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Rate of convergence of conditional entropies
for some maps of an interval

by
KRYSTYNA ZIEMIAN (Warszawa)

Abstract,. We consider piecewise monotone maps f of an interval admitting an invariant
probability measure u absolutely continuous with respect to the Lebesgue measure, For f from a
large class of such mappings with nonpositive Schwarzian derivative we prove the exponential
convergence of conditional entropies to the measure-theoretic entropy of f. Moreaver, the
exponential convergence in L' (4} of the information functions of conditional entropies is proved,

1. Introduction. Let f be a piecewise monotone map of an interval [ into
itsell admitting an invariant probability measure u, absolutely continuous
with respect to the Lebesgue measure 1. Let &/ be the natural partition of I
into the intervais of monotonicity of f. We then have h,(f) = h,(f, /}. The
latter quantity can be computed either from the definition: h,(f, o)
=lim,n"* H,(+/), or using conditional entropies:  h,(f, )
= lim, H,(+| f~" «/,) (where ,c/,,m\/:;;f“",a/). The first method gives
usually very low rate of convergence {of order 1/n; see [1], [3]). It was
conjectured in [1] that the second method gives usually exponential conve-
rgence. This was proved in [3] for unimodal smocth maps with negative
Schwarzian derivative, nondegenerate critical point and “fully developed
chaos” (i.e. 2-to-1 everywhere except one point).

The aim of this paper is to generalize the results of [3] to the class of
maps considered in [2, 4, 5]. The methods of [3] base on the fact that the
density of px has only two singuolarities. This made it possible to make
straightforward estimates, Here, in a more general case, the situation is more
complicated, In general, the singularities of the density of x are dense in
some Cantor set, Therefore we have to use quite another technique, develo-
ped in [5].

2. Assumptions and notation. Let [ be a closed interval, A its finite subset
containing the endpoints of I, and f: I —I a continuous map which is
strictly monotene on components of I\ A and satisfies the following condi-
tions ([2]):

@) f is of class C? on I\A.
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(i) f'# 0 on I\A.

{iii) Sf <0 on I\ A, where Sf denotes the Schwarzian derivative of f.

(iv) If f2(x) = x, then [(f%(x)| > 1.

(v) There exists a neighbourhood U of A such that for all acA4 and
n>0, fMa)ed\U)u A.

(vi) For every aeA there exists a neighbourhood U, of a and constants
o, w, ¢ >0, u= 0 such that

alx—a <Ol <Solx—a, |70 < Sx—a!
for xelU,.

The assumption of continuity of f is made only for simplicity. What
follows remains true in the case when f has a finite number of discontinuities
(cf. [5]).

Under the above assumptions M. Misiurewicz [2] proved the existence
of an f-invariant probability measure y absolutely continuous with respect to
the Lebesgue measure 4. We will denote its density by ¢.

We put B = U:i , S"(A). This is the set of singularities of ¢, which 1s a
Cantor set of p-measure zero (see [2]). On each component of I\B the
density ¢ is convex and of class C"™* if fis of class C" (see [2] and [4]).
Hence under our assumptions ¢ is of class C* on I\B.

Let « be the partition of I by the points of A. We will write
s, = \/1':; f~ief for neN, and for xel, A,(x) will be the atom of .7,
which contains x. Notice that 'y = . by the definition.

3. Statement of the results. The partition .o/ is the natural partition of I
into the pieces of monotonicity of f. Hence the entropy of f can be computed
as the limit of the conditional entropies H, (/| f~'./,). We will prove the
following

Tueorem 1. H, (| ' o) tends exponentially to h,(f) as n —c0.
By the Rokhlin formula we have
E AN

@(x)

We also have the following integral fomulas for the conditional entropies:

h,(f) = [log

Hy ol oy = — | Iogu(fti(x) ﬂf“(An(f(x))))dy(x)
I

wlr =1 (4. (7))

#{A,(f (%))

a(dyes () HO

= [log
1
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Hence to prove Theorem 1 it is enough to prove

A
TreoreM 2. The information functions 103Mx—})~)- tend to

, #(A"+ 1 (x))
logw exponentially in L* ().
@ (x)
Theorem 2 and the Borel-Cantelli Lemma imply that the functions
log’itw(—ﬁ'lfﬁ)v)) converge exponentially to 1ng u-almost every-
Ay r () ¢ (x)
where.

The next sections contain a full proof of Theorem 2.

4. Construction of good atoms. Fix some neighbourhood U of A4 satis-
fying assumptions (v) and (vi). The backward images of 4 being dense in I,
we can assume U/ is a union of intervals with endpoints in JJ | f7*(4) for
some sufficiently large N e N and each of these intervals contains exactly one
point of A.

For any neN we define

E,=ixel: f'(x)¢U for i=0,1,...,n—1},

which is a neighbourhood of the set B\ A.

Limma 1. For all neN and m = n+ N, the set E, is the union of some
atoms of the partition of,,.

Proof. By the choice of U and the +c_i};c’ﬁxlaition of E,, each E, is a finite
union of intervals with endpoints in (J]_ )~ f7HA). =

Let Fmsupm|f"(x)| {obviously F >1). Let d; >0, y; &0, 1) be the
constants from [5, Th. 2]. Fix peN such that 3 FU? <1.If n > (2+N)p,
then [n/p]—N =1 and we define &, = Epyp-n-

Lemma 2. For every n 2 (2-+N)p the set &, is the union of some atoms of
the partition o ,.

Proof. By Lemma 1, &, is the union of some atoms of the partition
Ay BUt it is also the union of some atoms of the partition 7, because .o,
is ﬁne]f thai‘l -W["/p]. ]

Now we fix some keN. In view of [5, Th, 2] there exist constants
¢, ¢, > 0 such that for every neN we can choose a neighbourhood ¥, of A
which is the union of some atoms of ./, and

(1) L) ey, dist(\ A A) 2 eod"
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Let &, = &,0f &0 .4, u(l\suppy). Atoms of «/, contained in 4,
will be called bad. Atoms of ./, which are not bad will be called good.

Lemma 3. For every nz (2+ N) p the set 3, is the union of some atoms of
the partition </, ,.

Proof In view of Lemma 2 and the definition of ¥, the set
A.uf~ &, U &, is the union of some atoms of the partition .o/, . This set
is a neighbourhood of B. The set I\suppy is a finite union of some open
intervals with endpoints in B (see [2]). These intervals being contained in the
interior of 4, the endpoints of components of 4, are the endpoints of seme
components of &, f~! ¢, u.¥,, which completes the proof m

Lemma 4. There exist y,€(0,1) and ¢, >0 such that u(#,) < c,73.
Proof. This follows from (1), [2, Prop. 2.1] and [5 Ths. 2, 3]. =

LeEmMMA 5. There exists ¢ > ¢ such that
A(%, nsupp ) < -

Proof. Let ¢ =inf, ., ¢. By [2, Th. (6.3)], ¢ >0, and using Lemma 3
we get

cA(#,nsupp) < | pdl=u(B)<cyyi w

By Supp 4

3. Estimations on good atoms. Now we will investigate the behaviour of
f’, o and ¢of on good atoms.
Set G, =1I\R,. We will assume n> (24 N)p in the whole section.

Lemma 6. There exist yye(0,1) and ¢3 >0 such that for any x,y
belonging to a good atom of W,

I'(x)

[écwg,

L]
- Proof. Let x, y belong to a good atom of «7,. ;. By assumption (iii),
|/'| has no positive strict local minima, so the infimum of |f'| on (x, ) is

Lf7 @l or 170, say Lf"(x)]. Hence |f(x)~7 (¥)| = [x— /" ()| and

# sup /|
eheb <G/ WO

Now we estimate |f* (x)| from below. If x¢ U, then |f’(x)| is bounded
from below by a positive constant. If x €U, then in view of (vi)

1f (0] = ae(dist (G,, ),

2
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where o >0, u > 0 are constants independent of x. It follows from (1) that
dist (Gm A} 2 Coy ?nlka SO
L7 ol 2 o (™).

But k was fixed arbitrarily and we can assume that k is so large that u/k < 1.
We thus obtain

|17 00] = e 3, |
which together with (2) and [5, Th. 2] gives the desired estimate. w

Lemma 7. There exist y,e(0,1) and c, >0 such that for any x,y
belonging to a good atom of .,

e ecf(x)

@ (¥) @of(y)
Proof. Let x, y belong to a good atom of .«/,,,. By the definition of

good atoms, x, y¢ Ep,_y. An argument similar to that we used in the proof
of [5, Lemma 12] proves the estimate

(3) lop(x)~ @) < ¢ (V) |x—y| < dE"Fy7,

where 4 >0 is some constant independent of n, x, y and of the atom
including x, y. By the definition of good atoms, also f'(x), £ (¥) ¢ Epyp—n and
using the same argument gives the estimate

“ lpof)—pof(l < dFPy]

We put y, = F'#y, (v, €(0, 1)). Good atoms are contained in suppyu, a
sel invariant under f, so ¢(x), o(»), wof(x}), pof() = c(c = inf,,.. ¢ > 0).
Applying this to (3) and (4) we obtain the desired estimates, m

1 € 4 Y5

- ;5‘34'}’2-

6. Proof of Theorem 2. Recall that we have to estimate

pAR) (o eofIf]
®

d .
(An+1 x)) ol

| log £ {x)
I

We assume n 2 (2+N)p. First we will prove

Lemma 8. There exist constants y5 6(0, 1), ¢s > 0 such that

mA () g? fol

J 1{Ane (%)

c”n

log

X)) dp(x) < ¢s 5.

Proof. If xeG,, then by the defnition of G,, A4,.,(x) is a good atom,
$0 in particular its endpoints do not belong to A and f(A4,. (X)) = 4,(f (x)).
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Hence

p(4(F () _ 2 (Ansr (X)) _ @0 (9 1S ()]

(A1 (0)  w{Aer1) e
oo f ) If' ()
L da
w00 00 G
w(y) 4A0)
An+1(x)§9( )
If we set
w4 ) e
)= s () 90T 7 T
we obtain
90/ 176 (y)l 1)
J,(x) = nﬂ(x“Pof(x) ff (x)|
291100

4,100 9 (X)
In view of Lemmas 6 and 7 there exist constants ys (0, 1), ¢s > 0 such that
“08 Jn (x)l < Cs ’Pg B
which completes the proof. w
Now we will estimate integrals over bad atoms.
LemMa 9. There exist constants yg (0, 1), ¢4 > 0 such that
( 1og AL/ )
#p B{Ansy ()

Proof. Let 2, be the union of all atoms of ./, which contain images of
atoms belonging to #" msupp u. In this proof 4 will always denote an atom
of #/, contained in %,. We have

du(x) < cq¥6.

og AL} £(4,(/ ()

,,;,',,] B (s, () a _M‘upp# u(A,,H () au
Ly o400 (A ()
=3 1 e (fl( T

- wAG) 71 4)
=) ulf" A)[ —log—~1“~——d :
Lu TairTiR) PITALY R
Now we remark that the expression in brackets is equal to the entropy
of the partition & restricted to the set f~* 4 with respect to the probability
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measure on f~'4 induced by x Hence this expression is bounded by
log{card .o/y and we obtain

o M/ ()
Jre )

To complete the proof it suffices to estimate p(%,).

There are two types of atoms in %,: 1) atoms which are exactly images
of some atoms of 4, Nsupp u, and 2) atoms which only contain such images.
The atoms of the second type can appear as images of some atoms with one
endpoint in 4. Hence, there are only a finite number of atoms of the second
type, no more than card «/, and in view of Lemma 5, [[5, Th. 2] and
assumption (i), we have

(5) A% <

du < card &/~ u(2,).

A(f (A, rsupp )+ card o - d, "
€ FA (&, nsupp w+card & d ¥} < F y2+cardﬂ diyth.

(Recall that d; >0, y; (0, 1) are constants from [5, Th. 2].)
Now, from (5} and [5, Th. 3] we obtain the desired estimate of w(2,),
which completes the proof, m

Lemma 10. There exist constants cg > 0, 5 €(0, 1) such rhat
IJ log|f"|du| < ¢5 7%
Proof. We have "
{logif'ldu= | log|fldu+ | log|fdu

iy iy AU Bl
{recall that U is the neighbourhood of A fixed in Section 4). The function ||
being bounded from below and above by positive constants on #,\U, the
integral over #,\U is bounded by u(4,) muliiplied by a positive constant.

In view of Lemma 4, it remains to estimate the integral over &, U.

Recall that U is a union of components, each of which is an interval
containing exactly one point of A, So the number of these intervals is finite,
not greater than card 4, and to estimate the integral over #, n U it suffices
to estimate the integral over ¥, NV, where V is one of the components of U,

Let ¢ ¢A ~ V. By the definition of U, ¥ may contain exactly one point
from B and it can only be a,

Assume a&B, If N was fixed sufficiently large, then for every xeV, a is
the point of B nearest to x and in view of [5, Lemma 117 there exist
constants Ly > 0, &, e(0, 1) such that for every xeV

(6) o(x) < Lo/lx—d|.
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We can also assume that N is so large that V< U,, where U, is the
neighbourhood of @ from assumption (vi). Therefore using (vi) and (6) we
obtain

| § logifidul=] [ log|fi|dy

By AV rsupp i

[log (o |x — a])|

<Ly dA(x)

Ay, hV:"WSlep‘l ix—' alr:o
"’log (o |x—-—a|")J
<Ly EEEE R ()
Mt msuppyn{xdﬂx—a}:»y%} IJC"" al
a*iy log (ot |x— a*)
+2L, Ll——%—[ di(x).
a x—a

By Lemma 5 the first integral does not exceed
ez, \ilog ()
Y T
¢ Y2
which is equal to n(y; ‘%) multiplied by a positive constant.
It remains to estimate the second integral. By a suitable change of
variable we can write it as

"2{log y1
dA
b[ KS »

muliiplied by a positive constant and we have

k
@ vy
iy =73 |

o= k1
ok ¥

oG
< Y OA-AY
k=n

n
v2

1
) i (log yi
o]

)

llog ¥
yo

di(y)

(k+ Llogy,
A
which completes the proof in the case aeB. If a¢ B, then ¢ is bounded on ¥

by a positive constant and the estimations become easier. m

H

Lemma 11, logop eL! (u).

Proof Let, for every neN, E, and 2, be the sets defined in Section 4.
The set E,u 7, is a neighbourhood of the set of singularities of o and
I\(E, u ) has a finite number of connected componeats, so ¢ is bounded
on I\(E, v 7). But ¢ is also bounded from below by a positive constant on
supp i, so the integral .[:\(E,,uar,,) [log ¢ dp is finite for every neN.

Now we will estimate the integral over 2,. Fix n so large that &' =N
We can assume ¥, is a union of intervals, each of which contains exactly
one point from A. Let ¥ be one of these intervals, a eV,
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If a¢ B, then the whole interval V' is far from B and ¢ is bounded on ¥,
Hence the integral [, jloge|du is finite.

If aeB, then we can assume that n was fixed so large that for every
x €V, a is the point of B nearest to x. Now, using (6) and (7) we prove easily
that the integral |, |log ¢|dyu is finite.

The number of intervals ¥ does not exceed card A, 50 we have proved
the integrability of log¢ on .

It remains to prove the integrability of log ¢ on E,. We have E, ., < E;
for every kelN, and .

ol

(8) JLi logpldu=3 § |logeldu.

fo=n Eg\Eg g
We have Lo show that the above series is convergent.
Let xeE,\Ey., and let beB be nearest to x. We assume k is so large
that b cannot belong 10 4. Hence |x—b| > dist(B\ A, INE ;) and it is
proved in [5, proof of Th. 3] that the;e exists a constant h > 0 such that

(9) dist(B\A4, I\E,.,) = h/F**1.

Therefore ¢ (x) < (Lofh) FYO* Y gor x€E\E,,.,, and

[ logoldu= [ lloggldn
EpMig 4 AE\Eg 4 1) reuppp .
< Lo rtow«1
< max <|log ¢, |log - ) H(E).

This completes the proof because u(E,) decreases exponentially. m

Remark. Notice that in the proof of Lemma 11 we have obtained in
fact the exponential convergence to zero of IEH |log ¢| du and-_[x,nllog eldu.

Lomma 12, There exist constants c; > 0, y, (0, 1) such thai

€ 6.

. o]
L

Proof (due to M. Misiurewicz). Let + denote the symmetric difference
of sets. Observe that

. of \ .
‘ | log f@_,..;f'{d“ = f [log(pofldu— | logpdyl
. @ iy @,
=|[log(pofldu— { log(pof)dyl
&y I 1(3’”)
€ [ llog(pofdu

By L)

= Biudin Mathemation 93.3
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< | [llogleof)du

I .
+ ] flog (@ o f)ldu
@, L@~ Tty
= [ [log pldu-+ I llog (@ o )l du,
Ay (@B ~1 " UB I~ 1K

and the first integral in the last sum converges exponentially to zero (see
Remark). It remains to estimate the second integral.
Writs ;

G = (B = fTHBINS A,
¢4 = {xe%, the point of B nearest to f(x) is in A4},
@B =%\ 1.

Notice that /™1 (8,) " (B, ~ f " (B,)=0.

If xe%{ nsuppu and ae 4 n B is the point of B nearest to f(x), then in
view of [5, Lemma 11] and (1), [log ¢(f (x))} does not exceed n multiplied by
a positive constant. Hence, using Lemma 4 we obtain the estimate ol
jﬁillog @of (x)|du by ry5 multiplied by a positive constant.

It remains to estimate the integral over %%, If xe%% nsuppy, then
f(x)¢ &,, the point b of B nearest to f(x) belongs to B\ A. Hence

|7 ()= b = dist(1\ &, B\A) = dist I\ Eyyyy-, B\A)

h .
= W (lI] VIiew Of (9)),
which together with [5, Lemma 117 gives the estimate of |leg g o f{(x)| by #
multiplied by a positive constant. Therefore using Lemma 4 we obtain the
estimate of j{ﬁﬂ log o ¢ f(x)|du by ny} multiplied by a positive constant. =
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