

30 May 1

Analytic Toeplitz algebras and intertwining operators *

þ.

KARIM SEDDIGHI (Shiraz)

Abstract. For φ in H^{∞} , let T_{φ} be the analytic Toeplitz operator with symbol φ and let $G = \varphi(D)$. In this article we will characterize the weak-star closed algebra A generated by T_{φ}^{*} . It turns out that A equals the space of all bounded analytic functions on an appropriate domain G_0 containing G. We also show that if nonzero operators X and Y intertwine two analytic Toeplitz operators with symbols φ and ψ then $G_0 = E_0$, where $G = \varphi(D)$ and $E = \psi(D)$. Finally, it is shown that if X and Y are operators with dense range intertwining two analytic Toeplitz operators. T_{φ} and T_{ψ} with φ univalent, then the two analytic Toeplitz operators have the same essential spectrum.

1. Introduction. For φ in H^{∞} , let T_{φ} be the analytic Toeplitz operator with symbol φ and let $G = \varphi(D)$. In Section 3, we use the results in [8] to characterize the weak-star closed algebra A generated by T_{φ}^* . In fact, A equals the space of all bounded analytic functions on an appropriate domain G_0 containing G. The main appearance of such domains in the literature is in connection with the Sarason hull of the scalar-valued spectral measure for the minimal normal extension of subnormal operators. For the exact meaning of these terms see [2].

Even though there is some overlap between Section 3 of the present paper and our paper [8] we mention that this characterization of the algebra does not appear in the literature. Moreover, the operators T considered in [8] have the property that $\dim \ker(T-\lambda)$ is a constant for all λ in an appropriate domain and in the proof of the characterization we use the fact that the commutant $\{T\}'$ of such operators is completely known. However, these properties are not in general true for analytic Toeplitz operators.

In Section 3 we show that if nonzero operators X and Y intertwine two analytic Toeplitz operators with symbols φ and ψ then $G_0 = E_0$, where $G = \varphi(D)$ and $E = \psi(D)$.

¹⁹⁸⁰ Mathematics Subject Classification: Primary 47B35; Secondary 47A60.

Key words and phrases: analytic Toeplitz operator, weak-star closed algebra, intertwining operator, essential spectrum.

^{*} The author would like to thank the research council, Shiraz University, for a grant during the preparation of this article.

In conclusion we show that if X and Y are operators with dense range intertwining two analytic Toeplitz operators T_{φ} and T_{ψ} such that φ is univalent, then the two analytic Toeplitz operators have the same essential spectrum.

2. Preliminaries. This section includes the necessary definitions and notation. For K a compact subset of the plane, let R(K) denote the algebra of all continuous complex-valued functions on K which can be approximated uniformly on K by rational functions whose poles all lie outside K. We say that R(K) is a Dirichlet algebra on ∂K if the real parts of the functions in R(K) when restricted to ∂K are dense in the space of continuous real-valued functions on ∂K . A compact subset K of the plane is a spectral set for $T \in L(H)$ if it contains the spectrum of T, $\sigma(T)$, and $||f(T)|| \leq \max\{|f(z)|: z \in K\}$ for all rational functions f with poles off K. If E is an open subset of the plane, then $H^{\infty}(E)$ denotes the space of bounded analytic functions in E.

For G a domain (an open connected subset of the plane) and α an ordinal number, the set G_{α} can be defined as in Sarason [6, p. 525]. However, the set G considered in [6] is simply connected and we will not assume any restriction of this sort. The definition of G_{α} in the general case appears in [8, p. 234]. For the benefit of the reader we will reiterate the necessary definitions.

If B is a bounded domain in the plane, then the Carathéodory hull (or C-hull) of B is the complement of the closure of the unbounded component of the complement of the closure of B. We denote the C-hull of B by B^* . Loosely speaking, B^* can be described as the interior of the outer boundary of B, and in analytic terms it can be defined as the interior of the set of all points z_0 in the plane such that $|p(z_0)| \leq \sup\{|p(z)|: z \in B\}$ for all polynomials p. The components of B^* are simply connected; in fact, it is a simple matter to show that each of these components has a connected complement. We denote by B_1 the component of B^* that contains B.

Again let B be a bounded domain in the plane. For any simply connected domain E containing B we can define the relative hull of B in E, or the E-hull of B, to be the interior of the set of all points z_0 in E such that $|f(z_0)| \le \sup\{|f(z)|: z \in B\}$ for every function f bounded and analytic in E.

Now let G be a bounded domain in the plane. We have already defined G_1 to be the component of the C-hull of G that contains G. We now define inductively for every countable ordinal number α a simply connected domain G_{α} containing G as follows. If α has an immediate predecessor we let G_{α} be the component of the $G_{\alpha-1}$ -hull of G that contains G. If α has no immediate predecessor we define G_{α} to be the component of the interior of $\bigcap_{\beta < \alpha} G_{\beta}$ that contains G. (It is easily verified that G_{α} then has a connected complement, and so is simply connected.) It is shown in [6, p. 525] that there is a least

countable ordinal γ such that $G_{\gamma} = G_{\gamma+1}$. We call γ the order of G. Obviously, $G_{\alpha} = G_{\gamma}$ for all $\alpha \geqslant \gamma$. For convenience we set $G_0 = G_{\gamma}$.

It is evident that for every α , $R(\bar{G}_{\alpha})$ is a Dirichlet algebra. Therefore it makes sense to talk about $H^{\infty}(\partial \bar{G}_{\alpha})$, the weak-star closure of $R(\bar{G}_{\alpha})$ in $L^{\infty}(m)$, where m is the harmonic measure on $\partial \bar{G}_{\alpha}$ (for the definition of harmonic measure see [2, p. 332]). We will also identify the two spaces $H^{\infty}(\partial G_{\alpha})$ and $H^{\infty}(G_{\alpha})$ bearing in mind that $\partial G_{\alpha} = \partial \bar{G}_{\alpha}$ (see [7, Lemma 4.2, p. 5]).

Let D denote the open unit disk, let H^2 denote the Hardy space of functions f analytic on D with $\int |f(re^{it})|^2 dt$ bounded independently of r, let H^{∞} be the space of bounded analytic functions on D, and for φ in H^{∞} let T_{φ} denote the operator on H^2 defined by $T_{\varphi} f = \varphi f$. The operator T_{φ} is said to be an analytic Toeplitz operator.

If $\psi \in H^2$, then the function $\overline{\psi}$ defined by $\overline{\psi}(z) = \overline{\psi(\overline{z})}$ is also in H^2 . For $|\lambda| < 1$, define $k_{\lambda} \in H^2$ by the relation $k_{\lambda}(z) = (1 - \lambda z)^{-1}$. Now, let $\varphi \in H^{\infty}$ and set $T = T_{\overline{\psi}}^*$ and $G = \varphi(D)$, the range of φ . Then $Tk_{\lambda} = \varphi(\lambda)k_{\lambda}$. This notation will be retained throughout the rest of the paper. We also observe that the linear subspace consisting of all functions of the form $f = \sum_{i=1}^k c_i k_{\lambda_i}$, for $c_i \in C$, $\lambda_i \in D$ (i = 1, ..., k) is dense in H^2 .

- 3. The algebra generated by a Toeplitz operator. The next lemma is a preliminary effort in characterizing the weak-star closed algebra generated by T, where T is as before. The proof is a slight modification of [8, Lemma 3.1] and hence will not be included.
- (3.1) Lemma. Let T be as before and let α be an ordinal number. For f in $H^{\infty}(\partial G_{\alpha})$ define f(T) by

$$f(T)\left[\sum_{i=1}^{k} c_{i} k_{\lambda_{i}}\right] = \sum_{i=1}^{k} c_{i} f(\varphi(\lambda_{i})) k_{\lambda_{i}}.$$

Then f(T) extends to a bounded operator on H^2 . Furthermore, if we set $\Phi_{\alpha}(f) = f(T)$ then Φ_{α} is an isometry from $H^{\infty}(\partial G_{\alpha})$ into $L(H^2)$.

For any operator $X \in L(H)$ let $A_1(X)$ denote the WOT (weak operator topology) sequential closure of $A_0(X) = \{p(X): p \text{ is a polynomial}\}$. We now define inductively for every ordinal number α a set $A_{\alpha}(X)$ as follows. If $A_{\alpha}(X)$ is defined for some ordinal number α , let $A_{\alpha+1}(X)$ denote the WOT sequential closure of $A_{\alpha}(X)$. If α is a limit ordinal and $A_{\beta}(X)$ is defined for all $\beta < \alpha$, let $A_{\alpha}(X)$ be the WOT sequential closure of $\bigcup_{\beta < \alpha} A_{\beta}(X)$. It is a well-known property of weak-star topologies [1] that the spaces $A_{\alpha}(X)$ eventually become constant; that is, there is a least countable ordinal α_0 such that $A_{\alpha}(X) = A_{\alpha_0}(X) = A(X)$, the weak-star closed algebra generated by X, for $\alpha \geqslant \alpha_0$.

Using transfinite induction we will show that for each ordinal number α there exists an isometric isomorphism $\Phi_{\alpha} \colon H^{\infty}(\partial G_{\alpha}) \to A_{\alpha}(T)$. To see this let $f \in H^{\infty}(\partial G_{\alpha})$. Then invoking Lemma (3.1), there is an operator f(T) in $L(H^2)$ such that $||f(T)|| = ||f||_{\infty}$. The proof that f(T) is actually in $A_{\alpha}(T)$ is along the same lines as [8, p. 237] and hence will be omitted. It remains to show that Φ_{α} is actually onto which is the content of the next lemma. In the proof of [8, Lemma 3.2] we use the fact that the commutant $\{A\}'$ with A having a generalized Bergman kernel is completely characterized. However, this is not the case for the commutant of an analytic Toeplitz operator and we therefore give a proof of the fact that Φ_{α} is onto in the next lemma.

(3.2) Lemma. For every ordinal number α , Φ_{α} is an isometric isomorphism from $H^{\infty}(\partial G_{\alpha})$ onto $A_{\alpha}(T)$.

Proof. We apply transfinite induction to show that for every ordinal number α , Φ_{α} is onto.

To show that Φ_1 is onto, let $R \in A_1(T)$. Then by definition of $A_1(T)$ there exists a sequence $\{p_n\}$ of polynomials such that $p_n(T) \to R$ (WOT). Now $||p_n(T)|| \leq M$ for some M > 0 and $||p_n||_{G_1} = ||p_n||_G = ||p_n(T)|| \leq M$. Since $\{p_n\}$ forms a normal family in $H^{\infty}(G_1)$, by dropping to a subsequence if need be, we may assume that $\{p_n\}$ converges uniformly on compact subsets of G_1 to a function ψ in $H^{\infty}(G_1)$. But

$$p_n(T) \left[\sum_{i=1}^k c_i \, k_{\lambda_i} \right] = \sum_{i=1}^k c_i \, p_n(\varphi(\lambda_i)) \, k_{\lambda_i}$$

converges weakly to $R\sum_{i=1}^k c_i k_{\lambda_i}$ and in norm to $\sum_{i=1}^k c_i \psi(\varphi(\lambda_i)) k_{\lambda_i}$. Therefore $R = \psi(T)$, $\psi \in H^{\infty}(G_1)$.

For a nonlimit ordinal α assume $\Phi_{\alpha-1}$ is onto, let $S \in A_{\alpha}(T)$ and choose a sequence $\{S_n\}$ in $A_{\alpha-1}(T)$ such that $S_n \to S$ (WOT). By the induction hypothesis $S_n k_{\lambda} = \psi_n(\varphi(\lambda))k_{\lambda}$, $\lambda \in D$, where $\psi_n \in H^{\infty}(G_{\alpha-1})$. We have $\|\psi_n\|_{G_{\alpha-1}} = \|\psi_n\|_G = \|S_n\| \le M$, for some M > 0. By using a normal family argument, we may assume that $\{\psi_n\}$ converges uniformly on compact subsets of $G_{\alpha-1}$ to a function ψ in $H^{\infty}(G_{\alpha-1})$. It is easy to see that $S = \psi(T)$, $\psi \in H^{\infty}(G_{\alpha})$.

Suppose α is a limit ordinal and let $X \in \bigcup_{\beta < \alpha} A_{\beta}(T)$. Then $X \in A_{\beta}(T)$ for some $\beta < \alpha$. Also $Xk_{\lambda} = \psi(\varphi(\lambda))k_{\lambda}$, $\lambda \in D$, where $\psi \in H^{\infty}(G_{\beta})$ by the induction hypothesis. Since $G_{\alpha} \subset G_{\beta}$ we have $\psi \in H^{\infty}(G_{\alpha})$ and $X = \psi(T)$.

If there is a sequence $\{A_n\}$ in $\bigcup_{\beta \leq \alpha} A_{\beta}(T)$ such that $A_n \to A$ (WOT), then $A_n k_{\lambda} = \psi_n(\varphi(\lambda)) k_{\lambda}$, $\lambda \in D$, where $\psi_n \in H^{\infty}(G_{\alpha})$ by the previous argument. Now $||A_n|| \leq M$ for some M > 0, hence $||\psi_n||_{G_{\alpha}} \leq M$. By a normal family argument we may assume that ψ_n converges uniformly on compact subsets of G_{α} to a

function ψ in $H^{\infty}(G_{\alpha})$. It is easy to see that $A = \psi(T)$. Hence Φ_{α} is onto. \blacksquare For the proof of the next theorem see [8, Theorem 3.3].

(3.3) THEOREM. Let $\varphi \in H^{\infty}$, $T = T_{\varphi}^*$ and $G = \varphi(D)$. Then there is a norm isometric, weak-star homeomorphic algebra isomorphism Φ from $H^{\infty}(\partial G_0)$ (= $H^{\infty}(G_0)$) onto A(T) that takes a polynomial p to p(T). In fact, Φ is a functional calculus.

Note. We would like to point out that if $f \in H^{\infty}(G_0)$ then $f \circ \varphi \in H^{\infty}$ and $f(T) = T^*_{f,\varphi}$. Therefore A(T) consists of coanalytic Toeplitz operators.

4. Intertwining operators. Let φ , $\psi \in H^{\infty}$. Deddens [3, 4] has shown that if $Y \neq 0$ is a bounded operator satisfying the condition $YT_{\varphi} = T_{\psi}Y$ then $\sigma(T_{\psi}) \subset \sigma(T_{\varphi})$. Therefore if $X \neq 0$ is a bounded operator satisfying the condition $XT_{\psi}^* = T_{\varphi}^*X$ then $X^*T_{\varphi} = T_{\psi}^*X^*$, so $\sigma(T_{\psi}) \subset \sigma(T_{\varphi})$, from which it follows that $\sigma(T_{\psi}^*) \subset \sigma(T_{\varphi}^*)$.

The idea of the next two results is taken from [2, pp. 219-220].

(4.1) Lemma. Let A_1 , A_2 be algebras of coanalytic Toeplitz operators and let C_1 , C_2 be their WOT sequential closures consisting of coanalytic Toeplitz operators. If $F: A_1 \to A_2$ is a contractive monomorphism and $X \neq 0$ is an operator such that XF(A) = AX for every A in A_1 , then F extends to a contractive monomorphism $\tilde{F}: C_1 \to C_2$ such that $X\tilde{F}(C) = CX$ for every C in C_1 .

Proof. Let $C \in C_1$ and choose a sequence $\{A_n\}$ in A_1 such that $A_n \to C$ (WOT). Now $||A_n|| \le M$ for some M > 0, so $||F(A_n)|| \le M$. Thus, there are a D in C_2 and a subsequence $\{A_{n_k}\}$ such that $F(A_{n_k}) \to D$ (WOT). Since $XF(A_{n_k}) = A_{n_k}X$, XD = CX. By the above result of Deddens [3, 4] we conclude that $\sigma(D) \subset \sigma(C)$. Hence $||D|| \le ||C||$. If we set $\tilde{F}(C) = D$, then \tilde{F} is the desired extension.

- (4.2) THEOREM. Let $\varphi, \psi \in H^{\infty}$ and set $T = T_{\varphi}^*$, $S = T_{\psi}^*$. Suppose there exist $X \neq 0$, $Y \neq 0$ satisfying XS = TX and YT = SY. There is an isometric isomorphism $F: A(T) \rightarrow A(S)$ such that:
 - (a) F(T) = S.
 - (b) XF(A) = AX and YA = F(A)Y for all A in A(T).
 - (c) F is a weak-star homeomorphism.

Proof. Let p be a polynomial. Then Xp(S) = p(T)X and Yp(T) = p(S)Y. Define $F_0: A_0(T) \to A_0(S)$ and $G_0: A_0(S) \to A_0(T)$ by $F_0(p(T)) = p(S)$ and $G_0(p(S)) = p(T)$. So $F_0 = G_0^{-1}$. Applying transfinite induction, Lemma 4.1 and the Krein-Shmul'yan Theorem we obtain the result.

(4.3) Corollary. For $\varphi, \psi \in H^{\infty}$ let $T = T_{\varphi}^*$, $S = T_{\psi}^*$, $G = \varphi(D)$ and $E = \psi(D)$. Suppose there exist $X \neq 0$, $Y \neq 0$ satisfying XS = TX and YT = SY. Then $G_0 = E_0$.

Proof. Let Φ_T : $H^{\infty}(G_0) \to A(T)$ and Φ_S : $H^{\infty}(E_0) \to A(S)$ be the functional calculi defined in Theorem (3.3) and let F: $A(T) \to A(S)$ be the map defined in Theorem (4.2). Then $\Phi_S^{-1} \circ F \circ \Phi_T$: $H^{\infty}(G_0) \to H^{\infty}(E_0)$ is an algebra isomorphism which is the identity on the polynomials. Therefore the position function $z \to z$ has the same spectrum in the two spaces $H^{\infty}(G_0)$ and $H^{\infty}(E_0)$. So $\bar{G}_0 = \bar{E}_0$. It follows that $\operatorname{int}(\bar{G}_0) = \operatorname{int}(\bar{E}_0)$. But $\bar{G}_0 = \operatorname{int}(\bar{G}_0)$ and $\bar{E}_0 = \operatorname{int}(\bar{E}_0)$, from which the conclusion is immediate.

Recall that for $f \in H^{\infty}$ and $z_0 \in \partial D$ we define the cluster set $C(f, z_0)$ of f at z_0 in either of the following two equivalent ways:

(i) $C(f, z_0)$ is the set of points α in C such that there exists a sequence $\{z_n\} \subset D$ such that $\lim_{n\to\infty} z_n = z_0$ and $\lim_{n\to\infty} f(z_n) = \alpha$.

(ii)
$$C(f, z_0) = \bigcap_{r>0} \overline{f(D \cap B(z_0, r))}$$
.

In the next result we use the fact that if $f \in H^{\infty}$ then the essential spectrum $\sigma_{e}(T_{f})$ of T_{f} is given by $\bigcup_{\theta} C(f, e^{i\theta})$ ([5]).

(4.4) PROPOSITION. Let φ , $\psi \in H^{\infty}$, and let φ be univalent. Let $X, Y \in L(H^2)$ be operators with dense range such that $XT_{\varphi} = T_{\psi}X$ and $YT_{\psi} = T_{\varphi}Y$. Then $\sigma_{e}(T_{\varphi}) = \sigma_{e}(T_{\psi})$.

Proof. Since X^* and Y^* are one-to-one and φ is univalent we conclude that $\dim \ker (T_{\varphi}^* - \overline{\lambda}) = \dim \ker (T_{\psi}^* - \overline{\lambda}) = 1$ or 0 for every $\lambda \in C$. It follows that the number of zeros of $\psi - \lambda$ in D is at most 1. Hence ψ is univalent.

Now let $G = \varphi(D)$ and $\Omega = \psi(D)$. By a result of Deddens [4, Theorem 2] $G = \Omega$. We now show that φ and ψ have the same set of cluster values. That is, $\bigcup_{\theta} C(\varphi, e^{i\theta}) = \bigcup_{\theta} C(\psi, e^{i\theta})$ or equivalently $\sigma_{\theta}(T_{\theta}) = \sigma_{\theta}(T_{\theta})$.

Note that if $\alpha = \lim \varphi(z_n)$ and $|z_n| \to 1$, then, by univalence, α is not an interior point of $\varphi(D)$. Let $\varphi(z_n) = \psi(\omega_n)$. If ω_n has a cluster point on the circle we are done. But if $|\omega_n| \leqslant r < 1$ for all n then $\omega_{n_k} \to \omega$ for some subsequence and $\alpha = \varphi(\omega)$ is interior to $\psi(D)$, a contradiction. Hence we conclude that $\sigma_{\rm e}(T_{\varphi}) \subset \sigma_{\rm e}(T_{\psi})$. Since this argument is reversible we obtain $\sigma_{\rm e}(T_{\psi}) \subset \sigma_{\rm e}(T_{\varphi})$. Combining the two inclusions we have $\sigma_{\rm e}(T_{\varphi}) = \sigma_{\rm e}(T_{\psi})$.

Note. The referee has pointed out that H. Wang [9] proves Proposition (4.4) under the stronger hypothesis that one of the symbols is a weak-star generator of H^{∞} and therefore obtaining the stronger result of unitary equivalence. The author would like to thank the referee for his helpful comments.

References

- [1] S. Banach, Théorie des opérations linéaires, Chelsea, New York 1955.
- [2] J. Conway, Subnormal Operators, Pitman, London 1981.
- [3] J. A. Deddens, Intertwining analytic Toeplitz operators, Michigan Math. J. 18 (1971), 243–246.
- [4] -, Analytic Toeplitz and composition operators, Canad. J. Math. 24 (1972), 859-865.
- [5] J. A. Deddens and J. K. Wong, The commutant of analytic Toeplitz operators, Trans. Amer. Math. Soc. 184 (1973), 261-273.
- [6] D. Sarason, Weak-star generators of H[∞], Pacific J. Math. 17 (1966), 519-528.
- [7] -, Weak-star density of polynomials, J. Reine Angew. Math. 252 (1972), 1-15.
- [8] K. Seddighi, Weak-star closed algebras and generalized Bergman kernels, Proc. Amer. Math. Soc. 90 (1984), 233-239.
- [9] H. Wang, A note on quasisimilarity of analytic Toeplitz operators, Tamkang J. Math. 18 (1987), 133-137.

DEPARTMENT OF MASHEMATICS SHIRAZ UNIVERSITY Shiraz 71454, Islamic Republic of Iran

> Received October 22, 1987 Revised version January 11, 1988

(2372)