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Abstract. Let 2 be a commutative Banach algebra. Then % is called weakly amenable if
each bounded module derivation into any commutative Banach 9-module is necessarily zero.
We give necessary and suff‘lcient conditions for N to be weukly amenable in terms of the
projective tensor product @A, These conditions correspond to the conditions for amenability
given in Theorem IL21 of [10], and Theorem 3.11 of [3], We use our characterization of weak
amenability to describe weak amenability for a large class of weighted discrete convolution
algebras,

Introduction. The notion of weak amenability was introduced by W. G.
Bade, P. C. Curtis, Jr, and H. G. Dales in [1]. A Banach algebra is called
weakly amenable if it is commutative and whenever X is a commutative
Banach Wemodule and D: W—X is a bounded derivation, then D 1is
necessarily zero. The question whether bounded derivations are necessarily
zero has also been considered in [5] and [6]. As the name of the concept
suggests, weak amenability is derived from the stronger concept of amenabili-
ty introduced by B. E. Johnson (see [8]) and a principal aim of the paper [1]
was to exhibit classes of weakly amenable Banach algebras which are not
amenable,

Amenability of Banach algebras has been one of the major themes in
the homology theory of Banach algebras developed by A. Ya. Khelemskii
and others, expounded in the survey article [10]. The characterization of
amenability obtained here has recently been investigated by P. C. Curtis, Jr.,
and R. J. Loy in [3], replacing the homology techniques by arguments based
on B. E. Johnson’s original approach. It is our objective in this paper to
demonstrate the corresponding characterization of weak amenability.

Entirely crucial (or amenability is the existence of bounded approximate
identities in cerlain c¢losed ideals, naturally defined from the algebra in
question. A rather straightforward observation (see e.g. Proposition 29.7 of
[2]) states that a Banach algebra U has a right bounded approximate
identity il and only il W**, equipped with the Arens multiplication, has a
right unit, Most of the results on the characterization of amenability are
based on variations of this observation, reflecting the fact that amenability is
a rather algebraic concept, being characterized by the existence of elements



150 N. Groenbaek

with certain algebraic properties. In this paper we prove that the rdle for
amenability of “I has a (one-sided) bounded approximate identity” is repla-
ced by “linear combinations of products of elements from I are dense in I7,
where I is some closed (left) ideal. This suggests that weak amenability is a
concept which to a large extent reflects topological properties of the algebra.

In Section 1 we establish some notation and set up the framework in
which we shall be working. In Section 2 we form new weakly amenable
Banach algebras from old ones. In Section 3 we give the main characteriza-
tion and in Section 4 we apply this to a class of discrete convolution
algebras.

1. The derivation rule. Throughout ¥ will be a Banach algebra and U*
= C1@® W the Banach algebra obtained by formally adjoining an identity,
denoted by 1, to U The notion of a Banach W-bimodule is defined as in [2]
and we shall always assume that module actions are bounded by 1. If X is a
Banach -bimodule, we define an X-derivation to be a linear map D: W - X
satisfying the derivation rule

(D) . D(ab)=a-D(b)+D(a) b

for all a, b € WA. In this paper we shall ohly consider bounded derivations. An
instance of special-importance is the inner derivations §,(a)= x-a—a-x,
defined for each xeX.

The following point of view will be fruitful for the discussion to follow,
We make X a Banach W*-bimodule in the obvious way: 1-x = x*1 =x for
all xeX. Then we get a sequence of linear maps:

(80X 5 B(U*, X) 5 B(AY, X)/Imj ~0

where B(2¥, X) is the set of bounded linear operators from U* to X and
for each x X the operator j(x) is defined as ¢ —x-a, aeU*. Since x1 = x
we see that j is an isometry. Thus it is apparent that (S) is a short exact
sequence of Banach spaces, ie. the kernel of each map is the image of the
preceding map. But more is true. If we make B(U¥, X) a Banach U-
bimodule by defining

aS:h-g-Sk): U¥*»X and S-a:b—>S§(ab) U*¥—X

for all acW and all SeB(NU*, X), we see that j and g are bimodule
homomorphisms.

We shall now restate the definition (D) in terms of the short exact
sequence (S). If §: U — X is any bounded linear map, we extend S to a map
§* U* > X by setting $* (1) =0 :

Prorosition 1.1. Let §: WX be a bounded linear map and ler (S) be
defined -as above. Then the following are equivalent:
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(i) § is a derivation.
(ii) joS§ = d .
(iii) ¢ 0y = 0.

Proof, (ii) states that for all a A we have j(Sa) = S*-a—a S*, ie for
all ae Wand all he W™ we have Sa-b = §*(ab)—a-S¥ (b). In particular, this
holds for h e so that § is a derivation. Conversely, if (i) holds then §* is a
derivation from A" to X, so that for all «, beA* we have $*(a) b
= S*(u B)—a-8"(h). In particular, (ii) holds.

Since (8S) is exact, the implication (ii) = (iii) is automatic. Hence assume
(iii). By exactness we get for each ¢&® a (unique) x,€X so that for all
heWN™ we have x, b =S*(ab)~u-S*(h), Applying this to b=1 we get
x, = Sa so that (ii) holds. w

Remarks. (a) Note that if / has a left inverse which preserves commuta-
tors, i.e. a left inverse @ of j which is linear and satisfies @ (a-T— T-a)
=aq-@(T)—O(T)-a for all aeW and TeB(A*, X}, then every derivation
from 2 into X is inner.

{(b) The statement (iii) has the somewhat peculiar consequence that S is
a derivation if and only if the range of the inner derivation d_s is covered
by ranges of derivations, ie. d; (W & ib «(MW| D an X-derivation from 2}.

A much deeper result of R, V. Kadlson [9] states that if U is a von
Ncumann algebra, then a bounded linear map S: U — W is a derivation if
and only if for each o € U there is a derivation D,: U — A with D, (a) = S(a).

Of special interest is the module 2W*. The module action of Won A* is
defined as {uay. ax > = {aya, [ (a, ay, eW; e+ In [1] it was ob-
served that a commutative Banach algebra is weakly amenable if and only if
the only *.derivation from is the zero derivation, and in [10] and [3] it was
proved that 90 is amenable if and only if the map j in the short exact
sequence for 2 has a left inverse which is a bimodule homomorphism (cf.
Remark (a)). But before we pursue these aspects, we want to establish how to
form new weakly amenable Banach algebras from old ones.

2. New from oll. From here on, the term “weakly amenable” will
be abbreviated to WA. Whenever 90 is a Bapach algebra we define
W s span o, oy a; N, i=1,2]. .

Proposition 2.0, Let W and B be commutative Banach algebras and
suppose there is a bounded homomorphism from Winro B with dense range. If
Wis WA, then so is B.

Proof. Straightforward. w

ProprosrtioN 2.2, Let 9 be WA and let I be a closed ideal in ‘ll Then I is
WA if and only if %)~ =1.

4 - Sudin Mathematien 94,2
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Proof. Corollary 1.5 of [6]. =
ProPOSITION 2.3. Suppose we have a short exact sequence
01 UAHB -0

of commutarive Banach algebras and bounded algebra homomorphisms, i.e. Wis
an extension of B by 1. If I and B are WA, then so is U

Proof. Let X be a commutative Banach 2-module and let D be a
bounded X-derivation from 9 We may assume that I is a closed ideal in 2L
Since I is WA we have D() <[+ = {xel|I'x = {0}] and D(I) = [0}. Now
I+ is naturally a commutative Banach ¥module and D drops to a map
P B 7' which is easily seen to be a bounded derivation. Since B is
WA, D=0. It follows that D=0. =

ProposiTiON 2.4, Let U, ..., W, be WA Banach algebras. Then ¥ x ...

x W, is WA,
Proof. Induction, using Proposition 2.3. .

Proeosimion 2.5. Let (9, ;) be a directed system of commutative Banach
algebras and bounded homomorphisms, with direct limit W If-all Ws are WA
then so is 9L

Proof. By Proposition 2.1 it is enough to prove the statement for
which is a direct limit of subalgebras, directed by inclusion, and for such U
the statement is obvious,. =

Before we proceed, let us note the following, also to be used later, If 2
and B are (not necessarily commutative) Banach algebras the projective
tensor product @B is naturally a Banach algebra (see eg. p. 236 of [2]).
Since the embedding U - A has a left inverse of norm 1 the embeddings
ADU > AR A - A¥@U* are isometries.

PROPOSITION_ 2.6, Let U and B be WA. Then ARV is WA.

Proof. If % and B are WA then (U?) = U and (B =B so
(UHB?)~ = ARB. Since UMW is a closed ideal in A*QB* the result
follows from Proposition 2.2, once we have proved that A*RB* is WA. But
UFRBY = (AR (14,@B%)", and any bounded derivation from
A*@PB* into a commutative Banach A* @B *-module vanishes by assump-
tion on A*P1, and 1,RB*. =

Prorosition 2.7. Let (W, be a family of Banach subalgebras of a
commutative Banach algebra U such that the algebra generated by the Ws is
dense in W If each W, iel, is WA then so is W

Proof. Let # = {i;,....i,} be a finite subset of I, Define Wy to be
the closure of the canonical image of ‘11i1 &... ®‘l[in. If the finite subsets of
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I are directed by inclusion we have ¥ =lim. Wy, Use Propositions 2.5
and 2.6. w

CoroLLARY 2.8. Let S be a commutative semigroup which is a union of
groups. Then 1'(S) is WA.

It is worthwhile to compare the above results with hereditary properties
of amenability, Propositions 2.1, 2.3, 24 and 2.6 hold when “amenable” is
inserted instead of “WA™ In Proposition 2.2 we have an instance of the
correspondence between conditions for amenability and WA mentioned in
the introduction. The statement “(I*)” == I ™ would be replaced by “ I has a
bounded approximate identity” to obtain the corresponding result for ame-
nability. Propositions 2.5 and 2.7 do not in general hold when “WA” is
replaced by “amenable”, the reason being that if D: W —X* is a bounded
derivation into a dual -bimodule, then the elements defining the inner
derivations D{y, may grow in norm. This is perhaps most strikingly iflus-
trated by a theorem of J. Duncan and I. Namioka [4], which states that if S
is an infinite abelian idempotent semigroup then /*(S) is never amenable (cf.
Corollary 2.8).

CoroLLARY 2.9. Let (S, +) be an abelian semigroub satisfying the rule
s+s=t+t=s+t=5=1 for all 5,t&S. Then I'(S) can be embedded in a
WA Banach algebra.

Proofl Any semigroup satisfying this rule can be embedded in a
semigroup which is a (disjoint) union of groups [7]. The double conjugate of
this semigroup embedding defines the embedding of (S m

3. Characterization of weak amenability. We now return to the short
exact sequence (8) and shall suppose that the module is a dual module (p. 50
of [2]). Thus, we replace X by X* and are hence considering bounded linear
maps from a Banach algebra 2 into X*, where X is a Banach ¥-bimodule.
Tt is well known that B(2*, X*) is isometrically isomorphic to (U*&X)*,
the isometry being given by <{a®x, 8> =<{x,Say for all
aeN*, xeX, SeB(A*, X*). We shall freely make use of this identification
and hence not distinguish notationally between the B(2*, X*) point of view
and the linear functional point of view.

With (his in mind, one readily establishes that the short exact sequence
(S), with the module being X*, is (isomorphic to) the dual sequence of

(X, 0K HuN'&X S X -0,

where 7 is given by 7 (d@x) =« x for all e A", xeX, and { is the injection
of the kernel X of 7. We change the notation accordingly, so that (S) is
replaced by

ER(X): 0-X* HB(AF, X¥) SK* 0.
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The previously defined module action of 9 on B{2¥*, X*) is the dual action
of the natural action of 2 on WU*®X given by a-(h®x) = (ab)®x and
(b@x)-a=>bR(x a) for all aeW, beA*, xeX. By means of Proposition
1] we get

Prorosition 3.1. Let SEB(QI X*) Then S is a derivation if and only if
S*LK; 9], where [K; W =span{u-a—a-uluck,aecW. In particular,
there are no nonzero bounded derivations into X* if and only if [K; U]™ =K,

Proof. S is a derivation

had *(j =0

< Jou( a)|K—0f0r all ae

< @, S¥a~a8* =0 for all ueK, aecN
< lura—a-u,§T>=0lor all uek, ae.

To prove the second claim of the proposition, note that W*RX
= K@ (1®X), where the sum is topologically direct since 7 has the right
inverse x —1®x. The canonical decomposmon is given by u = (u—1®n(u))
+1@n(u) for all ue U*&X. Since $*(1) =0, i.e. S*LI®X, it follows that
the space of bounded derivations is isomorphic as a Banach space to
(K/[K; A]7)*, from which the assertion follows. w

We shall now focus on the special module U*, ie we shall be looking
at the algebra A*GW As mentioned, the embeddings AR U — AF @A
—+QI#®Q[*" are isometries, Let K . be the kernel of the map a ®b —ab:
AT & A* — A¥ and put

K=Ksn(U*QW, K, =Ky (UD).

When U is commutative K4 is a closed two-sided ideal of A*@A*.

.TueoreMm 3.2. Let A be a commutative Banach algebra Then the

Jfollowing are eguivalent:
Q) Ais WA.
(i) [K; A}~
(i) (K%)™ =K.
({iv) (K%~ =K,
(V) ()" = W and (K}~ =[(AURW K]~
If U has a bounded approximate identity these are equivalent to
(vi) (K§)™ = Ko.
Proof. {i)=

(iv) = (1i). As observed

= {u—1@n(u)|ueU* @A} = (span {a®b—1Qab|a, b e ay-

= (ii) fellows from Proposition 3.1.

icm
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Here we use (Al4+-a)®@1-1@(Al+a) =a®@1~1®a for all aeW and all
4eC Hence

(K*™ = (span {(a ®b—1®ab)

a,b,c,deW)".
Now

(0@b—~1Qab)(c®d—1Qcd) = (@1 —1Ra) 1 @b (c®d —1Qcd)

=g u—u-a '

where u =1Rb(c@d—1®cd)eK. So (K}~ =[K; U]~

claim follows.
(iy=>(iv). If A is WA then (U3~ = A Hence

span {a®@bc—~1Qabcia, b, c e AW
is dense in K. Let a, b, ¢, de U be given. Put u = a®bc—1R®abe. Then
wd—du=(1®d~d@)u=10d-d®1)18c(a®b—1Qab)
= (1 @dec—d@c) (a@b—1Rab) e K.

It follows that (K*)~ =[K; W]~ and hence if 2 is WA that (K?)~ =K.
(i)=>(iii). This is established either by repeating the arguments for
(i) «>(iv) or by noting that all we used was that the left factor in U*&® U has
an identity. Since U* is WA if and only if % is WA the result follows.
(v)=(i). We prove that U* is WA, Let D: A* —(A*)* be a bounded
derivation. Then [ vanishes on (K%)~ and therefore D vanishes on (K3}~
= (K 4 91@%)". In particular, D vanishes on elements of the form (1®c
—c®1)a®@b=a®bc ~ ac®b so that for all a, b, ce W we have {be, D(a)d
= ¢b, D{uc)>, Using the derivation rule on the right-hand side we get
{ab, D{c)> = 0. Since (W)~ = A we see that D = 0 on W and hence on A*,
{I) = (v). Suppose that % is WA. By what has already been proved, we
get (Kg)?)” =Ky and {23 =90 From the obvious inclusion
(ABDWK 4)” =Ko we get (UQWK 4)™ = (ARM>K%)™ <(K3)~. The
reverse inclusion is trivial.
{vi)=={v). This is obvious, since (K3~

from which the

S(K«(ASW})" s K, always

holds.

(v) = (vi). From ((&Pl@‘l[)KO) = KO we get

Comparing this with Theorem I1.21 of [9], or Theorem 3.11 of [3], we
see again that “J has a b.a..” is replaced by “I?* is dense in I, where [ is the
appropriate ideal, Note that the Banach space of derivations from % into a
dual module is, in general, (isomorphic to) a dual space and if the module is
A* the space of bounded W*-derivations is isomorphic to the dual of a
Banach algebra, namely (K/[K; UJ™)*,
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4. Additive maps and derivations. In this section we shall investigate the
weighted discrete convolution algebras ' (S, @) by means of the techniques
from Section 3.

First we introduce some notation. Let (S, -+) be an abelian semigroup,
not necessarily cancellative, and let w: S — R, be a strictly positive weight,
ie. w(s+1) <w()w) for all s, reS. We define the Banach algebra I (5, »)
as a set of formal power series with exponents in S:

(S, w) = {Y 4, X[ 4eC, || T 24X =Y |Alwl) <o}
sed ses

with scalar multiplication and addition defined coefficientwise and the alge-
bra multiplication defined as formal multiplication of power series:

EaX)(EmX)=2( Y Aum)X"

ueS s+i=u

It is straightforward to check that these definitions define a Banach algebra.
It is well known that

1'(Sy, 01) B (S5, ;) = I (S) x 83, @y xwy)
through the identification X*®X' = X" and thus that
(I (51, ) B (S5, w))* = I*(8, xS, Vo x w,).

On S we define the preorder s <t by tes+S. We define the following
sets:

V)= {s|s <t},
V() = {f€CYO| f(s,+5)) = f (s)+ /(5,) Whenever s, +5; €V (1)},
[t—st={ueS|uts= t}.

It is our aim to describe possible WA of I (S8, w) in terms of sets of the
type V(6)*. Without loss of generality, we may assume that § has a neutral
element. Thus, we shall be dealing with the short exact sequence

I 0K, =S xS, wxaw) SIS, w) —0
where mw(X®9) = X5+,

Lemma 4.1.

) Ko={2 4 YLl ool <o}

5teS
where Ys.t — X(S’l)_—X(D’S+t).
(i) [Ko; I'(S, )] =(K3)~

- (Spal']. {Ys-H,u_ Ys,H-n_ Y!,.H-u l s, [‘, u ES})—.
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Proof The description (i) of K, follows directly from the decomposition
u=u—X"@n(w)+ X°@n(u) used in the proof of Proposition 3.1. Hence a
dense subset of [Ky;!' (S, w)] is spanned by the elements (X% — X(©) y*v
= YO0y s t,ueS. Thus (K3~ =[Ky: ' (S, w)]”. Calculating 'the pro-
duct ¥Y*°- Y% we obtain (i) =

Note that K, is isomorphic to I* (S\(0) xS, @ xw) as a Banach space. If
we define % = (K3)~ it follows that mel®(§ xS, 1/w x 1/w) corresponds to a
derivation if and only if mL(2+X°®0' (S, w)).

The next proposition shows that additive maps always give rise to
derivations.

PropostTioN 4.2. Suppose there exist t €S and [ eV (6)*\(0) such that

N JL IO

w(sw@) |

—I~u=t}=o¢ < 00,
Then 1S, w} is not WA,

Prool. One checks easily by means of Proposition 3.1 that me
1%(S xS, ljw x1/ew) defines a derivation if and only if for all s, u,veS
m(s+u, v) =m(s, utv)+mu, s-+v).

Now let teS and f EVft)* be as described in the statement of the
proposition and define

mis. u) = £() oy (s + ),

where y,, is the characteristic function of the set {r]. Since g, (s+u)=0
where f(s) is not defined, this makes sense. We get for s, u, ves

if s+utvst,

, 0
st U)=j(s+u)xm(s+u+v)={ if s+utv=t

Fisy+fw)
= f{8) (s+Fu-tv)+ f W) g (s+utv)
= m(s, uv)+mu, s+v).

Clearly mel®(S xS, 1/wx l/w) with ||m|=a. =

We seek a converse to this proposition,

Prorosimion 4.3. Suppose that D is a bounded derivation from 'S, w)
into 1%(S, 1/w) such that for some t &S the map

(s, u) ——qu‘D(Xs)

for each fixed sV (1) is independent of u and not identically zero on the sef
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(s, W s+u =r}. Then there exists f eV (1)*\(0) such_that

up { 176

w{s) o (u)

S+1t“—-“t} <00,

Proof. Let m be the functional corresponding to D. We shall use the
notation t—s for any ue[r—s]. The conditions on D and t are precisely that
the map (s, v} = m(s, t—s+v) is well defined and not identically zero on V()
x8. Fix veS, Then for s,+s5, eV (t) we have

m(Sl'i"Sz, t—(Sl +S2)+U)
=m(sy, —(8; +82) + 5, +0)+ m(sy, t—(5,+55)+s5, +0)

= m(sy, t—8;+)+m(sy, —53+0),

where the last step is valid because the maps considered are well defined.
Furthermore, ‘
S+u = t}

sup {|m(s, u+o)| |m (s, t+v)
If we define f(s) = m(s, t—s+v) for appropriate v we get the conclusion. m

stu= t}»s; w(v)sup{co(s)cu(u+v)

w (8 wu)

< @ () lmil.

We shall now concentrate on giving conditions which ensure that
“@,(s) = X*7*-D(X%)” can be defined and nonzero on V(t) for some €S, We
phrase the question by regarding bounded derivations as bounded linear

functionals on the ideal K in I' (S x §, & xw). That m €K¥ corresponds to a
derivation means

i: mlg

and that for some t €S the map ¢,, given by the derivation corresponding to
m, is well defined, means that for some re$§

Finally, the nonvanishing of the map ¢, is equivalent to
(i) mLi{Y> ™ —y= ¥ yeS: seV () u, o e[t-s]}.-
Put _
W, =span {Y**F4— Yoo |y e S se V() u, uelr—s]},
Z,=span{Y*"""|seV(t); yelt—s]; v eS}.
. Suppose now that we have “failure of additivity”, ie. if D is a bounded
derivation such that the map ¢, is well defined for some tef§, then ¢, is

nef:cssarily equal to the zero map. Using the descriptions (i), (i), and (iu),
this means that if ml(2+ W) then mlZ,. ‘ ‘
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We arrive at the condition

(F-A): VYteS: (9+W) 22Z,.

Fix £ and v in S. If (F-A) holds, we get Y"'=(@+ W)™, since clearly
Y'weZ,. Let (d,+w).en, d, €%, w,eW,, be a sequence tending to Y"*. Then
(d,+w) X% > Y™ as n —>co. Since % is a closed ideal and W, X'® = {0}
it follows that Y*'** =% and hence, since ¢t and v were arbitrary, that Y*’ e &
whenever u <v. We collect our observations in

LemMa 4.5, Suppose (F-A) holds. Then

(a) Y*"e@ for all u, veS such that u <v.
(b) Y"™*ec@ for all u,veS, neN, nz 2.
(© If Vi) = {u, 0} then 2 2Z,.

Proof. (a) has already been established. From Y™o#— YW 1mu®o
—ymnmbutr 2y and (a), it follows that

ymy = yor Deute (mod G)
and hence by induction that

ymer = Y-t = 0 (mod @)
To prove (c) just note that if V(u) = {4, 0} then W, ={(0). w

for nz 2.

o ]
Lemma 4.6, Let+u sy, VES and suppose that Y%le@  for
i=1,...,n Then Y1 """ @

Proof Put e=u;+ ... +u, and o, =u;+ ...+t g+t +... +u,.
Then a straightforward induction on » shows that

YG'U = E qu,crl-+u (mod f‘/’)

i=1

(0,0;

Since @ is an ideal in I (S xS, @ x) and Yo" = ¥ X% the claim

follows. w

A combination of the results of this section yietds the desired connection
between derivations and additive maps for a large class of semigroups.

THroreM 4.7. Suppose that S satisfies one of the following:

(a) S is a cancellation semigroup.

(b) Every element of S is divisible by some neN, nz 2.

(©) If ueS\(0) then {V(u}y =8, where {V(u)) is the subsemigroup gener-
ated by V(u).



160 . ‘N. Groenbaek

Then for any weight @: S >Ry, I'(S, 0) is WA if and only if
{ S8
sup —

w(8) w(u)

{j’eV(t)* s+u=t}<oo}= {0}

for all tes§.

Proof. The “only if” part follows from Proposition 4.2. Now suppose
that the condition holds for all t S. Then (F-A) holds by Proposition 4.3.

If S is a cancellation semigroup we have W, = {0} and thus &% = Z, for
all +eS. But this clearly implies & = K.

If every element of § is n-divisible for some n = 2, possibly depending
on the element, then Lemma 4.5(b) implies that & = K.

Finally, assume that S satisfies (c) and let u, v€S§. Consider first the case
v#0. Write u = uy + ... +u,, where w;€V{»), i=1,..., n. By Lemmas 4.6
and 4.5(a) it follows that Y** €%, If v =0 and V(u) = {u, 0} we get Y*'eP
by Lemma 4.5(c). Hence we are left with the case u=u;+u,, where
u, €S\(0), i =1, 2. But then

Y0 = Y2 L Y*2'1 (mod &)

and again, by the first case, Y*%e@. It follows in all the cases (a), (b), and (c)
that if (F-A)} holds then &% = K, and therefore I' (S, @) is WA. =

CoroLLARY 48. Let G be an abelian group and let w: G =R, be
a weight, The Beurling algebra I'(G, w) is WA if and only if

wp{ |/ (g)]
wl(gw(~g)

geG}= +

for all feHom,(G, O\(0).

Proof. First observe that V{)=G for all reG, so that V()*
= Homz(G, C). Let f eHom,(G, C) and put

_ 1/ (@l
a(t) = Sup{_w(g)m(r~g) ‘g eG}.

Then (=8~ alt) € o (0} < (e (r) for all ¢t €G, and so the condition in 4.7
holds for every reG if and only if it holds for t = 0. Thus the corollary is a
special case of the theorem. =

Remark. In [1] the authors consider conditions for weak amenability
of Beurling algebras on the integers. In [1, Theorem 2.2] they give the
sufficient condition
w(nw(—n

n

A: —+0. as n—co,
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and in {1, Theorem 2.3] they give the necessary condition

{wm+m'1+w

B: P w(mw(ml+{m+n|

n, nEZ}=oo.

Noting that each f eHomg(Z, €) has the form n — f(1)n, the condition of
Corollary 4.8 above is in the case G = 2

' n
 spdeetinezb = ool
C qupém(n)m(mn) ne j “
It is straightforward to verify A= C=B and clearly B=+C and C<A, so
Corollary 4.8 covers a gap left in [1].

ExamrLE. Let S be the closed unit interval with binary operation defined
by (s, t} =»min{s+t, 1]. Then I'(S) is not WA. We want to determine the
canonical form of a derivation, so let mel® (S xS) correspond to a deriva-
tion. As in the proof of Proposition 4.3 one sees that for each reS the map s
~m(s, t—s): [0, ] — C is additive and hence, being bounded, is of the form
s -rq, s, where o, €C. Since V(1)* = [0} and V(0) = [0} we see that a, can be
chosen arbitrarily, whereas oy, = 0. Put  f{1)=a,. Then
sup |if ()] )t > 0} < |imi|. In particular, every left translate of f belongs to
[(8). Since m(s, 1) = (X'|D(X*> where D is the derivation under considera-
tion, it follows that

(%) D(ZS Jo X¥) = (3, 84, X¥)- f.

Conversely, starting with f: [0,1] - C satisfying f(1)=0 and
sup {|if (O]t >0) < oo it is immediate to verify that (+) defines a bounded
derivation from I'(S) into [®(S). Note that since V(1) =S and V(1)* = (0)
the domains of additive maps are essentially restricted to sets of the type
¥(s), and cannot in general be enlarged to all of .
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The Fréchet envelopes of vector-valued
Smirnov classes

by
M, NAWROCKI (Poznan)

Abstract. In this paper the Nevanlinna class N(X) and the Smirnov class N, (X) of
analytic functions on the unit disc in the complex plane with values in a Banach space X are
studied, Representations of the Fréchet envelope of the Smirnov class by Fréchet spaces of
analytic functions are found, The continuovs lincar functionals on N, (X) and multipliers of
N, (X) into the Hardy spaces H, (0 < p < cc) are described. The best possible estimates of the
mean growth of functions and their Taylor cocfficients are obtained. The proofs of our results
are mainly soft and simplify earlier ones given in the scalar case by N. Yanagihara [22-24],

0. Introduction. Let E = (E, 1) be an F-space (i.e. a complete metrizable
t.v.s.) with separating dual space and let ° be the locally convex topology
associated to 1, ie. the strongest locally convex topology on E which is
weaker than z. Obviously, if # is a base of neighbourhoods of zero for <,
then the family {conv U: Ue@)} is a base of neighbourhoods of zero for 7°
Therefore, the topology t° produces the same space E' of continuous linear
functionals as t and has a countable base at zero. The dual space E’' of (E, 1°)
separates the points of E, so 1° is metrizable. The completion Eof (E,19is a
Fréchet space (i.e. locally convex F-space) which is called the Fréchet
envelope of E. '

Observe that (E, 9 is a Mackey space, i.e. ©° coincides with the Mackey
topology of the dual pair (E, E') (cf. [18], 1V.3.4). Therefore, the Fréchet
envelope of E is the unique, up to isomorphism, Fréchet space containing E
as a dense subspace and such that the restriction map T— Ty takes E'
onto E',

For many classes of concrete (function or sequence) spaces, it is possible
to describe E as another concrete space, This has been done eg. for the
Hardy spaces H, (0 <p <1) [8], the Bergman spaces B,, (0 <p <1, a >
-1) [19], the Orlicz lunction and sequence spaces [13, 14, 6], and the
Lorentz sequence spaces d(w, p) (0 <p <1) [15]. In 1973, N. Yanagihara
[22, 23] identified the dual space and then the Fréchet envelope of the
Smirnov class N, of apalytic functions on the unit disc on the complex
plane,



