SIODIA MARKIMARICA, I. ACIII (170	STUDIA	MATHEMATICA,	T.	XCIII	(198
-----------------------------------	--------	--------------	----	-------	------

Refinement of the Shannon-McMillan-Breiman Theorem for some maps of an interval

by

KRYSTYNA ZIEMIAN (Warszawa)

Abstract. The Refinement of the Shannon-McMillan-Breiman Theorem is proved for a large class of maps of an interval with nonpositive Schwarzian derivative.

Introduction. Let f be a piecewise monotone map of an interval I into itself, $\mathscr A$ the natural partition of I into the intervals of monotonicity of f, and μ an f-invariant probability measure on I. We have the equality $h_{\mu}(f, \mathscr A) = h_{\mu}(f)$, because $\mathscr A$ is a generator. If μ is ergodic, we have the well-known Shannon-McMillan-Breiman Theorem, which says that for μ -almost every x

(1)
$$\lim_{n\to\infty} \left[-n^{-1}\log\mu(A_n(x))\right] = h_\mu(f, \mathcal{A}) = h_\mu(f),$$

where $A_n(x)$ is the atom of $\mathcal{A}_n = \bigvee_{i=0}^{n-1} f^{-i} \mathcal{A}$ containing x.

For f belonging to a large class of maps of an interval with nonpositive Schwarzian derivative (the same as in [4], [7], [8]) we prove an almost sure invariance principle for the sequence $\log \mu(A_n(x)) + nh_\mu(f)$ (the so-called Refinement of the Shannon-McMillan-Breiman Theorem). This theorem implies other limit theorems for this sequence, such as the central limit theorem and the law of iterated logarithm (except for some special cases like f(x) = 4x(1-x)). The law of iterated logarithm says in particular that for μ -almost every x the rate of convergence in (1) is not greater than $\sqrt{(\log \log n)/n}$.

The scheme of the proof is similar to that of [5, Th. 9.1]. Section 1 contains the assumptions on f and basic definitions.

In Section 2 we prove the almost sure invariance principle for the sequence $-\log J_n(x) + nh_\mu(f)$, where $J_n(x)$ is the jacobian of f^n with respect to the invariant measure μ . One of the assumptions of this theorem is that the asymptotic variance of this sequence does not vanish. We prove in Section 3 that this assumption is satisfied for a large class of maps (e.g. for all maps $f(x) = 4\alpha x(1-x)$ except the case $\alpha = 1$). Lemma 8, Proposition 1 and the ideas of their proofs were communicated to the author by A. Zdunik.

In Section 4 we prove that if $\alpha \in (0, \frac{1}{2})$ then $\log (J_n(x) \mu(A_n(x)))$ is of order

 n^{α} for μ -almost every x, which yields the main result of the paper, the Refinement of the Shannon-McMillan-Breiman Theorem.

The author is very grateful to M. Denker, G. Keller, M. Misiurewicz and F. Przytycki for helpful discussions.

- 1. Assumptions and definitions. Let f be a map of a closed interval I into itself satisfying the following conditions [4]:
- (i) There is a finite subset $A \subset I$ containing the endpoints of I such that $f|_{I \setminus A}$ is of class C^3 .
 - (ii) $f' \neq 0$ on $I \setminus A$.
 - (iii) $Sf \leq 0$ on $I \setminus A$, where Sf is the Schwarzian derivative of f.
 - (iv) If $f^p(x) = x$, then $|(f^p)'(x)| > 1$.
- (v) There exists a neighbourhood U of the set A such that for all $a \in A$, $n \ge 0$, we have $f^n(a) \in A$ or $f^m(a) \notin U$ for all $m \ge n$.
- (vi) For all $a \in A$ there exists a neighbourhood U_a of a and constants α , α , $\delta > 0$, $u \ge 0$ such that
 - (a) $\alpha |x-a|^u \le |f'(x)| \le \omega |x-a|^u$,
 - (b) $|f''(x)| \le \delta |x-a|^{u-1}$

for all $x \in U_a$.

In view of [4, Th. 6.2] there exist an integer k and an f^k -invariant probability measure μ absolutely continuous with respect to the Lebesgue measure λ such that the system (f^k, μ) is exact, in particular weakly mixing. In the sequel we will consider this system. Obviously, f^k satisfies assumptions (i)-(vi) [4, Lemma 3.1], so we can simply assume $f = f^k$.

We recall that \mathscr{A} denotes the natural partition of I into the intervals of monotonicity of f, $\mathscr{A}_n = \bigvee_{i=0}^{n-1} f^{-i} \mathscr{A}$, $A_n(x)$ is the atom of \mathscr{A}_n which contains x, and $J_n(x)$ is the Jacobian of f^n with respect to the invariant measure μ . We will write J instead of J_1 .

Let $\mathscr{A} = \{A_1, \ldots, A_k\}$. We will deal with the so-called "label" process (ξ_n) associated with the system (f, μ) :

$$\xi_n(x) = i$$
 if $f^n(x) \in A_i$,

which is a stationary process on the probability space (I, \mathcal{B}, μ) , where \mathcal{B} is the σ -field of Borel sets.

2. Almost sure invariance principle for the process $(-\log J \circ f^i + h_{\mu}(f))$. In this section we will show that Th. 1 of [7] holds for the function $-\log J + h_{\mu}(f)$ instead of a function F with bounded p-variation, $p \ge 1$. The function $-\log J + h_{\mu}(f)$ usually is not even bounded, because f can have critical points. This involves some additional difficulties. However, the main

idea of the proof will be similar. We will consider the measurable function $-\log J + h_{\mu}(f)$ as a functional of the "label" process (ξ_n) and prove that the assumptions of [5, Th. 7.1], [1, Th. 7] are satisfied for the process $(-\log J \circ f^i + h_{\mu}(f))$.

LEMMA 1. $\int |\log J|^r d\mu < +\infty$ for all $r \ge 1$.

Proof. For the proof it suffices to notice that

(2)
$$(J(x))^{-1} = p(\xi_0 | \xi_1, \xi_2, \ldots)(x),$$

where the random variable $p(\xi_0 | \xi_1, \xi_2, ...)$ is defined as

$$p(\xi_0 | \xi_1, \xi_2, ...)(x) = \mu \{ \xi_0 = i | \xi_1, \xi_2, ... \}(x)$$
 if $x \in A_i$,

and then apply [3, Lemma 2.1].

LEMMA 2. For every $s \in \mathbb{N}$, $\int |\log J - E(\log J | \xi_0, ..., \xi_n)|^s d\mu$ tends to zero exponentially as n tends to infinity.

Proof. By (2) and [3, Lemma 2.2] it suffices to prove the exponential convergence to zero of the sequence $\psi(n)$ defined as

$$\psi(n) = \sup_{1 \le i \le k} \int |\mu\{\xi_0 = i | \xi_1, \xi_2, \ldots\} - \mu\{\xi_0 = i | \xi_1, \xi_2, \ldots, \xi_n\}| d\mu.$$

Fix i, $1 \le i \le k$, and set

$$g_n^0 = |\mu\{\xi_0 = i | \xi_1, \xi_2, \ldots\} - \mu\{\xi_0 = i | \xi_1, \xi_2, \ldots, \xi_n\}|.$$

We have to estimate $\int g_n^0 d\mu$. First we observe that by the definition of the functions $\mu \{\xi_0 = i \mid \xi_1, \xi_2, ...\}$ and $\mu \{\xi_0 = i \mid \xi_1, \xi_2, ..., \xi_n\}$ we have

$$\sup \mu \left\{ \xi_0 = i \, | \, \xi_1, \, \xi_2, \, \ldots \right\} = f^{-1} \left(f \left(A_i \right) \right),$$

$$\sup \mu \left\{ \xi_0 = i \, | \, \xi_1, \, \xi_2, \, \ldots, \, \xi_n \right\} = f^{-1} \left(\bigcup_{\mathbf{x} \in A_i} A_n \left(f \left(\mathbf{x} \right) \right) \right).$$

In view of [7, Ths. 2, 3] there exist $y_1 \in (0, 1)$, $c_1 > 0$ such that for all $y \in I$ and $n \in N$

$$\mu(A_n(y)) \leq c_1 \gamma_1^n.$$

Therefore

(4)
$$\mu\left(f^{-1}\left(\bigcup_{\mathbf{x}\in\mathcal{A}_{l}}A_{n}(f(\mathbf{x}))\right)\backslash f^{-1}\left(f(A_{l})\right)\right) = \mu\left(\bigcup_{\mathbf{x}\in\mathcal{A}_{l}}A_{n}(f(\mathbf{x}))\backslash f(A_{l})\right)$$

$$\leq 2c_{1}\gamma_{1}^{n}.$$

 g_n^0 takes values from [0, 1], which together with (4) gives

(5)
$$\int g_n^0 d\mu \leq 2c_1 \gamma_1^n + \int_{f^{-1}(f(A_i))} g_n^0 d\mu.$$

It remains to estimate $\int_{f^{-1}(f(A_i))} g_n^0 d\mu$. We define the function g_n by

$$g_n = |p(\xi_0|\xi_1, \xi_2, ...) - p(\xi_0|\xi_1, \xi_2, ..., \xi_n)|,$$

where $p(\xi_0 | \xi_1, \xi_2, ...)$ is as in the proof of Lemma 1 and $p(\xi_0 | \xi_1, \xi_2, ..., \xi_n)(x) = \mu \{\xi_0 = j | \xi_1, \xi_2, ..., \xi_n\}(x)$ if $x \in A_j$.

Let for $r \in \mathbb{N}$, $0 \le l \le r-1$,

$$A_{l,r} = \{ x \in A_i : \ l/r \le g_n(x) < (l+1)/r \},$$

$$A_{l,r}^0 = \{ x \in f^{-1}(f(A_i)) : \ l/r \le g_n^0(x) < (l+1)/r \}.$$

For every $r \in \mathbb{N}$ define simple functions $g_{n,r}, g_{n,r}^0$ by

(6)
$$g_{n,r} = \sum_{l=0}^{r-1} \frac{l}{r} \chi_{A_{l,r}}, \quad g_{n,r}^0 = \sum_{l=0}^{r-1} \frac{l}{r} \chi_{A_{l,r}^0}.$$

We have

(7)
$$\int_{f^{-1}(f(A_i))} g_n^0 d\mu \leq \frac{1}{r} + \int_{f^{-1}(f(A_i))} g_{n,r}^0 d\mu = \frac{1}{r} + \sum_{l=0}^{r-1} \frac{l}{r} \mu(A_{l,r}^0).$$

We will estimate $\sum_{l=0}^{r-1} (l/r) \mu(A_{l,r}^0)$. We claim that

(8)
$$A_{l,r}^{0} = f^{-1}(f(A_{l,r})).$$

Indeed, if $y \in A_{l,r}^0$, then $f(y) \in f(A_l)$, which means that there exists $x \in A_l$ such that f(y) = f(x). We have $g_n^0(x) = g_n^0(y)$, because g_n^0 is constant on every set $f^{-1}(z)$, $z \in I$. The functions g_n^0 and g_n are equal on A_l , so we have also $g_n(x) = g_n^0(x) = g_n^0(y)$, which means that $g_n(x)$ satisfies the same inequalities as $g_n^0(y)$. Hence $x \in A_{l,r}$ and $y \in f^{-1}(f(A_{l,r}))$.

Now take $y \in f^{-1}(f(A_{l,r}))$. There exists $x \in A_{l,r}$ such that f(y) = f(x). By the same argument as above $g_n^0(y) = g_n^0(x) = g_n(x)$, so $g_n^0(y)$ satisfies the same inequalities as $g_n(x)$. Hence $y \in A_{l,r}^0$, which completes the proof of (8).

It follows from [7, Th. 3] that there exists p > 1 such that for every $G \in \mathcal{B}$, $\mu(G)$ does not exceed $(\lambda(G))^{1/p}$ multiplied by a positive constant L. Using this fact, (6), (8) and the concavity of the function $x^{1/p}$ we obtain

(9)
$$\sum_{l=0}^{r-1} \frac{l}{r} \mu(A_{l,r}^{0}) = \sum_{l=0}^{r-1} \frac{l}{r} \mu(f^{-1}(f(A_{l,r}))) = \sum_{l=0}^{r-1} \frac{l}{r} \mu(f(A_{l,r}))$$

$$\leq L \sum_{l=0}^{r-1} \frac{l}{r} (\lambda(f(A_{l,r})))^{1/p} \leq L' \sum_{l=0}^{r-1} \frac{l}{r} (\lambda(A_{l,r}))^{1/p}$$

$$= L' \frac{r-1}{2} \left[\sum_{l=0}^{r-1} \frac{2l}{r(r-1)} (\lambda(A_{l,r}))^{1/p} \right]$$

where $L' = L(\sup_I |f'|)^{1/p}$.

We will prove that there exist c > 0, $\gamma \in (0, 1)$ such that

$$\int g_n d\lambda \leqslant c\gamma^n.$$

First we observe that

$$p(\xi_0 | \xi_1, \xi_2, ..., \xi_n)(x) = \frac{\mu(A_{n+1}(x))}{\mu(A_n(f(x)))},$$
$$p(\xi_0 | \xi_1, \xi_2, ...)(x) = (J(x))^{-1}.$$

Hence in view of [8, Th. 2] there exist $c_0 > 0$, $\gamma_0 \in (0, 1)$ such that

$$\int g_n d\mu \leqslant c_0 \gamma_0^n.$$

Let $K = \text{supp } \mu$. It is proved in [4, Cor. (5.5) and Th. (6.2) (b)] that K is a finite union of intervals. Let m be the number of these intervals, and put $G_n = \bigcup_{x \in K} A_{n+1}(x)$. In view of (3) we have

$$\mu(G_n \setminus K) \leqslant mc_1 \, \gamma_1^{n+1}.$$

By the definition of g_n , $G_n = \operatorname{supp} g_n$ and

(12)
$$\int g_n d\lambda = \int_{G_n} g_n d\lambda \leqslant \int_K g_n d\lambda + mc_1 \gamma_1^{n+1}.$$

The density of μ is bounded from below on K by a positive constant d > 0, so $\int_K g_n d\lambda \leq d^{-1} \int g_n d\mu$, which together with (12) and (11) completes the proof of (10).

Recall that r was fixed arbitrarily, so we can assume $r \ge 1/\alpha^n$, where $\gamma^{1/p} < \alpha < 1$. Now the desired estimate of $\int g_n^0 d\mu$ (and $\psi(n)$) follows from (5), (7), (9) and (10).

Lemma 3. The process (ξ_n) satisfies the strong mixing condition with mixing coefficient $\alpha(n)$ converging exponentially to zero.

Proof. This follows from [7, Th. 4]. =

We will now consider the process $(-\log J \circ f^i + h_{\mu}(f))$. By Rokhlin's formula

(13)
$$\int \left(-\log J + h_{\mu}(f)\right) d\mu = 0.$$

Define

$$S(n) = \sum_{i=0}^{n-1} \left(-\log J \circ f^i + h_{\mu}(f) \right),$$

$$\sigma^2 = \int \left(-\log J + h_{\mu}(f) \right)^2 d\mu$$

$$+ 2 \sum_{i=1}^{\infty} \int \left(-\log J + h_{\mu}(f) \right) \left(-\log J \circ f^i + h_{\mu}(f) \right) d\mu.$$

LEMMA 4. The correlation coefficients

$$\int (-\log J + h_{\mu}(f)) (-\log J \circ f^{i} + h_{\mu}(f)) d\mu, \quad i = 1, 2, ...,$$

converge to zero exponentially.

Proof. The standard proof follows from (13), Lemmas 2, 3 and [5, Lemma 7.2.1].

Theorem 1. If $\sigma^2 \neq 0$, then

(i)
$$\sup_{z \in \mathbf{R}} \left| \mu \left\{ \frac{1}{\sigma \sqrt{n}} S(n) \leqslant z \right\} - \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{z} e^{-x^2/2} dx \right| = O(n^{-\nu})$$

for some v > 0.

(ii) Set for $t \ge 0$

$$S(t) = \sum_{0 \le i < t} \left(-\log J \circ f^i + h_{\mu}(f) \right).$$

Without changing its distribution one can redefine the process $(S(t))_{t\geq 0}$ on a richer probability space with standard Brownian motion $(B(t))_{t\geq 0}$ such that almost surely

$$|S(t)/\sigma - B(t)| = O(t^{1/2-\lambda})$$
 for some $\lambda > 0$.

Proof. In view of (13) and Lemmas 1-4 all the assumptions of [5, Th. 7.1] and [1, Th. 7] are satisfied.

Remark 1. Theorem 1 (ii) implies integral tests, log-log laws and weak invariance principles for the process $(-\log J \circ f^i + h_u(f))$ (see [5]).

3. Estimation of σ^2 . In the previous section we have proved the central limit theorem and almost sure invariance principle for the process $(-\log J \circ f^i + h_{\mu}(f))_{i \in \mathbb{N}}$. Both of these theorems hold under the condition $\sigma^2 > 0$. We will prove that for a large class of maps satisfying (i)-(vi) this condition is satisfied.

Let $B = \overline{\bigcup_{n=1}^{\infty} f^n(A)}$. This is the set of singularities of the density φ of μ , which is a Cantor set of μ -measure 0 (see [4]). Let V be a neighbourhood of B.

LEMMA 5. Let H be the constant from [7, Lemma 4]. If $y \in A_n(x)$, $\lceil f^n(x), f^n(y) \rceil \cap V = \emptyset$ and $|f^n(x) - f^n(y)|$ is sufficiently small, then

$$\left|\frac{(f^n)'(x)}{(f^n)'(y)}-1\right| \leqslant 2H|f^n(x)-f^n(y)|.$$

Proof. Let $y \in A_n(x)$, $[f''(x), f''(y)] \cap V = \emptyset$. In view of [7, Lemma 4]

$$\left|\frac{1}{(f^n)'(x)} - \frac{1}{(f^n)'(y)}\right| \leqslant H|x - y|.$$

Hence

$$\left|\frac{(f^n)'(y)}{(f^n)'(x)} - 1\right| \le H|(f^n)'(y)| \cdot |x - y|$$

and if |f''(x) - f''(y)| is sufficiently small then the argument used in the proof of [7, Lemma 10] completes the proof.

LEMMA 6. Let $y \in A_n(x)$, $f^n(x)$, $f^n(y) \in K$, $[f^n(x), f^n(y)] \cap V = \emptyset$. If $|f^n(x) - f^n(y)|$ is sufficiently small and $\varphi(x) > 0$, then $\varphi(y) > 0$ and

$$\left|\frac{\varphi(x)}{\varphi(y)}-1\right|\leqslant L|f^n(x)-f^n(y)|,$$

where L is a constant depending only on V.

Proof. We have assumed that μ is weakly mixing. Hence, in view of [4, Th. 6.2 (e)], for μ -almost every x, $\varphi(x)$ is the limit of the sequence $(f_*^k(1)(x))$ up to a constant, and the same is true for y instead of x (f_* is the Perron-Frobenius operator with respect to the Lebesgue measure). Hence, it suffices to estimate $f_*^k(1)(x)/f_*^k(1)(y)$ uniformly with respect to k. We have

$$f_*^k(1)(x) = \sum_{z \in f^{-k}(x)} \frac{1}{|(f^k)'(z)|}, \quad f_*^k(1)(y) = \sum_{w \in f^{-k}(y)} \frac{1}{|(f^k)'(w)|}.$$

Since $[f^n(x), f^n(y)] \cap V = \emptyset$, for every $z \in f^{-k}(x)$ we can find a corresponding $w \in f^{-k}(y)$ such that z, w belong to the same interval of monotonicity of f^k . Fix such a pair z, w. We have

$$\frac{|(f^k)'(w)|}{|(f^k)'(z)|} = \frac{|(f^{k+n})'(w)|}{|(f^{k+n})'(z)|} \cdot \frac{|(f^n)'(x)|}{|(f^n)'(y)|}$$

In view of Lemma 5 both

$$\left| \frac{(f^{k+n})'(w)}{(f^{k+n})'(z)} - 1 \right| \quad \text{and} \quad \left| \frac{(f'')'(x)}{(f'')'(y)} - 1 \right|$$

do not exceed 2H|f''(x)-f''(y)|. Hence $|f_*^k(1)(x)/f_*^k(1)(y)-1|$ does not exceed |f''(x)-f''(y)| multiplied by a constant depending only on V.

Let $(\widetilde{I}, \widetilde{f}, \widetilde{\mu})$ be the natural extension of the system (I, f, μ) and $\pi \colon \widetilde{I} \to I$ the natural projection. We consider the partition $\mathscr{C} = \{\pi^{-1}(x)\}_{x \in I}$ of the space \widetilde{I} , with the canonical system of conditional measures $\{\widetilde{\mu}_x\}_{x \in I}$ induced by $\widetilde{\mu}$. If $[x, y] \cap V = \emptyset$, then we have the natural one-to-one transformation $i \colon \pi^{-1}(x) \to \pi^{-1}(y)$ such that for every $\widetilde{z} \in \pi^{-1}(x)$ and $n \in \mathbb{N}$, the points $\pi(\widetilde{f}^{-n}(z))$, $\pi(\widetilde{f}^{-n}(iz))$ belong to the same interval of monotonicity of f^n .

LEMMA 7. If $x, y \in K$, $[x, y] \cap V = \emptyset$ and |x-y| is sufficiently small, then for every measurable $\tilde{G} \subset \pi^{-1}(x)$ of positive $\tilde{\mu}_x$ -measure we have

$$\left|\frac{\widetilde{\mu}_{y}\left(i\left(\widetilde{G}\right)\right)}{\widetilde{\mu}_{x}\left(\widetilde{G}\right)}-1\right|\leqslant P\left|x-y\right|,$$

where P > 0 depends only on V.

Proof. It suffices to observe that for every $z \in I$, $\tilde{\mu}_z \{ \tilde{v} \in \pi^{-1}(z) : \pi \circ \tilde{f}^{-n}(\tilde{v}) = \alpha \} = (J_n(\alpha))^{-1}$ and apply Lemmas 5 and 6.

LEMMA 8. If

(14)
$$\log |f'| - h_{\mu}(f) = u \circ f - u \quad \mu\text{-a.e.}$$

for some $u \in L^2(\mu)$, then $u|_{K\setminus V}$ is equal μ -almost everywhere to a continuous function on $K\setminus V$.

Proof. If $u \in L^2(\mu)$ then by the Lusin Theorem there exists a closed set $F_0 \subset I$ such that $u|_{F_0}$ is continuous and $\mu(F_0) > \frac{3}{4}$. Let $F \subset F_0$ be the subset on which (14) holds, $\mu(F_0) = \mu(F)$. Let U be an interval contained in $K \setminus V$. We put $\widetilde{F} = \pi^{-1}(F_0)$.

By the ergodicity of μ , for μ -almost every $x \in I$, the sequence $(\widetilde{f}^{-n}(\widetilde{x}))_{n \in N}$ contains points from \widetilde{F} which appear with frequency at least $\frac{3}{4}$ (because $\widetilde{\mu}(\widetilde{F}) > \frac{3}{4}$). We can express the same in terms of our system of conditional measures $\{\widetilde{\mu}_x\}_{x \in I}$. Namely, if we set

$$D_x = \{ \tilde{y} \in \pi^{-1}(x) : (\tilde{f}^{-n}(\tilde{x}))_{n \in \mathbb{N}} \text{ contains points from } \tilde{F} \}$$

which appear with frequency at least $\frac{3}{4}$,

then

(15)
$$\tilde{\mu}_x(D_x) = 1$$
 for μ -almost every $x \in I$.

If $x, y \in U$, $\tilde{\mu}_x(D_x) = 1$, and x, y are close enough, then in view of Lemma 7, $\tilde{\mu}_y(i(D_x)) = 1$. If additionally $\tilde{\mu}_y(D_y) = 1$, then we have $\tilde{\mu}_y(i(D_x) \cap D_y) = 1$, in particular $i(D_x) \cap D_y \neq \emptyset$. Take $\tilde{y}_0 \in i(D_x) \cap D_y$, and put $\tilde{x}_0 = i^{-1}(\tilde{y}_0)$. We have $\tilde{x}_0 = (x, x_1, x_2, \ldots)$, $\tilde{y}_0 = (y, y_1, y_2, \ldots)$, where x_n, y_n belong to the same interval of monotonicity of f^n . By the definition of D_x and D_y , we can choose increasing sequences of positive integers $(n_x)_{x \in N}$, $(m_x)_{x \in N}$ such that x_{n_x} , $y_{m_x} \in F$ for every $\alpha \in N$ and each of these sequences has

density at least $\frac{3}{4}$. This density is sufficient to find a common increasing subsequence $(k_{\alpha})_{\alpha \in N}$ of both sequences. Hence, if we set $x_{\alpha} = x_{k_{\alpha}}$, $y_{\alpha} = y_{k_{\alpha}}$, we obtain from (14)

(16)
$$u(x) - u(y) = u(f^{k_{\alpha}} x_{\alpha}) - u(f^{k_{\alpha}} y_{\alpha})$$

$$= \sum_{j=1}^{k_{\alpha}} (u(f^{j} x_{\alpha}) - u(f^{j-1} x_{\alpha})) + u(x_{\alpha})$$

$$- \sum_{j=1}^{k_{\alpha}} (u(f^{j} y_{\alpha}) - u(f^{j-1} y_{\alpha})) - u(y_{\alpha})$$

$$= \log \frac{(f^{k_{\alpha}})'(x_{\alpha})}{(f^{k_{\alpha}})'(y_{\alpha})} + u(x_{\alpha}) - u(y_{\alpha}).$$

From (15), (16), Lemma 5, [7, Lemma 4] and the uniform continuity of u on F, we obtain the uniform continuity of u on a subset of U of full μ -measure. But U is an arbitrary interval contained in $K \setminus V$, so we have proved the uniform continuity of u on a subset of $K \setminus V$ of full μ -measure. In particular, this subset is dense in $K \setminus V$, so we can extend u restricted to this subset to a continuous function on $K \setminus V$.

Let A_0 denote the set of those critical points of f which are contained in K.

LEMMA 9. Let $u \in L^2(\mu)$ be as in Lemma 8. If $J \subset K$ is an interval such that J does not contain critical points of f and $u|_J$ is equal μ -a.e. to a continuous function on J, then $u|_{f(J)}$ is equal μ -a.e. to a continuous function on f(J).

Proof. This follows immediately from (i) and (14).

LEMMA 10. Let $u \in L^2(\mu)$ be as in Lemma 8. If $a \in A_0$, then for every $n \in N$ there exist constants d_1 , $d_2 \in R$, $\alpha \in (0, 1)$ such that for μ -almost all y sufficiently close to $f^n(a)$

$$d_1 + \log|y - f(a)|^{\alpha} \le u(y) \le d_2 + \log|y - f^n(a)|^{\alpha}.$$

Proof. Let $U \subset I \setminus V$ be an open interval. By the topological exactness of the system (f, K, μ) [4, Prop. 5.7] there exists $k \ge 0$ such that $f^k(U) \supset K$. In particular, there exists $z \in U$ such that $f^k(z) = a$. By Lemma 8, we can assume that u is continuous on $K \setminus V$. Take the first critical point on the trajectory of z. We can assume that this is a. By Lemma 9, u is continuous in a neighbourhood of a. By (vi) and (14) the assertion of the lemma holds for n = 1. We obtain it for any n by induction, using (14) and also (vi) whenever we pass through other critical points.

LEMMA 11, $\log \varphi \in L^p(\mu)$ for every $p \ge 1$.

Proof. The proof is analogous to the proof of [8, Lemma 11].

PROPOSITION 1. If there exists $a \in A_0$ such that for some $n \in \mathbb{N}$, $f^{-1}(f^n(a))$ intersects $K \setminus \bigcup_{n=0}^{\infty} f^i(A_0)$, then $\sigma^2 > 0$.

Proof. In view of [6, Lemma 1], $\sigma^2 > 0$ if and only if $-\log J + h_{\mu}(f)$ is not homologous to 0 in $L^2(\mu)$. But $J = (\varphi \circ f)|f'|/\varphi$ and in view of Lemma 11 the functions $\log J$ and $\log |f'|$ are homologous in $L^2(\mu)$. Hence it suffices to show that under the assumptions of the proposition $\log |f'| - h_{\mu}(f)$ is not homologous to zero in $L^2(\mu)$.

Suppose (14) holds for some $u \in L^2(\mu)$. Let $a \in A_0$ be such that there exist $n \in \mathbb{N}$ and $z \in K \setminus \bigcup_{n=0}^{\infty} f^i(A_0)$ such that $f(z) = f^n(a)$. In view of Lemma 10 there exist constants $d \in \mathbb{R}$, $\alpha \in (0, 1)$ such that for μ -almost all y sufficiently close to $f^n(a)$

$$(17) d + \log|y - f^n(a)|^{\alpha} \geqslant u(y).$$

Let $U=K\setminus \overline{V}$. By the topological exactness of f there exists a positive integer k such that $f^k(U)\supset K$. In particular, there exists $y\in U$ such that $f^k(y)=z$ and $y,f(y),\ldots,f^k(y)\notin A_0$. The set A is finite, so there is a small closed interval $J\subset U$ containing y such that J does not contain any critical point of f^{k+1} and f^{k+1} is continuous on J. In view of Lemmas 8 and 9, $u|_{f^{k+1}(J)}$ is equal μ -a.e. to a continuous function on $f^{k+1}(J)$. But this function is uniformly continuous, because $f^{k+1}(J)$ is a closed interval, in particular this function is bounded near $f^{k+1}(y)=f^n(a)$, which contradicts (17).

Proposition 2. If the set $\bigcup_{n=1}^{\infty} f^i(A_0)$ is infinite, then $\sigma^2 > 0$.

Proof. Suppose $\bigcup_{n=1}^{\infty} f^i(A_0)$ is infinite. In view of Propositon 1 it suffices to show that $f^{-1}(\bigcup_{n=1}^{\infty} f^i(A_0)) \cap K$ contains a point which does not belong to $\bigcup_{n=0}^{\infty} f^i(A_0)$.

Let $a \in A_0$ have infinite forward trajectory. Such an a exists because A_0 is finite. Let $\omega(a)$ be the set of its ω -limit points.

The set $\omega(a)$ is a closed set of μ -measure zero ([4, Lemma 3.7]), so we can find an open interval $U \subset K$ such that $\operatorname{dist}(U, \omega(a)) > \varepsilon$ for a small $\varepsilon > 0$. Let $n_0 \in N$ be so large that for every $n \ge n_0$, $\operatorname{dist}(f^n(a), \omega(a)) < \varepsilon$. By the topological transitivity there exists $m \in N$ such that $f^m(U) \supset K$. We claim that $f^{m+n_0}(a)$ has at least 2 preimages under f^m . Indeed, one of them belongs to U and the second is just $f^{n_0}(a)$ (which is close to $\omega(a)$ and far from U). Moreover, both of them belong to K.

Now, it is easy to see that one of the points $f^{n_0+j}(a)$, $j=1,\ldots,m$, has at least 2f-preimages, both in K. One of them does not lie on the trajectory of a (otherwise this trajectory would be finite), and we denote this point by b. But b can lie on the trajectory of $a_1 \in A_0$, $a_1 = f^n(a)$, $n \ge 0$. In this case we

have $\omega(a_1) = \omega(a)$ and we can start with a_1 instead of a and find b_1 instead of a, and so on. This procedure must stop after a finite number of steps because a_0 is finite.

Theorem 2. Assume f is unimodal. Then the following conditions are equivalent:

(A)
$$\sigma^2 = 0$$
.

(B) (f, μ) is isomorphic to the one-sided Bernoulli shift with the initial distribution $(\frac{1}{2}, \frac{1}{2})$.

(C)
$$h_{\mu}(f) = \log 2$$
.

Proof. The implication (B) \Rightarrow (A) is obvious. We will prove (A) \Rightarrow (C). Assume $\sigma^2 = 0$. It is known that $K = [f^2(c), f(c)]$, where c is the critical point of f (all the time we assume that the system is weakly mixing). In view of Proposition 2 the trajectory of c is finite, i.e. $f^k(c) = f^{k+n}(c)$ for some positive integers k, n. If k is the smallest positive integer with this property, then in view of Proposition 1, $f^k(c)$ is the unique point on the trajectory of c which has two f-preimages.

We will show $f^2(c) = f^3(c)$. If $f^2(c) \neq f^3(c)$ (see the figure), then $f^3(c)$

has two f-preimages, $f^2(c)$ and $z \neq f^2(c)$. If $z \leq f^3(c)$ then $f([f^2(c), y]) = [y, f(c)]$ and $f([y, f(c)]) = [f^2(c), y]$, where y is a fixed point. This is impossible by our assumption of weak mixing. Therefore $z > f^3(c)$. Then z also has two f-preimages and we have a contradiction. Hence $f^2(c) = f^3(c)$.

We have shown in the proof of Proposition 1 that the assumption $\sigma^2 = 0$ implies (14) for some $u \in L^2(\mu)$. Hence we have

$$\log |(f'')'| = nh_{\mu}(f) + u \circ f'' - u \qquad \mu\text{-a.e.}$$

or

$$|(f'')'| = \exp(nh_{\mu}(f))\exp(u \circ f'')\exp(-u) \quad \mu\text{-a.e.}$$

283

It follows from Lemmas 9, 10 that $\exp u$ is bounded and $\exp(-u)$ is integrable on the whole interval I. Therefore there exists c > 0 such that

$$\int |(f'')'| d\lambda \leqslant c \exp(nh_{\mu}(f)).$$

Hence

$$n^{-1}\log\int|(f^n)'|\,d\lambda\leqslant n^{-1}\log c+h_\mu(f).$$

The left side converges to the topological entropy of f which is equal to $\log 2$, while the right side converges to $h_{\mu}(f)$, which completes the proof of (C).

The implication $(C) \Rightarrow (B)$ is obvious.

THEOREM 3. Assume that f satisfies (i)–(vi) and μ is weakly mixing. Then μ is a measure with maximal entropy for $f|_{K}$ iff $\sigma^{2}=0$.

Proof. \Rightarrow Assume that μ is a measure with maximal entropy. As noticed in the proof of [4, Th. 8.1], $h_{\mu}(f|_{K}) = h(f|_{K}) = \log \beta$ for some $\beta > 1$, $f|_{K}$ is conjugate to a piecewise linear map g such that $|g'| = \beta$, and there exists a unique g-invariant probability measure ν absolutely continuous with respect to the Lebesgue measure λ . Denote the conjugacy by τ . Let I be the measure-theoretic jacobian of ν . Recall that the jacobian of μ is denoted by J. It is proved in the proof of [4, Th. 8.1] that under the assumption that μ is a measure with maximal entropy, we have $J = I \circ \tau$. But then $\log J$ is homologous to $h_{\mu}(f|_{K})$, because I is obviously homologous to $h_{\mu}(f|_{K})$ which is equal to $\log \beta$. Hence $\sigma^2 = 0$.

 \Leftarrow Assume $\sigma^2 = 0$. Then, in view of Proposition 2, the trajectory of the set of critical points in K is finite. Hence, by Lemmas 8-10, the function u satisfying (14) is such that $e^{u \circ f}$ is bounded and e^{-u} is integrable. Now the argument used in the proof of Theorem 2 yields

$$h(f|_{K}) = \lim_{n} n^{-1} \log \int |(f^{n})'| d\lambda \leqslant h_{\mu}(f|_{K}). \quad \blacksquare$$

Theorems 2 and 3 yield

COROLLARY. For unimodal maps satisfying (i)–(vi), if the system (f, K, μ) is weakly mixing (i.e. the kneading sequence of f is indecomposable) and the absolutely continuous measure μ is also a measure with maximal entropy, then f is of the "fully developed chaos" type, i.e. $h(f) = \log 2$.

This is a generalization of the results of [4, Section 9].

4. Refinement of the Shannon-McMillan-Breiman Theorem. In this section we will prove the main result of the paper. Put

$$R_t(x) = \log \mu(A_{[t]}(x)) + [t] h_{\mu}(f).$$

Theorem 4. If σ^2 is as in the previous sections and $\sigma^2 > 0$, then without changing its distribution one can redefine the process $(R_t)_{t\geq 0}$ on a richer

probability space with standard Brownian process $(B_t)_{t\geq 0}$ such that almost surely

$$|R_t/\sigma - B(t)| = O(t^{1/2-\lambda})$$
 for some $\lambda > 0$.

Proof. In view of Theorem 1 it suffices to prove that $|R_t - S(t)| = O(t^{1/2-\lambda})$ almost surely, where λ and S(t) are as in Theorem 1. We will prove even more:

$$|R_t - S(t)| = O(t^{\alpha})$$
 μ -a.e. for every $\alpha \in (0, \frac{1}{2})$.

Fix $\alpha \in (0, \frac{1}{2})$. We have

$$R_{t}(x) - S(t)(x) = \log (J_{[t]}(x) \mu(A_{[t]}(x))),$$

so it suffices to prove that for μ -almost every x

$$\log (J_n(x) \mu(A_n(x))) = O(n^{\alpha}) \quad \forall n \in \mathbb{N}.$$

In [7] we have defined for any m, $M \in N$ the family $\mathscr{A}_{m,M}$ of "good atoms" of $\bigvee_{l=0}^{m+M-1} f^{-l} \mathscr{A}'$, where \mathscr{A}' is some partition of I finer that \mathscr{A} [7, Def. 4]. We can assume that the endpoints of atoms of \mathscr{A}' belong to $\bigcup_{l=0}^{N-1} f^{-l}(A)$ for some $N \in N$ (cf. [8, Section 4]). Hence the partition $\bigvee_{l=0}^{m+M+N-1} f^{-l} \mathscr{A}$ is finer than $\bigvee_{l=0}^{m+M-1} f^{-l} \mathscr{A}'$ and we can define the family $\mathscr{A}_{m,M+N}$ of "good atoms" of $\bigvee_{l=0}^{m+M+N-1} f^{-l} \mathscr{A}$ in the natural way as the family of all atoms of $\bigvee_{l=0}^{m+M+N-1} f^{-l} \mathscr{A}$ which are contained in atoms of $\mathscr{A}_{m,M}$.

In view of [7, Lemmas 10, 12, 13] there exist constants L > 0, $\eta \in (0, 1)$ such that for every $\Delta \in \mathcal{B}_{m,M+N}$

(18)
$$\left| \frac{J_m(x)}{J_m(y)} - 1 \right| \le L \eta^{M+N} \quad \forall x, y \in \Delta,$$

(19)
$$\mu(\bigcup \mathcal{B}_{m,M+N}) \geqslant 1 - L\eta^{M+N}.$$

Let n be such that $n^{\alpha} > N$. We have

$$\begin{aligned} \left| \log \left(J_n(x) \, \mu \big(A_n(x) \big) \big) \right| & \leq \left| \log \frac{J_{n-\lfloor n^2 \rfloor}(x) \, \mu \big(A_n(x) \big)}{\mu \big(A_{\lfloor n^2 \rfloor}(f^{n-\lfloor n^2 \rfloor}(x)) \big)} \right| \\ & + \left| \log \mu \big(A_{\lfloor n^2 \rfloor}(f^{n-\lfloor n^2 \rfloor}(x)) \big) \right| + \left| \log J_{\lfloor n^2 \rfloor}(f^{n-\lfloor n^2 \rfloor}(x)) \right| \end{aligned}$$

If $A_n(x)$ is a "good atom", namely belongs to $\mathcal{B}_{n-\lfloor n^2\rfloor,\lfloor n^2\rfloor}$, then $f^{n-\lfloor n^2\rfloor}(A_n(x)) = A_{\lfloor n^2\rfloor}(f^{n-\lfloor n^2\rfloor}(x))$ and in view of (18) the first summand does not exceed $n^{\lfloor n^2\rfloor}$ multiplied by a positive constant.

To estimate the second summand notice that for a good atom $A_n(x)$

$$\mu(A_{\lfloor n^{\alpha}\rfloor}(f^{n-\lfloor n^{\alpha}\rfloor}(x))) \geqslant d\lambda(A_{\lfloor n^{\alpha}\rfloor}(f^{n-\lfloor n^{\alpha}\rfloor}(x))),$$

where $d = \inf_K \varphi > 0$, and by the definition of good atoms, $A_{[n^\alpha]}(f^{n-[n^\alpha]}(x))$ is of the form (v, w), where $f^k(v)$, $f^l(w) \in A$ for some $k, l \in \{0, 1, ..., \lfloor n^\alpha \rfloor - 1\}$ (see [7, Def. 4 (c)]). Let $s = \max\{k, l\}$. In view of (v) the length of $f^s(A_{[n^\alpha]}(f^{n-[n^\alpha]}(x)))$ is not smaller than some positive constant R. Therefore

$$\lambda\left(A_{[n^{\alpha}]}\left(f^{n-[n^{\alpha}]}(x)\right)\right) \geqslant \frac{R}{(\sup_{I}|f'|)^{s}} \geqslant \frac{R}{(\sup_{I}|f'|)^{n^{\alpha}}}$$

and the second summand does not exceed n^{α} multiplied by a positive constant.

Now we will estimate the third summand. We have

$$\log J_{[n^{\alpha}]}(f^{n-[n^{\alpha}]}(x)) = \sum_{j=n-[n^{\alpha}]}^{n-1} J \circ f^{j}(x).$$

In view of Lemma 1 all moments of the variables $J \circ f^j$ are bounded uniformly with respect to j. Therefore, by the Borel-Cantelli lemma, for every $\varepsilon \in (0, 1)$

$$J \circ f^j(x)/j^{\varepsilon} \to 0$$
 for μ -almost every $x \in I$.

Take $\varepsilon > 0$ such that $\alpha + \varepsilon < \frac{1}{2}$. For μ -a.e. x there exists a positive constant Z(x) such that $J \circ f^j(x)/j^\varepsilon$ is bounded by Z(x) for sufficiently large j. Hence, if n is sufficiently large, then for μ -almost every x

$$\sum_{j=n-\lfloor n^{\alpha}\rfloor}^{n-1} J \circ f^{j}(x) = n^{\varepsilon} \sum_{j=n-\lfloor n^{\alpha}\rfloor}^{n-1} J \circ f^{j}(x)/n^{\varepsilon}$$

$$\leq n^{\varepsilon} \sum_{j=n-\lfloor n^{\alpha}\rfloor}^{n-1} J \circ f^{j}(x)/j^{\varepsilon} \leq n^{\varepsilon+\alpha} Z(x).$$

We have proved that for μ -almost every $x \in \bigcup \mathscr{B}_{n-[n^n], [n^n]}$, $|\log(J_n(x) \mu(A_n(x)))|$ does not exceed $n^{n+\varepsilon}$ multiplied by a positive constant depending only on x. In view of (19) and the Borel-Cantelli lemma, the same is true for μ -almost every $x \in I$.

Remark 2. Theorem 4 implies integral tests, weak invariance principles and log-log laws for the process $(R_t)_{t\geq 0}$. Hence, if $\sigma^2>0$ then $(R_t)_{t\geq 0}$ satisfies the law of iterated logarithm which implies that the sequence $-n^{-1}\log\mu(A_n(x))$ converges to $h_\mu(f)$ not faster than $\sqrt{(\log\log n)/n}$. This is so e.g. for all maps f with infinite trajectory of critical points (Corollary 1) and for all unimodal maps except of fully developed chaos with $h_\mu(f)=\log 2$ (Theorem 2).

References

- [1] M. Denker and G. Keane, Finitary codes and the law of the iterated logarithm, Z. Wahrsch. Verw. Gebiete 52 (1980), 321-331.
- [2] F. Hofbauer and G. Keller, Ergodic properties of invariant measures for piecewise monotonic transformations, Math. Z. 180 (1982), 119-140.
- [3] I. A. Ibragimov, Some limit theorems for stationary processes, Teor. Veroyatnost. i Primenen. 7 (1962), 361-392 (in Russian).
- [4] M. Misiurewicz, Absolutely continuous measures for certain maps of an interval, Publ. Math. IHES 53 (1981), 17-51.
- [5] W. Philipp and W. F. Stout, Almost sure invariance principles for sums of weakly dependent random variables, Mem. Amer. Math. Soc. 161 (1975).
- [6] F. Przytycki, M. Urbański and A. Zdunik, Harmonic, Gibbs and Hausdorff measures on repellers for holomorphic maps, preprint, Univ. of Warwick, 1986.
- [7] K. Ziemian, Almost sure invariance principle for some maps of an interval, Ergodic Theory Dynamical Systems 5 (1985), 625-640.
- [8] -, Rate of convergence of conditional entropies for some maps of an interval, this volume.

INSTYTUT MATEMATYKI UNIWERSYTETU WARSZAWSKIEGO INSTITUTE OF MATHEMATICS, WARSAW UNIVERSITY PKIN IX p., 00-901 Warszawa, Poland

Received February 1, 1988

(2403)