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Abstract. The Refinement of the Shannon~McMillan-Breiman Theorem s proved for a
large class of maps of an interval with nonpositive Schwarzian derivative,

Intreduction. Let f be a piecewise monotone map of an interval I into
itself, .« the natural partition of I into the intervals of monotonicity of f, and
# an f-invariant probability measure on I. We have the equality h,(f, &)
= h, (f), because ./ is a generator, If x is ergodic, we have the well-known
Shannen-McMillan—Breiman Theorem, which says that for p-almost every x

0y J}{gl;[mﬂ"' log u{A,(x)]] = h(f, #) = h,(f),
where A,(x) is the atom of &, = \/;:; /i sf containing x. ‘

For f belonging to a large class of maps of an interval with nonpositive
Schwarzian derivative (the same as in [4], [7], [8]) we prove an almost sure
invariance principle for the sequence logu(A,(x))+nh,(f) (the so-called
Refinement of the Shannon-McMillan—Breiman Theorem). This theorem
implies other limit theorems for this sequence, such.as the central limit
theorem and the law of iterated logarithm (except for some special cases like
S(x) = 4x(1 —x)}. The law of iterated logarithm says in particular that for u-
almost every x the rate of convergence in (1) is not greater than
J(loglog n)/n. '

The scheme of the proof is similar to that of [5, Th. 9.1].

Section 1 contains the assumptions on f and basic definitions.

In Section 2 we prove the almost sure invariance principle for the
sequence —logJ, (x)+nh,{f), where J,(x) is the jacobian of f" with respect
to the invariant measure w. One of the assumptions of this theorem is that
the asymptotic variance of this sequence does not vanish. We prove in
Section 3 that this assumption is satisfied for a large class of maps (e.g. for
all maps f(x) = 4ax (1 —x) except the case x = 1). Lemma 8, Proposition 1
and the ideas of their proofs were communicated to the author by A, Zdunik,

In Section 4 we prove that if « €(0, ) then log(J, (x) u(4,(x))) is of order
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w* for p-almost every x, which yields the main result of the paper, the
Refinement of the Shannon-McMillan-Breiman Theorem.

The author is very grateful to M. Denker, G. Keller, M. Misiurewicz
and F. Przytycki for helpful discussions.

1. Assumptions and definitions. Let f be a map of a closed interval I into
itself satisfying the following conditions [4]:

(i) There is a finite subset 4 = I containing the endpoints of I such
that f|;., is of class C2,
@) /"% 0 on I'\A.
(iii) Sf <0 on I\ A, where Sf is the Schwarzian derivative of f.
(iv) I fP{x) = x, then |(f7) ()| > 1.
~ (v) There exists a neighbourhood U of the set 4 such that for all a €4,
nz 0, we have f"(a)c4 or f"(a)¢ U for all m = n.
(vi) For all aed there exists a neighbourhood U, of @ and constants
o, @, 8 >0, u= 0 such that

@ alx—a'<|f" () <olx—d
®) [f7() < d[x~al™t
for all xeU,.

In view of [4, Th. 6.2] there exist an integer k and an f*-invariant
probability measure u absolutely continuous with respect to the Lebesgue
measure A such that the system (f*, 1) is exact, in particular weakly mixing.
In the sequel we will consider this system. Qbviously, f* satisfies assumptions
(i)-(vi) [4, Lemma 3.11, so we can simply assume f = f*,

We recall that .«f denotes the natural partition of I into the intervals of
monotonicity of f, #,=\/",f ", A(x) is the atom of ., which
contains x, and J,(x) is the Jacobian of f™ with respect to the invariant
measure p. We-will write J instead of J,.

Let o = {4,,..., 4,). We will deal with the so-called “label” process
{¢.) associated with the system (f, u):

Sl =i if f(x) €4,

which is a stationary process on the probability space (I, 4, u), where 4 is
the o-field of Borel sets.

2. Almost sure invariance principle for the process (—logJ o f*+h,(f)).
In this section we will show that Th. 1 of [7] holds for the function —log.J
+h,(f) instead of a function F with bounded p-variation, p = 1. The
function —logJ+h,{f) usually is not even bounded, because /' can have
critical points. This involves some additional difficulties. However, the main
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idea of the proof will be similar. We will consider the measurable function
—JogJ+h,(f) as a functional of the “label” process (¢,) and prove that the
assumptions of [5, Th. 7.1, [1, Th. 7] are satisfied for the process

(—logJ o f'+h,(f).
Levma 1. [flogJlrdu < +oo for all r2 1.
Proof. For the proof it suffices to notice that

(2) (@)™ =polly, £2s - ) (%),

where the random variable p(é,|¢&,, &,,..) is defined as

pl&sléy, &2y 0 )X) = {ﬁo=i|§1,fz:m}(3€) if xed,,
and then apply [3, Lemma 2.1]. m

Lemma 2. For every seN, [llogJ—E(logJ|&o. ..., () dp tends to zero
exponentially as n tends to infinity.

Proof By (2) and [3, Lemma 2.2] it suffices to prove the expomential
convergence to zero of the sequence Y (n) defined as

l‘b(n) = SuP jl#’{i():ilé]: 62: '~'}“M{50:i|§11521 LR fn}|dﬂ-
1gigk ? .

Fix i, 1 €i<k, and set
g°
PI

= [0l = H1Ex, Eay o h— it o = i1 €0, &2y oo Gl

We have to estimate .fg,,d,u. First we observe that by the definition of the
functions p &, =i|&;, &, ...} and p (&g =il&;, &2, ...y &) We have

§Uppu{§0 = i‘él: él: "'} = f—l(f(Ai'))’
Suppz’-‘ {£0= il‘fl: 62’ ".-9 fu} =f—1( U An(f(x)))

xed;

In view of [7, Ths. 2, 3] there exist y, (0, 1), ¢, >0 such that for all
yel and neN '

3) (4,00 < e vl

Therefore

@ w(r(y A (S NSTHI ) = (Y AL WIS (4 )
{ < 204 7Y,

g0 takes values from [0, 1], which together with (4) gives

(5) fgtdu<2a i+ [ grde
PRt h) ‘
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It remains to estimate ®du. We define the function g, by

‘[f" Lt 9

gn = p(&ol &1, &2, S X (41 [STR ST &ls

where p(&y| &y, E5,..) i3 as In the proof of Lemma 1 and

p(éolfu 52: 1y gn)(x) xﬂ{éoﬂjlfl, 527 CRE | gn}(x) if XEAj'
Let for reN, 0glgr—1,

A, = {xed;: Ur <g,(x) <(+1)/r},
A= {xef TN (4): Ir< g8 (x) < (14 /r}.

For every reN define simple functions g,,, g5, by

r—-‘l I
(6) Z- XAI,, gg,rm Z ”XAO'
=0T (=0l b7
We have
. 1, 1 =M
(7 | ogndu< <o [ ~+ Z u(A -
SR S

We will estimate Z;; (ry i (A4)). We claim that

®) Be=171F(A4)-

Indeed, if yeA?,, then f(¥ef(4 ;), which means that there exists x €4,
such that f(y) = f(x). We have g%(x) = g2(y), because g7 is constant on
every set f1(z), z€l. The functions gl and g, are equal on A;, so we have
also g, (%) = g2(x) = g2 (), which means that g, (x) satisfies the same inequal-
ities as g9(y). Hence xeAd,, and yef ! (f(A.)}.

Now take yef ~'(f(A,,). There exists x €4,, such that f(y) = f (x). By
the same argument as above g2(y) = g2(x) = g,.(x), so gl (y) satisties the same
inequalities as g,(x). Hence yeAp,, which completes the proof of (8).

It follows from [7, Th. 3] that there exists p > 1 such that for every
Ged, p{G) does not exceed (A(G))'/F multiplied by a positive constant L.
Using this fact, (6), (8) and the concavity of the function x'/ we obtain

r—ll r~1 r—1
© L= k() = T -m(i)
=07 =0 =aol

rll

LT AU )" < ; Laa e

=1t 2 "
“LT[Z ]

=07
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r—11[" 2 Yp
< L -
=T \; r{r—~ ( ")}

Pl 2 \UP[ri 1
~ = 1A
2 (r——l) [Zr (")]

< L’l‘"—l"p(jgn,rdl llp < L’r(J'g"d/l)ln'D,

where L' = L(sup;|f’)"".
We will prove that there exist ¢ >0, y&(0, 1) such that

(10) [andi <oy
First we observe that

( nt 1 (x))
A(F )

pGoldis &an )= (J(x}) _
Hence in view of [8, Th. 2] there exist ¢q > 0, 7, €{0, 1) such that

p(é()l‘fls éln [N n)(x

(11) [gndu < co%p-

Let K = supp p. It is proved in [4, Cor. (5.5) and Th. (6.2} (b)] that K is
a finite union of intervals, Let m be the number of these intervals, and put
Gy =, Ans (x). In view of (3) we have
RGAK) < meyyl™t
By the definition of g,, G, =suppg, and
(12) {gudi= [g,di< [g,,d}{+mc L
GFI
The density of x is bounded from below on K by a positive constant
d >0, 50 [xg,dh<d”* [g,dp, which together with (12) ) and {11) completes
the proof of (10).
Recall that r was fixed arbitrarily, so we can assume r = 1/a", where

W2 <o < 1. Now, the desired estimate of {g2 du (and ¥ (n) follows from (5),
(7). (9) and (10). =

Lemma 3. The process (£,) satisfies the sirong mixing condition with
mixing coefficient a(n) converging exponentially to zero.

Proof, This follows from [7, Th. 4], =

We will now consider the process (—logJof'+h,(f)). By Rokhlin’s
formula

(13) (~logJ+h,(N)du =0.
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Define

n—1
S{n) = Z (—logJof +h, (1)),

o?= {(—logJ +h,(f)) du

+2 i j(~log.)’+h#(f))(—mlog.]of"—l—h#(f))dju.
i=1

Lemma 4. The correlation coefficients

[(—logJ+h, (N)){~logJ o fi+-h,(f)du,

comverge to zero exponentially.

i=12,...,

Proof The standard proof follows from (13), Lemmas 2, 3 and
[5, Lemma 7.2.1]. a

TueoreM L. If a2 0, then
1

1 5o_2
— S zr— x| =0 (™"
u{a\/; (n}<z} \/ﬁ_‘fwe x (n™)

for some v > 0.
(i) Set fortz=0

S(y="3Y (~logJof'+h,(1)

osi<t

(1) sup

zeR

Without changing its distribution one can redefine the process (S (D)o on a
richer probability space with standard Brownian motion (B(t))»o such that
almost surely

IS{Oje—B@) =01V*" %  for some 1> 0.

Proof In view of (13) and Lemmas 1-4 all the assumptions of [5, Th.
7.1] and [1, Th. 7] are satisfied.

Remark 1. Theorem 1 (i) implies integral tests, log-log laws and weak
invariance principles for the process (—logJ o f'+h,(f)) (see [5]).

3. Estimation of ¢?. In the previous section we have proved the central
limit theorem and almost sure invariance principle for the process
(—logJ o fi+h,(f))n. Both of these theorems hold under the condition
o > 0. We will prove that for a large class of maps satisfying (i-(vi) this

condition is satisfied,
i

Let B = \Jpmy F7(4). This is the set of singularities of the density
¢ of y, which is a Cantor set of p-measure 0 (see [4]). Let V be a
neighbourhood of B,

icm
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Lemma 5. Let H be the constanmt from [7, Lemma 4]. If yeA,(x),
[/, /"G NV =0 and |f"(x)— f"(v) is sufficiently small, then

(Y (%)

(o)

Proof. Let yed, (%), [f"(x), ff»)]~V = 0. In view of [7, Lemma 4]

L 1|

e Y0

-1

< 2H [ (x) = "

< Hix—).

Hence

AL
(/" (%)
and if [f"(x)~ f"(y)| is sufficiently small then the argument used n the proof
of [7, Lemma 10] completes the proof. m

Lemma 6. Let yed,(x), f"(x), f"0ieK, [f"e). ffO]nV=0.If
|F"x)— £ is sufficiently small and @(x) >0, then () >0 and

‘ < HI( O] e

p{x) _ } < LI )=l
@y

where L is a constant depending only on V.

Proof. We have assumed that u is weakly mixing. Hence, in view
of [4, Th, 6.2 (e)], for u-almost every x, ¢(x) is the limit of the sequence
(fE(1)(x)) up to a constant, and the same is true for y instead of x (f,, is th_c
Perron-Frobenius operator with respect to the Lebesgue measure). Hence, it
suffices to estimate £ (1)(x)/f¥(1)(y) uniformly with respect to k. We have

. . 1‘ k — .,._.—_..l
FE)(x) = ZEEMW, Hy = wefz—:km TEICGH

Since [/"(x), f1()] NV = @, for every z €/~ *(x) we can find a correggond-
ing wef ~*(y) such that z, w belong to the same interval of monotonicity of
f% Fix such a pair z, w. We have
(£ 0o _ I o0l 1Y ()
Y @ 1Y @Y O

Tn view of Lemma 35 both

.

(W) (/Y0 1‘
T 1‘ wnd o)

do not exceed 2H|f"(x)—-'f"(y)|, Hence |f,,’f(1)(x)/f,,{f(1)(y)—1| does mnot
exceed | f"(x)—f"(y) multiplied by a constant depending only on V. =
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Let (T, 7, i) be the natural extension of the system (I f wand n: T —1
the natural projection. We consider the partition % = {n l(x), xer Of the
. space I, with the canonical system of conditional measures {f) .., induced
by L If [x, Y]~V = @, then we have the natural one-to-one transformation
it w*(x) >n~1(y) such that for every Fer '(x) and neN, the points
7 (f (), =(f"(i(2))) belong to the same inferval of monotonicity of /™.

Lemma 7. If x, yeK, {x, yY1n V= O and |x—)| is sufficiently small, then
for every measurable G —n~'(x) of positive [ .-measure we have

GG
i (@)
where P > ( depends only on V.

. Proof. It suffices to observe that for every zel, [ {Fen™!(z):
nof ") =a} =(J/,()"* and apply Lemmas S and 6. u

Lemma 8. If
(14) log(f|—h,(f)=uocf—u pae

Jor some wel?(y), then ulgy is equal p-almost everywhere to a continuous
Junction on K\ V.

S Plx_yls

Proof. If ueL?(y) then by the Lusin Theorem there exists a closed set
Fo =1 such that 4|, is continuous and u(F,) > #. Let F = F, be the subset
on which (14) holds u(Fo) = pu(F). Let U be an interval contained in K\ V.
We put F=n"1(F,).

By the ergodicity of y, for y-almost every x l, the sequence ( f ’;*'N(-')"c)),,eN
contains points from F which appear with frequency at least 2 (because
E(F) >3). We can express the same in terms of our system of condluonal
measures {ji,}!..,. Namely, if we set

D, = {Fen '(x): (f " (%),n contains points from F

which appear with frequency at least 3),
then

{13) Hx(D) =1 for y-almost every xel.

If x,yelU, §D)=1, and x,y are close enough, then in view

of Lemma 7, G (i(D,))=1. If additionally f,(D,) =1, then we have
A, (i(D.) nD,) = 1, in particular i(D,) " D, # @. Take j, €i(D,) N D,, and put
xo =177 (Fo). We have %, = (x, x;, x,, . )y o= Y1, ya, --), where x,, y,
belong to the same interval of monotonicity of S". By the definition of D,
and D,, we can choose increasing sequences of positive integers (na)mm
(Mydaen such that Xns Ymy €F for every o e N and each of these sequences has
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density at least . This density is sufficient to find a common increasing
subsequence (k,),.~ of both sequences. Hence, if we set x, = x, , y, = Vig» WE
obtain from (14)

(16) w() ~u () = u(f* x)—u ()

ky

= Z (7 x)—u(f7 )+ u(x,)

=1

- Z (u{iju)'—“(fjw ! ya))_u(y:z)

3 og(f /()

' ()

From (15), (16), Lemma 5, [7, Lemma 4] and the uniform continuity of

u on F, we obtain the uniform continuity of « on a subset of U of full u-

measure. But U is an arbitrary interval contained in K\V, so we have
proved the uniform continuity of 4 on a subset of K\ V of full u-measure. In

u(xm)_'u (ync)'

particular, this subset is dense in K\ ¥, so we can extend u restricted to this

subset to a continuous function on K\ V. m

Let A, denote the set of those critical points of f which are contained
in K.

LimmA 9. Ler weL?(w) be as in Lemma 8. If J = K is an interval such
that J does not comtaln critical points of f and u|, is equal p-a.e. to
a continwous function on J, then u|py, is equal p-ae to a continuous
Sunction on [ (J).

Prool, This follows immediately from (i} and (14). w

Lemma 10. Let ueL?(u) be as in Lemma 8. If a€ Ay, then for every neN
there exist constunts d,, d, &R, we(0, 1) such that for u-almost all y sufficient-
ly close to f"{q)

di+logly=—fa* <u(y) € d,+logly—f"(a)l

Proof. Let U <« I\V be an open interval. By the topological exactness
of the system (f, K, 1) [4, Prop. 5.7] there exists k = O such that f Ko K.
In parlicular, there exists zeU such that f*{(z) = a. By Lemma 8, we can
assume that w is continuous on K\ V. Take the first critical point on the
trajectory of z. We can assume that this is ¢. By Lemma 9, u is continuous in
a neighbourhood of a, By (vi) and (14) the assertion of the lemma holds for »
=1, We obtain it for any » by induction, using (14) and also (vi) whenever
we pass through other critical points. m

Lemma 11, log ¢ eLF () for every p 2 1.
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Proof. The proof is analogous to the proof of [8, Lemma 11]. m

ProPOSITION 1. If there exists ae A, such that for some neN, f~1(f"(a))
intersects K\, f*{Ao), then a*> 0.

Proof. In view of [6, Lemma 1], ¢* > 0if and only if —logJ+h,(f) is
not homologous to 0 in L*(x). But J = (¢ of)|f'|/@ and in view of Lemma
11 the functions logJ and log|f’| are homologous in L?(4). Hence it suffices
to show that under the assumptions of the proposition log|f’|—h,(f) is not
homologous to zero in L2 ().

Suppose (14} holds for some w eL?(u). Let aeA, be such that there exist
neN and zeK\ "  f'(4o) such that f(z) = /"(a). In view of Lemma 10
there exist constants deR, « €(0, 1) such that for p-almost all y sufficiently
close to " (a)

(17) d+logly— f(@l* = u(y).

Let U = K\ V. By the topological exactness of f there exists a positive
integer k& such that f*(U) = K. In particular, there exists y €U such that
S5() =z and y,f(0, ..., f*(3)¢A,. The set A is finite, so there is a small
closed interval J < U containing y such that J does not contain any critical
point of f*** and f**! is continuous on J. In view of Lemmas 8 and 9,
| e, 18 equal p-ae. to a continuous function on f**!(J). But this
function is uniformly continuous, because f**1(J) is a closed interval, in
particular this function is bounded near f**!(y) = f"(a), which contradicts
(17). =

Prorosimion 2. If the set |7 | f1(A,) is infinite, then o2 > Q.

Proof. Suppose U:;lfi(/io) is infinite. In view of Propositon 1 it

suffices to show that f~*(UJ" f(4o))"K contains a point which does
not belong to (J7  f*(Ao).

Let a€d, have infinite forward trajectory. Such an @ exists because
Ay is finite, Let w(a) be the set of its w-limit points.

The set w(a) is a closed set of p-measure zero ([4, Lemma 3.7]), so we
can find an open interval U < K such that dist(U, w(a) > ¢ for a small
¢ >0. Let ny €N be so large that for every n = n,, dist(f"(a), w(a) <s By
the topological transitivity there exists meN such that f™(U) = K. We claim
that /7" () has at least 2 preimages under J™. Indeed, one of them belongs
to U and the second is just f™(a) (which is close to w(a) and far from U).
Moreover, both of them belong to XK.

Now, it is easy to see that one of the points f"oﬂ(a), J=1,...,m, has
at least 2 f~preimages, both in K. One of them does not lie on the trajectory
of a (otherwise this trajectory would be finite), and we denote this point by b,
But b can lie on the trajectory of a; €4, ay = f"(a), n 20, In this case we

icm
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have @ (a1) = w(a) and we can stari with a, instead of a and find b, instead
of b, and so on. This procedure must stop after a finite number of steps
because Aq is finite. m

THEOREM 2. Assume f is unimodal. Then the following conditions are
equivalent:

(A) ¢* =0,

(B) (f, @) is isomorphic to the one-sided Bernoulli shift with the initial
distribution (4, 1.

(©) h(f) = log2.

Proof. The implication (B) = (A) is obvious. We will prove (A)=(C).
Assume o* = 0. It is known that K =[f2(c), f(¢)], where ¢ is the critical
point of f (all the time we assume that the system is weakly mixing). In view
of Proposition 2 the trajectory of ¢ is finite, ie. f*(c) = f**"(c) for some
positive integers k, n. If k is the smallest positive integer with this property,
then in view of Proposition 1, *(c) is the unique point on the trajectory of ¢
which has two f-preimages.

We will show f?(¢) = f3(d). If f%(c) # /3 (c) (see the figure), then f3(c)

flzi=f3{c}

|
|
|
|
1
i
I
!
|
|
I
|
|
r4

(el e e fle)

has two f-preimages, f2(¢) and z # f2(¢). If z < f2(c) then f([f "(c)_, ¥1)

= [y, /)] and f(Ly, /' (0)]) =[f?{c), y], where y is a fixed point. This is

impossible by our assumption of weak mixing. Therefore z > f?(c). Then z

also has two f-preimages and we have a contradiction. Hence f2(c) = £ -(c).
We have shown in the proof of Proposition 1 that the assumption

0* =0 implies (14) for some ueL?(1). Hence we have

10g |(f")’| = ”h#(f)+u Of"——u U-2.e,

or
p-a.e.

/™| = exp(nh, () exp(uo s exp{—u)
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It follows from Lemmas 9, 10 that expu is bounded and exp(-u) is
integrable on the whole interval I. Therefore there exists ¢ > 0 such that

fl(/"Y1dA < cexp(nh, ().

Hence
n"log (/YA < n™*loge+hy,(f).

The left side converges to the topological entropy of f which is equal to log 2,
while. the right side converges to h,(f), which completes the proof of (C).
The implication (C) = (B) is obvious. m

THEOREM 3. Assume that fsatisfies ()~(vi) and p is weakly mixing. Then p
is a measure with maximal entropy for flx iff ¢® = 0.

Proof = Assume that p is a measure with maximal entropy. As
noticed in the proof of [4, Th. 8.1], A, (flg) = h(f|x) = log § for some § > 1,
fix is conjugate to a piecewise linear map g such that |g} = B, and there
exists a unique g-invariant probability measure v absolutely continuous with
respect to the Lebesgue measure 1. Denote the conjugacy by 7. Let I' be the
measure-theoretic jacobian of v. Recall that the jacobian of u is denoted by
J. Tt is proved in the proof of [4, Th. 8.1] that under the assumption that u
is a measure with maximal entropy, we have J =TIct. But then logJ is
homologous to h,(f|x), because I is obviously homologous to h, (f|g) which
is equal to log f. Hence ¢* = 0.

< Assume o2 = 0. Then, in view of Proposition 2, the trajectory of the
set of critical points in K is finite, Hence, by Lemmas 8-10, the function u
satisfying (14) is such that ¢/ is bounded and e™" is integrable. Now the
argument used in the proof of Theorem 2 yields

h(f ) = timn™" log JI{/"Yd2 < by (fx). w

Theorems 2 and 3 yield

CoRrROLLARY. For unimodal maps satisfying ()~{vi), if the system (f, K, 1)
is weakly mixing (i.e. the kneading sequence of f is indecomposable) and the

absolutely continuous measure [ is also a measure with maximal entropy, then

fis of the “fully developed chaos” type, ie. h(f) = log2.
This is a generalization of the results of [4, Section 97.

4. Refinement of the Shamon-McMillan-Breiman Theorem. In this sec-
tion we will prove the main result of the paper. Put

R, (x) = log p(Ap (x)) + [t 1, (f).

Tueorem 4. If ¢® is as in the previous sections and o® > 0, then without
charging its distribution one can redefine the process (R)=q on @ richer

Refinement of the Shannon-McMillan-Breiman theorem 283

probability space with standard Brownian process (B, such that almost
surely

IR/fo—B() = 0¢Y* 4  for some A>0.

Proof. In view of Theotem 1 it suffices to prove that |R,~S (1)
= O (t*/27% almost surely, whete 4 and S(¢) are as in Theorem 1. We will
prove even more:

|R,~S8(t) =0@% p-ae for every a=(0, ).
Fix a&(0, }). We have
Ry () = 8(1) (x) = 1og (I (%) 1 (Agy (9)),
so it suffices to prove that for p-aimost every x
log (J, () (4, (x)) =0(") VneN.

In [7] we have defined for any m, MeN the family &, ,, of “good
atoms” of \/:"M"‘OM""lf “lef', where of' is some partition of I finer that .7
[7, Def. 4]. We can assume that the endpoints of atoms of & belong to
Ufm'l f~'(4) for some NeN (cf [8, Section 43). Hence the partition
\/;’\'f;MM'"1 St is finer than \/:"“f;?‘”“1 f~* .o and we can define the family
By yen Of “good atoms” of ":: AL f~'e in the natural way as the
fafm:\liy of all atoms of \/;";0 ¥N=1 g=i of which are contained in atoms
or .t "M

In view of [7, Lemmas 10, 12, 13] there exist constants L >0, 7 e(0, 1)

such that for every A &%, p+n

.)T,,,(JC) M+N
~1 € L Yx, yed,
(18) T ) 1 Y
(19) (U ew) 2 1—L™* . :

Let n be such that n* > N. We have

1 JN - [nt!'| (x) ﬂ (An (?C))
O = T oy
gMT;l[,,al(f " ['](x))j

+ [0 4t (A (/"I + [lo8 Sy (ST GOY-
If A,(x) 18 a “good alom”, namely belongs to B g then
fn-[n“‘l( A, (%)) = Al""‘l ( f""["“l(x)) and in view of (18) the first summand does

not exceed #"1 multiplied by a positive constant.
To estimate the second summand notice that for a good atom A, (%)

Wy (7 00) 2 (A (105

llog (7,40 (4, ()] <

7 - Stdin Mutlwmatien 3.3
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where d = infy ¢ > 0, and by the definition of good atoms, 4, . (f =I"(x)) is
of the form (v, w), where f*(z), f'(w)eA for some k, I€0, 1, ..., [n"]—1)
(see [7, Def. 4 (¢)]). Let s=~max ik, [}. In view of {v) the length of
I (A[n,]( £7"1(x))) is not smaller than some positive constant R. Therefore

R R
> >
(St;p Lf1* (Sl;p e

1Ay (£ 7))

and the second summand does not exceed »* multiplied by a positive
constant. ‘

Now we will estimate the third summand. We have
n-1
logJ o (/") = ¥ Josix).
J=n-1r")

In view of Lemma 1 all moments of the variables Jo f’ are bounded

uniformly with respect to j. Therefore, by the Borel-Cantelli lemma, for every
e (0, 1) :

Jofi(x)/f -0 for u-almost every xel.
Take £> 0 such that a+e < . For p-ae x there exists a positive

constant Z (x) such that J o f(x)/f° is bounded by Z (x) for sufficiently large .
Hence, if » is sufficiently large, then for g-almost every x

n—1 n~
Y Jofit=nt Y Jof

j=n—[n% J=n—[n"
r~1 .
£nt Y Jofix)if <t Z(x).
J=n--[n%]
We have proved that for p-almost every xel)#

\ Ly — [, {n%)?
llog {7, (x) 1 (A, ()))| does not exceed n*** multiplied by a positive Constant

depending only on x. In view of (19) and the Borel-Cantelli Jemma, the same
is true for p-almost every xel. u

Remark 2. Theorem 4 implies integral tests, weak invariance principles
and log-log laws for the process (R,);» . Hence, if o > 0 then (R,),», satisfies
the law of iterated logarithm which implies that the sequence
—n""log 41(4,(x)) converges to h,(f) not faster than . /(log log n)/n. This is
so e.g. for all maps f with infinite trajectory of critical points (Corollary 1)

and for all unimodal maps except of fully developed chaos with h,(f)y=log2
(Theorem 2),

icm
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