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The Fréchet envelopes of vector-valued
Smirnov classes

by
M, NAWROCKI (Poznan)

Abstract. In this paper the Nevanlinna class N(X) and the Smirnov class N, (X) of
analytic functions on the unit disc in the complex plane with values in a Banach space X are
studied, Representations of the Fréchet envelope of the Smirnov class by Fréchet spaces of
analytic functions are found, The continuovs lincar functionals on N, (X) and multipliers of
N, (X) into the Hardy spaces H, (0 < p < cc) are described. The best possible estimates of the
mean growth of functions and their Taylor cocfficients are obtained. The proofs of our results
are mainly soft and simplify earlier ones given in the scalar case by N. Yanagihara [22-24],

0. Introduction. Let E = (E, 1) be an F-space (i.e. a complete metrizable
t.v.s.) with separating dual space and let ° be the locally convex topology
associated to 1, ie. the strongest locally convex topology on E which is
weaker than z. Obviously, if # is a base of neighbourhoods of zero for <,
then the family {conv U: Ue@)} is a base of neighbourhoods of zero for 7°
Therefore, the topology t° produces the same space E' of continuous linear
functionals as t and has a countable base at zero. The dual space E’' of (E, 1°)
separates the points of E, so 1° is metrizable. The completion Eof (E,19is a
Fréchet space (i.e. locally convex F-space) which is called the Fréchet
envelope of E. '

Observe that (E, 9 is a Mackey space, i.e. ©° coincides with the Mackey
topology of the dual pair (E, E') (cf. [18], 1V.3.4). Therefore, the Fréchet
envelope of E is the unique, up to isomorphism, Fréchet space containing E
as a dense subspace and such that the restriction map T— Ty takes E'
onto E',

For many classes of concrete (function or sequence) spaces, it is possible
to describe E as another concrete space, This has been done eg. for the
Hardy spaces H, (0 <p <1) [8], the Bergman spaces B,, (0 <p <1, a >
-1) [19], the Orlicz lunction and sequence spaces [13, 14, 6], and the
Lorentz sequence spaces d(w, p) (0 <p <1) [15]. In 1973, N. Yanagihara
[22, 23] identified the dual space and then the Fréchet envelope of the
Smirnov class N, of apalytic functions on the unit disc on the complex
plane,
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The main purpose of this paper is to improve Yanagihara’s representa-
tion result and to extend it to the vector-valued case, i.e. to the Smirnov class
N, (X} of analytic functions with values in a complex Banach space X.

We give a simplified version of Yanagihara’s construction. First of all we
avoid many constructions of analytic functions. We show that it is possible
to derive all necessary properties of functions belonging to the Smirnov class
N, (X) from the corresponding well-known properties of functions from the
Nevanlinna class N(X). While proving the resuits, we use, instead of “hard
analysis”, elementary topological connections between these two important
classes of analytic functions. Such an approach is motivated by the Shapiro
and Shields theorem [20] which states that the Nevanlinna class N is a
topological group and the Smirnov class N, is the largest subspace of ¥
which is a topological vector space in the relative topology. In Section 1 the
simple proof of this theorem obtained by L. Drewnowski [5] is included. In
addition, we collect preliminary definitions, notation and basic facts on
topological vector groups. The notion of topological vector group is especial-
ly useful in our study.

In Section 2 the boundary behaviour of functions from the Nevanlinna
and Smirnov classes is discussed. It is well known that, in contrast to the
scalar case, there are bounded vector-valued analytic functions without radial
limits on sets of positive measure. We show that the closure Ny (X) in N(X)
of the space of all X-valued polynomials is the largest subspace of N(X)
cgnsisting of functions having radial limits almost everywhere which is a t.v.s.
in the relative topology.

In Section 3 we prove our main result (Theorem.3.6): the representation
of the Fréchet envelope of N,(X).

As a simple application of this representation theorem we obtain in
Section 4 the best possible estimates for the mean growth of functions from
the Smirnov class N, (X) and their Taylor coefficients (see Propositions 4.1
and 4.2). N. Yanagihara [24] proved similar estimates for scalar-valued
functions using the saddle point method of W. K. Hayman (see [11]). It is
rather surprising that we obtain such “purely analytic” results without
constructing any analytic function.

In the last part of this paper we describe the multipliers of N, (X} into
H, (0 <p< ).

I wish to thank Professor Lech Drewnowski for a number of helpful
discussions on this material,

1. Preliminaries. A (locally balanced) topological vector group, shortly
t.v.g, is a vector space E (over €) equipped with a topology t such that
addition is continuous, while scalar multiplication is continuous at the point
{0,0) of C xE. Any tvg. is a topological group which has a base at zero
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consisting of balanced sets. A metrizable and complete t,v.g. is called an FG-
space.

In any tvg E =(E, 1} the set

v(E) = [x€E: t-limtx = 0}
t~+{
is the largest linear subspace which is a t.v.s. in the relative topology. v(E) is
always closed in E (cf. [5]). Therefore, if E is an FG-space, then v(E) is an F-
space.

An FG-norm on a linear space E is a map ¢ E — R, satisfying:
Gy =0=<x=0, g(k+ < g(x)+qM, g(tx} < g(x) (x, yeE, teC, |f] < 1).
For any FG-norm ¢ on E there is a group topology © = t(g} which has as a
base at zero the family [V.: ¢ > 0], where V. = {xeE: ¢(x}) € ¢}. E equipped
with the topology t(g) induced by g is a metrizable t.v.g.

Throughout this paper we assume that X =(X,||-l]) is a complex
Banach space. By H(X)} we denote the space of all X-valued analytic
functions on the unit disc D = {z €C: |z| < 1}. For information about vector-
valued analytic functions the reader is referred to [12].

We recall that H(X) equipped with the compact-open topology » is a
Fréchet space.

For any function f: D—X and 0<r <1 we denote by (/) the
function on the unit circle T= 0D defined by (f),(w)= f{rw), weT

The Nevanlinna class N{X) is the space of all f eH(X) for which

|fI = sup [log(l+{l/(rw)l}dm{w) <o,

Ogr<ly

where m is the normalized Lebesgue measure on T
It is easy to see that the functional f F+|f| is an FG-norm on N (X}. Let
v denote the group topology induced by |-].

Leymma 1.1, For any feN(X) and zeD

C 1) < exp (lzlﬁl)—l.

Proof. In the scalar case the estimate (%} is well known (cf. [16], IL.3.1).
In general, fix /eN(X) and zeD. Find x*eX’, [|x*| =1, such that
[x* (' @)] = I/ (). Then |x* f] < |f], so it suffices to apply (¥) to the scalar-
valued function x* f.

The above growth estimate implies that x|y, < v and all the balls V,
={feN(X): |fl<c}, c>0, are x-closed in H(X). Thus, the group
(N(X),v) is complete and has enough continuous linear functionals to
separate points. :

The Smirnov class N,(X) is the subspace of N(X) consisting of all
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functions f for which the family of measures

{[log(1+]If Gwll)dm(w): O<r <1}
)

18 uniformly m-continuous, L.e.
im sup [log(1+ |/ (w)l)dm(w) = 0.

mdy=0 r 4

The next result has been cobtained by L. Drewnowski (cf. [5]), Theorem
4.1). It implies the Shapiro-Shields thecrem mentioned above. We include its
proof for the convenience of the reader.

Prorosirion 1.2. N, (X) = v(N (X)) = {f eN(X): lim, -, [tf] = 0}.

Proof. Let feN(X) and assume lim, .4 ¢f] = 0. Given ¢ > 0, choose
t >0 so small that |if] <&/2. Now, if 4 is 2 measurable subset of T and
m{A)log(1+171) <¢g/2, then for every 0 <r <1

[log(L+Kf))dm < [log(L+|(N)dm+ flog(1+:™ 1) dm

A
<gf2+m(A)log(T+171Y) <e,

which proves that f eN, (X). Thus, v(N{X)) = N, (X).
Now let feN, (X). If c>0 and 0<<r <1, let

A(r, ) ={weT J{f),WH > c};
then m(A4(r, 0))log(1+¢) <|f|. Thus,
lim sup m(A(r, o) =90.

e~co 0Kr<y) 8
If 0<t<1,c>0 and 0<r <1, then log(1+t[{(f}l) < log(l+1tc) on
T\A(r, ¢} and log(1+t[{(f)l]) < log(1 +(I(/)]) on A(r, ¢). Therefore,

[log (I+[lt(/)l)dm <log(L+t)+ [ log(1+]l(f))dm,
T Alr.e)
from which, using the uniform m-continuity of [, log(1+]|(/))l)dm (0<r

< 1) we have lim,.q|tf| = 0. Thus, N,(X) <v(N(X)), so the proof is fin-
ished, '

CoroLLARY 1.3. (N, (X), vly,) is an F-space with separating dual,

Denote by H,(X) the space of all bounded, X-valued analytic functions

on D. We shall use in the sequel the following simple generalization of the
classical F. and R. Nevanlinna theorem:

Lemma 14. An X-valued analytic function f belongs to N (X) if and only.if
it may be written in the form [ = g/h, where geH ,(X), heH,,.
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2. The Fatou property. Let Y be a subset of H(X). We say that Y has
the Fatou property (Y €(FP)) if every function feY has a radial limit
lim, ., f{rw) = f*(w) for almost every weT,

It is one of the most important and well-known theorems in the theory
of H,-spaces that the scalar Nevanlinna class N has the Fatou property.
However, this result cannot be extended to vector-valued functions. Indeed,
Sy =1(z,2%, 2%, ..) is a cy-valued bounded analytic function without a
radial limit at every point of T.

The following result is a consequence of Lemma 1.4 and the fact that
H, e(FP).

Prorosimion 2.1. For any Banach space X the following assertions are
equivalent:

(a} H,(X)&(FP).

(b) N, (X)e(FP}.

(c) N(X)e(FP).

Assertion (a) means that X has the analytic Radon—Nikodym property.
This property was defined for the first time by A. V. Bukhvalov [11].
Recently, A. V. Bukhvalov and A. A. Danilevich [2] have shown that every
Banach space with the Radon-Nikodym property has the analytic Radon~
Nikodym property. The converse is not true: L, (0, 1) is a counterexample.

For the definition of the usual Radon-Nikodym property and informa-
tion about classes of Banach spaces having this property the reader is
referred to [4].

Recently, G, A. Edgar has characterized the analytic Radon-Nikodym
property in terms of the convergence of analytic martingales (see [9]).

Tueorem 2.2, For any f € N, (X) the following assertions are equivalent:

(@) f has a radial limit almost everywhere.

(b) Tim, oy | = £ )] = 0.

(c) feP(X)', where P(X) is the space of X-valued polynomials, ie.
Junctions of the form g(z) = xg+x, 2+ ... +x,2" where xg, xq, ..., X, €X,
zeD, neN,_

(d) feX®N, ' where X ®N,, is the linear subspace of N, (X) spanned by

the functions x@g (xQ@y(2) =g (z)x), xeX, geN,.

Proof. (a)=(b). Suppose lim,_,_ f(rw) = f*(w) exists ae. Then f* is
Bochner measurable, By Fatou's lemma '

Jlog (1+|L/™ydm < li?[]ilog(1+ll(f)rli)dm

(thé integrals on the right-hand side of the above inequality increase, because
the function h(z) = log(1+(|f(2)ll) is subharmonic; see [7], Theorem 1.6).

5 - Studin Malhematicn 94.2
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Using the uniform m-continuity of {j},log(H—If( Nidm: 0<
Vitali’s theorem we obtain

) tim [log (L-+(/))dm = {log (1 +ILf*{}dm
rl-E

r<1} and

for any measurable subset E of T
Fix ¢ > 0 and a sequence (r,) < [0, 1), r, — 1. There is a measuyrable set
E; = T such that

EI log(1+I(/),)dm < g2, neN, [log(1+|lf*)dm<z/2,
0 Ep

and the sequence ((f),) tends to f* uniformly on T\E,. From this and ()
we have

limsup 1S — £ (r, ) = limsup [log (1+].*~(1), ] dm
<lim [ log(1+{1/* = (N )dm+ | log(L+||f*)dm
no® TiEg Eo

+hrn_’sup jlog(l+l|f},”ll)

{b) =(c). For any r (0, 1) the function f(r) is analytic on r~ ' D. Hence,
its Taylor series is uniformly convergent on D, so also convergent in N, (X).
Therefore, f(r-)eP(X)". By (b), this implies f e P(X)'-

(c) = {(d). This implication is obvious, because P(X) =X ®N,.

{d) = (b). It is well known that (b) holds for functions from XN, hence
also for any function x®g (x€X, g €N,). Now, it suffices to observe that
the set {f eN,(X): lim,,_|f—f(r-)| =0} is a closed subspace of N,(X).

In order ‘to prove the remaining implication (b)=(a) we need the
following lemma.

Lemma 2.3. Let geH_(X). Suppose that there exists a sequence
(r =0, 1), r, =1, such that the sequence of functions ((g), ) is convergent
almost everywhere on T. Then g has a radial limit im, ,; _ g (*w) for almost all
well

Proof Fix geH _(X) and (r,) as in the assumptions of the lemma. Let
g* =lim,.(g), ae Of course g*eL,(T,m;X), so the function
[0,1] 2t log*(e*™) is Bochner integrable on [0, 1] with respect to the
Lebesgue measure. Thus, for almost all se[0, 1] one has

s+h

(+) limb™" [ g*(e®™)dr = g*(e>™).
h=0 ;

Let P{g*] be the Poisson integral of g%, ie.

PLg*1(rwe) = [P, (wow™ ) g* (W)dm(w) for 0<r <1, woeT,
T
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where P,(w) = (1 —w?)/{l —rw|? is the Poisson kernel. The same proof as in
the scalar case (see [7], Theorem 1.2) shows that lim,_.,_ P[g*](re*™) exists
at every point s €[0, 1] for which (+) is satisfied. However, by the continuity
of (g)» »=1,2,..., on T and the Dominated Convergence Theorem

g(rwo) = lim g (rr, wo) = lim P [(g),,](rwo)

= P[g*1(rwo)
Thus, lim, . g(rw) exists for almost all weT.
Proof of the implication (b)=-(a). Let feN,(X) be such that
[f~f(r-)] -0 (r »1—). Fix any sequence {r,) = [0, 1}, r, = 1. Then

() Lfra )= 1O N = £108(1+II(f)r,,m(f)rmll)dm

for any re[0, 1) and woeT.

for any n, meN.

We denote by Lg (T, m; X) the Orlicz space defined by the function G()
= log (1 +1), i.e. the space of all Bochner measurable X-valued functions # on
T for which Julg = [rlog(1+|lu[)dm < oo. It is well known that the metric
d(u, v) = lu—vlg induces on Lg(T, m; X) a complete vector topology. By
(=), ((f ),) is a Cauchy sequence in Lg{T, m; X), sc it converges to some
function f *eLg(T, m; X). It follows that there is a subsequence of ((f),)
which converges tc f* ae.

We have thus shown that there exists some sequence (s,) =[O0, 1),
s, =1, such that lim, ., f{s,w) = f*(w) for almost all weT. By Lemma
14, f = g/h for some functions g eH (X), heH,. As H,€(FP), the radial
limit A* of h exists almost everywhere. Thus, the limit lim, .o g(s, w) = g* (W)
has to exist for almost all weT. By Lemma 2.3, lim,.;_ g (rw) = g*(w) ae.
Finally, g* (w)/h* (w) = lim, ; — g (rw)/h(rw) for almost all weT. The proof is
finished.

Theorem 2.2 and Proposition 1.2 imply

CoroLLARY 2.4, The closure in N(X) of the space P(X) ofall polynomials
is the largest subspace of N{(X) with the Fatou property which is a tv.s. in the
relaiive topology.

We shall denote P(X)' by Ny(X).

3. The Fréchet envelgpe of No(X). If feH(X), then its nth Taylor
coefficient is denoted by f(n)
For any feH(X) and ¢ > 0 we define

T inf(n)nexp(—cﬁ)-

Of course ||-||, is 2 norm on F (X) = {f eH (X): [ fll. <o0}. It is easy to see
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that for any sequence (x,) = X such that Z;":o”x,,llexp(—cﬁ) < o0, the
series 3 % ;x,z" is convergent on D. This implies that )
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(3.1) the mapping fl(f(m) is an isometry of (F.(X),|ll) onto
L (N, p; X), where u, is the finite measure on 2V defined by g, ({n})

=exp(—cﬁ).

Therefore,
(32 (F.(X), [[*ll.) Is a Banach space for every ¢ > 0.

Let F(X) = {J,50F,(X). Every functional ||*||, is an FG-norm on F(X).
Denote by ¢, the group topology induced on F(X) by [-]l. Let ¢
=sup{e,: ¢ >0}, ie. @ is the weakest group topology which is stronger
than ¢, for every ¢ > 0. For any 0 <c¢ <d we have |||, = | |l;» s0 @4 =W
This implies that ¢ = sup {p,,: w positive and rational}. Therefore, (F(X), @)
is a metrizable topological vector group which has a base at zero consisting
of convex sets. By (3.2), ¢ is complete, and thus {F(X), ¢) is an FG-space.

We denote by F, (X) the largest subspace of F(X) which is a t.vs. in the
relative topology. F, (X) is a Fréchet space and, obviously,

Fo(X) =(FO0) = () F(X).

Observe that F, (X) is not locally bounded. Indeed, the following
general fact is easily verified:

Facr. Suppose that (X, |||, n=1,2,..., is a sequence of Banach
spaces such that:

1. X4 is continuously included in X,, n=1, 2, ...
2 N.X, is dense in X, for n=1,2, ...

Then (\, X, equipped with the natural projective topelogy {i.e. the weakest
vector topology for which all inclusions (, X, c»X,., m=1, 2, ..., are conti-
nuous) is locally bounded if and only if there exists ng €N such that X, =X
Jor nz=ng.

Of course, F,(X) # F,(X) if ¢ # d.

Propostmion 3.1. For any Banach space X:

"O

(@) Ny(X) = F,(X) and the inclusion mapping is continuous.
(b) No(X) is dense in F,(X).

The proof is based on the folllowing lemma, which can be obtained in
the same way as in the scalar case (see [1€], TL11.2).

LemMma 3.2. For every ¢ >0 there is a positive constant k. such that

IF Ol < keexp(d Jen), n=0,1,...,
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if feH(X) satisfies

17 @ < exp (1%”) ;€D

Proof of Proposition 3.1. {a) From Lemmas 1.1 and 3.2 it follows
directly that for every ¢ > 0 the FG-norm || -||, is bounded on any neighbour-
hood of zero {feN(X): |fl<(c)*32}, where 0 <¢ <c. Thus,
N(X) « F(X) and the inclusion mapping is continuous. Therefore,

Ny (X) = o(N(X)) € o(F (X)) = F.(X).
(b) Define T: F, (X) = Y=o L (N, fto; X) by Tf = (f(n)), where e 1
defined in (3.1). We equip Y with the natural projective topology. Then it is
easily verified that T is an isomorphism which maps the space P(X) of

polynomials onto the dense subspace of ¥ consisting of all finitely supported
sequences. Therefore, P(X) (thus alsoc Ny(X)) is dense in F,(X).

LEemma 3.3, For any ¢ >0, let

1
fi(2) = exp (% +z), zeD.

l—z
Then f,eN, |f| =c¢, and
inf| £, (n) exp(— «/cn) > 0.

The above estimate of the Taylor coefficients of f, is well known
(cf. [16], T1.11.2).

Lemma 34, Let V.= {feH(X): |fl<c), ¢>0. Then

V, =V, n No(X)"

Proof. From the definition of the FG-norm || it follows directly that V,

is s-closed in H(X). Therefore, V,nN, (X)'<V. If feV, then

Jr)eV.nNo(X) for every 0 <r <1. Moreover, f(r) —f (x) as » —1.
Thus, ¥, = ¥,nNy(X)", which completes the proof.

Lemma 3.5 Fix ¢ > 0. Let (a,) be a sequence of positive numbers and (x¥)
a sequence of continuous linear functionals on X such that for any

J eV, nNy(X)
(#) (S < a4, n=0,1,...
Then :

¥ < Ka,exp(— Jen), n=0,1,...,

where K is a positive constant which depends only on c.
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Proof. Fix xeX, ||x|| =1. Let h. = x&/;, where f, is as in Lemma 3.3.
Then h, eV, and by Lemma 34 there exists a sequence {g,) = V. " Ny(X)
which is »-convergent to k.. Therefore, lim, ... §,{(n) = h.(n) for n=0,1, ...
Using (#) and the centinuity of xF we have

[x*(h ()] = lim [x* (G ) <o, n=0,1,...
[ 3ad-]
However, h,(n) =(x®f) (n = f.(wx, so by Lemma 3.3
ek (X)) < @, |, ()|7™* < Kagexp(— Jen), n=0,1,...,

for some positive constant K which depends only on ¢. This completes the
proof, because x€X, {|x]| = !, was chosen arbitrarily.

TreEOREM 3.6. For any Banach space X, F,(X) is the Fréchet envelope of
Ny (X).

Proof. By Proposition 3.1 the inclusion maps continuously N, (X) onto
a dense subspace of F(X). Thus, in order to prove the theorem it is enough
to show that every v-continuous linear functional on N,(X) is also -
continuous.

Fix Te(Ng(X)). Then there is a ¢ > 0 such that
- (@) T/ <1 for any f eV nNo(X).

Define x}(x) = T{(x®z"), x&X, neN. Of course x,eX’, n=0,1,... We
shall show that :

(b} sup{|x¥) exp (¢’ \/r;) < oo for some ¢ > 0.

Indeed, observe that for any (eD and feNy(X) the series f({z)

=Y Ffmzis uniformly convergent on D, so it is convergent in Ny (X)
as well. Therefore,

1c) T(fC)) = 2 T/ M@= Y x*{f m)"

=0 =0
for every {eD. This implies that for every f eV, "Ny(X) the function /7
defined on D by fT{{) = T(f({-)) is analytic and bounded by 1. Thus,

(d) S () = |xx (Fm)| €1 for feV,ANy(X), n=0,1, ...

Now we obtain (b) using Lemma 3.5 with a, =1, n=0,1, ...

For any f €Ny (X) we have |f— f(r-)] =0 (r »1—). This, (b), and (c)
imply that

T/ =lim|T(fr)) < 3
p ot #=0

X (7))

< T WO < K5 10 exp(—e /)
n= n= O
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for some positive constants K', ¢’ and every feNq{(X). Therefore, T is
continuous with respect to the topology induced on No{X) by F,(X).

CoroLLarY 3.7. If a Banach space X has the analytic Radon-Nikodym
property, then (N, (X)) = F (X).

It is not known whether Corollary 3.7 is true without the assumption
that X has the analytic Radon-Nikodym property. This question is clearly
equivalent to the following

PronLem 3.8. Let X be a Bamach space. Is the subspace N, (X) weakly
dense in N, (X)?

We recall that if X does not have the analytic Radon-Nikodym
property then No(X) is a proper closed subspace of N (X). .
We conclude this section by showing another representation of
(No (X)) |
It is straightforward to check that
(3.3) for any positive continuous function ¢ on [0, 1) with @(r) —»0 as
r =1, the space

A(®, X) = {feH (X): |if1|¢=5ugiif(2)ll b (lz]) < o0}

equipped with the norm |||p is a Banach space.
Moreover,

(34) Ao(®, X) = {f eH (X): |1i|T1 [1.f (&)l @ (|z]) = 0}

is a closed subspace of A(P, X} containing the space P(X) of
polynomials as a dense subspace.

Indeed, if f € Ao (®, X) then f(r) =~/ in Ay(P, X) as 7 -1, _Since eagh
£(r-) can be uniformly approximated on D by polynomials, P(X) is dense in
Ag(P, X).

For any ¢ >0 and 0<r <1 we define

&,(r) = exp (- T%)
Let F'(X)=),»oA(®, X) and let ¥ be the supremum of thﬁ:1 ‘group
topologies defined on F!(X) by all FG-norms |[-(lg,, ¢ > 0. Then (F*(X), ¥)
is an FG-space and, by Lemmas 1.1 and 3.2, N(X) FUX)y = F(X) and the
inclusion mappings are continuous. Now we easily check that

Ny (X) = o(F (X)) = CDOA (P, X) = c[_\0440(‘?5“ X) = Fy (X)),

s0 Fi(X)= Ne»oA(P,, X) is a Freéchet space containing Ny(X) as a dense
subspace and inducing on No(X) the Mackey topology (cf. Theorem 3.6).
This implies



icm

174 M. Nawrocki

Prorosition 3.9. For any Banach space X the spaces Fo(X) and FL(X)
coincide set-theoretically and topologically.

4, Applications
(a) Taylor coefficients
Prorosimion 4.1. For any feF, (X)

(%) I/ (mlf = O (exp (o (/n)).

Furthermore, the estimate (x) is best possible: given any positive sequence (c,)
tending to zero, there exists [ €No(X) such that

Il £ ()] # O (exp(c, /7).

Proof. The proof of () for functions from F,(X) is very simple and
may be omitted. :

Suppose that there exists a sequence (c,) tending to zero such that

(4.1) supl/ (mllexp(~c,/n) <co  for every feN,(X).

Let G = {f eH(X): Iflll = 3.2 {1/ (n)lexp(—2¢,/n) < c0}. Using the
same arguments as in (3.1) and (3.2) we can prove that (G, |||} is a Banach
space. The space P(X) of polynomials is dense in G. It is easily verified that
G = Fy(X). Moreover, by (4.1) we have N,(X) = G. From the closed graph
theorem follows the continuity of both the inclusion mappings
No(X) =G < F,(X). This implies that G generates on No(X) the Mackey
topology, because (N, (X))A = F,(X) (cf. Theorem 3.6 Therefore, G
= F,(X). However, this is impossible, because F « (X)) 13 not locally bounded.

Consequently, there exists £ € N, (X) such that sup, | (| exp{~c¢, \/ﬁ) =00,
(b) Mean growth .

ProrosiTioN 4.2, For any feFL(X) (= F (X))

of(l
(x%) 1f @)l =0 ("’XPT‘_%T}}) as |z = 1.
The estimate (x%) is best possible: for any positive continuous Junction o on
[0, 1) with lim, .; @(r) =0, there exists feNy(X) such that

' w(]z))
R )
Proof. The estimate (+x) is easily seen. In the proof that this estimate is
best possible we use the same idea as in Proposition 4.1, so we omit details,
Fix any positive continnous function w on [0, 1} with lim, . & (r) = 0.
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Suppose that
@ (|z]) %
(4.2) supl|f ()| exp T <o for any feNy(X).
zeh -

Let

¢ {r) = exp (— 421—60_—(?) for re[0, 1).

By (34) and (4.2) the spacé Ag (P, X) defined by ¢ is a Banach space

. containing Np(X) as a dense subspace. It is easy to check that

Ag(®, X) © FL(X). Using Proposition 39 we conclude, as in the proof of
Proposition 4.1, that 4,(®, X) = FJ (X). This contradicts the fact that Fj (X)
is not locally bounded.

(¢) Multipliers from N,(X) into H, (0 <p< ). A sequence (x})
of continuous linear functionals on X is said to be a multiplier of N, (X)
into H, (0<p<ow) if Zox¥(f(m)z"eH, whenever f(2)=

Yawof(n)2" €N, (X).
Any moltiplier T = (x}} induces a linear operator

T f:f(n)z"b f x¥ (f(m)z"
=0 n=0

from N, (X) into H,. The closed graph theorem tells us that T'is continuous.

ProvosiTion 4.3. Let X be a Banach space. For any sequence
T =(x¥) < X' the following assertions are equivalent:

(a) Tis a multiplier of N,(X) into H, for every 0 <p < 0.

(b) Tis a multiplier of N (X) into H, for some 0 <p < 0.

(c) sup,||x}llexp(c/n) < o for some ¢ > 0.

Proof. Obviously, (a) implies (b). _ .

(b) = (c). Suppose that T = (x}} is a multiplier of N, ()_() into H,. We
may assume that 0 < p < 1. The induced operator T'is continuous, so there
exists a positive constant ¢ such that

(4.3) ITfll, <1 for any feN(X) NV,

where V, = [/ eH(X): |f] <c}.
It was proved by Hardy and Littlewood (see [7], Theorem 6.4) that
there is a C > 0 such that

(4.4) : |d(n)| < Cr*®~1||gll, for any geH,.
By (4.3) and (4.4) we obtain
(4.5) o b (fm) < Cntt for any feNo(X) V.
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Using Lemma 3.5 we have
¥ € C ¥t exp(—-/on) < C"exp(~¢' /n)

for some C’, C", ¢ > 0.
(c)=(a). It is easily verified that if (¢) heolds and f(z)=

-

Z:‘:Of(n)z" &N, (X), then t_he functicin (T (@) =Y 2 o x* (f(m)z" is analytic
on D and continuous on D. Thus, Tf €H, for any 0 <p < o0,

Remark 4.4. Proposition 4.1 and 4.2 simplify the proofs and extend
Theorems 1, 2 and 3, 4 in [24], while Proposition 4.3 is an extension of
Theorem 2 in [23].

References

[1] A. V. Bukhvaloy, Hardy spaces of vector-alved finctions (in Russian), Zap. Nauchn.
Sem. LOMI 65 (1976), 5-16.

[2] A. V. Bukhvalov and A. A. Danilevich, Boundary properties of analytic and harmonic
functions with valves in Banach spaces {in Russian), Mat. Zametki 31 (1882}, 203-214. -

[3] A. A. Danilevich, Some boundary properties of abstract analytic functions and their
applications (in Russian), Mat. Sb, 100 (1976), 507-533.

[4] ). Diestel and J. J. Uhl, Vector Measures, Math, Surveys 15, Amer. Math Soc,
Providence, R. 1., 1977.

[5] L. Drewnowski, Topological vector groups and the Nevanlinna cluss, to appear.

[6] L. Drewnowski and M. Nawrocki, On the Mackey topology of Orlicz sequence spaces,
Arch. Math, (Basel) 39 (1982), 59-68.

[71 P. L. Duren, Theory of H' Spaces, Academic Press, New York 1970,

[8] P. L. Duren, B. W. Romberg and A. L. Shields, Linear funcrionals on HP spaces with
0 <p <1, J. Reine Angew. Math, 238 (1969), 32-60.

[97 G. A. Edgar, Analytic martingale convergence, 1o appear. .

[10] C. Grossetéte, Classes de Hardy et de Nevanlinna pour les fonctions holomorphes &
valettrs vectorielles, C. R. Acad. Sci. Paris Sér. A 274 (1972), 251-253.

{11] W. K. Hayman, On the characteristic af functions meromorphic in the unit disc and of their
integrals, Acta Math, 112 (1964), 181-214. '

[12] E. Hille and R. 8. Phillips, Functional Analysis and Semi-groups, Amer. Math. Soc.
Collog. Publ. 31, Providence, R. I, 1957.

[13] N. L. Kalton, Orlicz sequence spaces without local convexity, Math, Proc, Cambridge
Philos. ‘Soc. 81 {1977), 253-277. ,

[14] —, Compact and strictly singulor operators on Orlicz spoces, Israel J. Math. 26 (1977),
126-136. -

[15] M. Nawrocki and A. Ortydski, The Mackey topology and complemented, subspaces
af Lorentz sequence spaces d(w, p) for 0 < p <1, Trans, Amer, Math. Soc, 287 (1985), 713~
722.

[163 L. L. Privalov, Boundary Properties of Analytic Functions (in Russian), Gos. Tzdat, Tekh.~
Teoret. Liter., Moscow 1950; German transl.: Randeigenschaften analytischer Funktionen,
Deutscher Verlag der Wiss., Berlin 1956.

(171 R. Ryan, Boundary values of unalytic vector-vaiued functions, Indag. Math, 65 (1962),
558-572. :

[18] H. H, Schaefer, Topological Vector Spaces, Springer, Berlin 1971

icm

Fréchet envelopes of Smirnov classes 177

[19] J. H. Shapiro, Mackey topologies, reproducing kernels, and diagonal maps on Hardy and
Bergman spaces, Duke Math. J. 43 (1976), 187-202.

[20] J. H. Shapiro and A. L. Shields, Unusual tepological properties of the Nevanlinna class,
Amer. J. Math. 97 (1976), 9i5-936.

[21]7 M. Stoll, Mean growth and Fourier cocfficients of some classes of holomorphic functions on
bounded symmetric domains, Ann, Polon. Math. 45 (1985), 161-183.

[22] N.Yanagihara, The containing Fréchet space for the cluss N™, Duke Math. 1. 40 (1973),
93-103.

[23] -, Muliipliers and linear functionals for the class N*, Trans. Amer. Math. Soc. 180 (1973),
440- 461,

[24] —. Meun groweh and Tuylor cocfficients of some clusses of fumetions, Ann. Polon. Math, 3¢
(1974), 37-48.

[25]1 A. Zygmund, Trigonometric Series, Vol, 1, Cambridge Univ. Press, 1959,

INSTYTUT MATEMATYKI UNIWERSYTETU im. ADAMA MICKIEWICZA
INSTITUTE OF MATHEMATICS, A, MICKIEWICZ LUINIVERSITY
Mulgjki 48749, 60-769 Poznand, Polkund

Received August 24, 1987 {2354)
Revised version February 16, 1988

Added in proof (June 1989). After this paper had been completed the author showed
(Veetor-nalued Hy-spaces; copies of I and ¢g. Dualiry when Q0 <p <1, preprint) that P{X] is always
weakly dense in N, (X} (see Problem 3.8). Consequently, for every Banach space X, F, (X) is the
Fréchet envelope of N, (X). - :



