1 is just condition 4,. Thus, B}, appears
again as the limiting space of the classes !, restricted-IZ.

Finally, regarding the closeness of }J;FD to I = B, we see from the results
in § 2 that L (log™ log™ L) is (locally) contained in B},. Also, recall that Lorentz’

spaces L', 0 < B < oo, are defined as

U Wl = T 7 < o}

Thus, I}+! = I}. With this definition in mind we also have
ProposiTION 11. If 0 < B <1, then I < BY,.

Pro of, Define the space of numerical sequences * = {b = {b,}: N(b) < c0}.
Given a function f we consider the sequence a=a,= {a,}1ez, Where
a, = 2*A,(2%). Then it is clear that feBj,<a,cl* Also, fel wa.clh

The proposition follows from the fact that for 0 < g < 1, ¥ = I*. Indeed,
a simple argument gives N(b) <{(2—B)/(1—B)libll;s. =
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On Muckenhoupt’s classes of weight functions
by

INGEMAR WIK (Umes)

Abstract. It is proved that if w is in the weight class 4, on a cube @, then w*, the
nonincreasing rearrangement, lies in 4, on the interval [0,[Q[]. This gives another proof that
o then also lies in the more restricted class A, for some ¢ > 0, An estimate of ¢ is given as well as
8 new characterization of 4. The doubling condition & (Q) = cw(2Q) is strictly weaker than the
condition that we 4. A new counterexample, comparatively simple, is given to demonstrate this
fact.

1. Notations and introduction. The Lebesgue measure of a set E in R” is
denoted by |E|. w will always be a locally integrable, nonnegative, real-valued
function on R" and we use the notation

o(E) = | w(x)dx.

We denote by w, and «w* the nondecreasing and nonincreasing rearrangement
respectively of the fanction . E' is the set of density points of E. The mean
value of a function f on a set E is written

fridx = IEi‘lif(x)dx.

The Muckenhoupt classes A,, p > 1, were introduced in {4]. 4, is defined
as the class of locally integrable nonnegative functions e that satisfy

) fodx(fo e dxpt < 4
Q Q

for every cube Q and some constant A. We then say that w belongs to A, with
constant A. Xf the cubes Q are restricted to lie within a fixed cube @, we say that
w belongs to A, in Q,. ' . :

The paper conmsists of a proof that weAd, in Q implies that w*
(or equivalently ,) belongs to A4, on [0, |Q] (Theorem 1). Using a
couple of elementary function-theoretic lemmas we proceed to prove the
well-known fact that weAd, implies weA,-,. for some > 0. An esti-
mate of ¢ comes as bonus (Theorem 2).As a corollary we obtain another



