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Analytic Toeplitz algebras and
intertwining operators *
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Abstract, For ¢ in H®, let T, be the analytic Toeplitz operator with symbol ¢ and Jet
G = (D). In this article we will characterize the wesk-star closed algebra A generated by T
It turns out that A equals the space of all bounded analytic functions on an appropriate domain
G, containing G. We also show that if nonzero operators X and Y intertwine two analytic
Toeplitz operators with symbols ¢ and ¥ then G; = E,, where G = @(D) and E = ¢ (D). Finally,
it is shown that if X and Y are operators with dense range intertwining two analytic Toeplitz
operalors. T, and T; with ¢ univalent, then the two analytic Toeplitz operators have the same
essential spectrum.

1. Introduction. For ¢ in H™, let T, be the analytic Toeplitz operator
with symbol ¢ and let G = ¢ (D). In Section 3, we use the results in [8] to
characterize the weak-star closed algebra A generated by T In fact, A
equals the space of all bounded analytic functions on an appropriate domain
G, containing G. The main appearance of such domains in the literature is in
connection with the Sarason hull of the scalar-valued spectral measure for
the minimal normal extension of subnormal operators. For the exact mean-
ing of these terms see [2].

Even though there is some overlap between Section 3 of the present
paper and our paper [8] we mention that this characterization of the algebra
does not appear in the literature. Moreover, the operators T considered in
[8] have the ptoperty that dimker(T—A4) is a constant for all A in ap
appropriate domain and in the proof of the characterization we use the fact
that the commutant {T? of such operators is completely known. How-
ever, these properties are not in general true for analytic Toeplitz operators,

“In Section 3 we show that if nonzero operators X and Y intertwine
two analytic Toeplitz operators with symbols ¢ and  then Gy = E,, where
G = (D) and E = (D).
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In conclusion we show that if X and Y are operators with dense range
intertwining two analytic Toeplitz operators 7, and T, such that ¢ is
univalent, then the two analytic Toeplitz operators have the same essential
spectrum.

2. Preliminaries. This section includes the necessary definitions and
notation. For K a compact subset of the plane, let R(K) denote the algebra
of all continuous complex-valued functions on K which can be approximated
uniformly on K by rational functions whose poles all lie outside K. We say
that R(K) is a Dirichlet algebra on &K if the real parts of the functions in
R (K} when restricted to 8K are dense in the space of continuous real-valued
functions on dK. A compact subset K of the plane is a speciral set for
T eL(H) if it contains the spectrum of T, ¢(T), and ||f (T} < max {|f(z)|:
z€K]} for all rational functions f with poles off K. If E is an open subset of
the plane, then H™(E) denotes the space of bounded analytic functions in E.

. For G a domain (an open connected subset of the plane) and « an
ordinal number, the set (G, can be defmed as in Sarason [6, p. 525].
However, the set G considered in [6] is simply connected and we will not
assume any restriction of this sort. The definition of G, in the general case
appears in [8, p. 234]. For the benefit of the reader we will re:terate the
necessary definitions.

If B is a bounded domam in the plane, then the Caratheodory hull (or C-
hull) of B-is the complement of the closure of the unbounded component of
the complement of the closure of B. We denote the C-hull of B by B*.
Loosely speaking, B* can be described as the interior of the outer boundary
of B, and in analytic terms it can be defined as the interior of the set of all
points z, in the plane such that [p(z,)] < sup {|p(z)]: z €B} for all polynomials
p. The components of B* are simply connected; in fact, it is a simple matter
to show that each of these components has a connected complement. We
denote by By the component of B* that contains B.

Again lt B be a bounded domain in the plane. For any simply
connected domain E containing B we can define the relative hull of B in E, or
the E-hull of B, to be the interior of the set of all points z, in E such that
|f (zo)) € sup{|f(z)|: zeB)} for every function f bounded and analytic in E.

Now let G be a bounded domain in the plane. We have already defined
G, to be the component of the C-hull of G that contains G. We now define
inductively for every countable ordinal number o a simply connected domain
G, containing G as follows. If « has an immediate predecessor we let G, be
the component of the G, ~-hull of G that contains G. If « has no immediate
predecessor. we define G, to be the component of the interior of ﬂ . Gy that
contains G. {It is easily verified that G, then has a connected complement
and so is simply connected) It is shown in [6, p. 525] that there is a least
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countable ordinal y such that G, = G, ... We call y the order of G. Obvious-
ly, G, = G, for all & 2> y. For convenience we set G, = G,.

It is evident that for every «, R(G,) is a Dirichlet algebra. Therefore it
makes sense to talk about H®(6G,), the weak-star closure of R(G,) in L®(m),
where m is the harmonic measure on &G, (for the definition of harmonic
measure see [2, p. 332]}. We will also identify the two spaces H*®(2G,) and

H®(G,) bearing in mind that 4G, = &G, (see [7, Lemma 4.2, p. 5]).

Let D denote the open unit disk, let H? denote the Hardy space of
functions f analytic on D with [[f (r¢")|?dr bounded independently of r, let
H™ be the space of bounded analytic functions on D, and for ¢ in H® let T,
denote the operator on H? defined by T, f = ¢ f. The operator T, is said to
be an analytic Toeplitz operator,

If  €H% then the function § defined by W (z) =¥ (%) is also in HZ.
For |A] < 1, define k; € H? by the relation k;(z) = (1—Az)"!. Now, let p cH®™
and set T=T¥ and G = (D), the range of ¢. Then Tk, = @¢(A)k;. This
notation will bc retained throughout the rest of the paper. We also observe
that the linear subspacc con51stmg of all functions of the form f = Zi (Cikas
for ,eC, LD (i=1, ..., k) is dense in H2.

3. The algebra generated by a Toeplitz operator. The mext lemma is
a preliminary effort in characterizing the weak-star closed algebra generated
by T, where T is as before. The proof is a slight modification of [8, Lemma
3.1] and hence will not be included.

(3.1) Lemma. Let T be as before and let o be an ordinal momber. F or fin
H®(8G,) define f(T) by
T)[Z & ka,] =

"3 fle(d) )kli

Then f(T) extends to a bounded operator on HZ?. Furthermore, if w.e set
&, (f) = f(T) then &, is an isometry from H*™(0G,) into L(H?).

For any operator X eL(H) let 4, (X) denote the WOT (weak operator
topology) sequential closure of A, (X) == {p(X): p is a polynomial]. Wé now
define inductively for every ordinal number o a set 4,(X) as follows. If 4,(X)
is defined for some ordinal number a, let A4,.,(X) denote the WOT
sequential closure of A,(X). Il & is a limit ordinal and A,(X) is defined for all
B <a, let 4,(X) be the WOT sequential closure of |J, , Ap(X). 1t is a well-
known propetty of weak-star topologies [1] that the spaces A4, (X) eventually
become constant; that is, there is a least countable ordinal oy such that
Ay (X) = A, (X) = A(X), the weak-star closed algebra generated by X, for
o* =y,
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Using transfinite induction we will show that for each ordinal number a
there exists an isometric isomorphism &,: H*(dG,) = A,(T). To see this let
feH=(0G,). Then invoking Lemma (3.1), there is an operator f (T) in L(H?)
such that || (T)i| =||file. The proof that f(T) is actually in A4,(T) is along
the same lines as [8, p. 237] and hence will be omitted. It remains to show
that @, is actually onto which is the content of the next lemma. In the proof
of [8, Lemma 3.2] we use the fact that the commutant !4!" with 4 having a
generalized Bergman kernel is completely characterized. However, this is not
the case for the commutant of an analytic Toeplitz operator and we therefore
give a proof of the fact that &, is onto in the next lemma.

(3.2) LemMa. For every ordinal number o, @, is an isometric isomorphism
Jrom H®(0G,) onto A.(T).

Proof. We apply transfinite induction to show that for every ordinal
number o, &, is onto. :

Te show that &, is onto, let Red; (T). Then by definition of 4, (T)
there exists a sequence |p,! of polynomials such that p,(T) = R (WOT). Now
(Tl < M for some M >0 and [|p,/i, = Ipllc = llp-(TH| < M. Since {p,}

forms a normal family in H*(G,), by dropping to a subsequence if need be,

we may assume that {p,! converges uniformly on compact subsets of G, to a
function W in H*(G,}. But

x k
pa(T) [§1 cky,] = igl & Da (@A) ks,

converges weakly to RE:=1 ¢;k,, and in norm to Z:=1 e W (@ (4))k;,. There-
fore R = ¢ {T), ¥ eH*(G,).

For a nonlimit ordinal « assume &,_, is onto, let S €A, (T) and choose
a sequence S,} in A,_,(T) such that §, =S (WOT). By the induction
hypothesis S,k =, (0(D))k;, AieD, where ,eH®(G,_,). We have
Wlle,_ , = IWile = IS4l € M, for some M > 0. By using a normal family
argument, we may assume that {y,} converges uniformly on compact subsets
of G,-; to a function ¢ in H®(G,_;). It is easy to see that § =y (T),
W eH™(G,). '

Suppose o is a limit ordinal and let X el <« Ap(T). Then X e A44(T) for
some f < a. Also Xk; = (o (A))k,, /. D, where v €H™(G,) by the induction
hypothesis. Since G, < G; we have Y e H®(G,) and X =y (T).

If there is a sequence [A4,} in Uy <, 4a(T) such that A, —A (WOT), then
Aky =y (@A) k,, A eD, where v, e H*(G,) by the previous argument, Now
Al < M for some M > 0, hence Wallc, < M. By a normal family argument
we may assume that , converges uniformly on compact subsets of G, to a
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function ¥ in H®(G,). It is easy to see that 4 = (7). Hence &, is onto. m
For the proof of the next theorem see [8, Theorem 3.3].

(3.3) TneoreM. Let @ eH®, T = T¥and G = @(D). Then there is a norm
isometric, weak-star . homeomorphic algebra isomorphism & from H%(8G)
(= H®(Go)) onto A(T) that takes a polynomial p to p(T). In fact, D is
a functional calculus.

Note. We would like to point out that if f e H®(G,) then fopeH™
and f(T) = T"f"'r.“.;"' Therefore A(T) consists of coanalytic Toeplitz operators.

4. Intertwining operators, Let ¢, ¢ s H™. Deddens [3, 4] has shown that
if Y0 is a bounded operator satisfying the condition YT, = T, ¥ then
o(T) =o(T,). Therefore if X#0 is a bounded operator satisfying th_c
condition XT} = T# X then X* T; = T3 X*, so o (Tp < o(Ty), from which it
follows that o (T#) < a(T3).

The idea of the next two results is taken from [2, pp. 219-220].

(4.1) Limma. Let A4y, A, be algebras of coanalytic Toeplitz operators and
let C,, C, be their WOT sequential closures consisting of coanalytic Toeplitz
operators. If F: A, — A4, is a contractive monomorphism and X #0 is an
operator such that XF(A) = AX for every A in AL’ ther F extends to a
contractive monomorphism F: Cy = C, such that XF(C)= CX for every C
in Cy. »

Proof Let CeC, and choose a sequence {A4,} in A; such that A, ~C
(WOT). Now {|4,| € M for some M > 0, so ||[F(4,)]| < M. Thus, there are a
D in C, and a subsequence {A,,k} such that F(4,)—D (WOT). Since
XF(A,) = A, X, XD = CX. By the above result of Deddens [3, 4] _we
conclude that ¢(D) < a(C), Hence ||D|| < |Cl|. If we set F(C) =D, then F is
the desired extension, m

(4.2) Tueorem. Let @,y eH® and set T=T}, S=T}. Suppose there
exist X #0, Y 0 satigfying XS = TX and YT =SY. There is an isometric
isomorphism F: A(T) - A(8) such that:

(@) F(T)=5.
(b) XF(4)= AX and YA =F(A)Y for all A in A(T).
(¢) F is a weak-star homeomorphism.

" Proof. Let p be a polynomial. Then Xp(S)=p(T) X and Yp(T)
=p(5) Y. Define Fo: Ao(T) — Ao(S) and Gy Ao(s)ﬂAo(ﬂ'by‘Fo(P(_T))
=p(S) and Go(p(S)) = p(T). So Fy=Gg'. Applying transfinite induction,
Lemma 4.1 and"the Krein-Shmul'van Theorem we obtain the result. m-
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(43) CoroLLary. For @,y eH® let T=T% S=T], G=¢(D) and
E =y (D). Suppose there exist X #0, Y0 satisfyig XS =TX and

YT =8Y. Then Gy = E,.

Proof Let &1 H*(Gy) =~ A(T) and &5: H*(E;) > A(S) be the func-
tional caleuli defined in Theorem (3.3) and let F: A(T) ~A(S) be the map
defined in Theorem (4.2). Then @5 o F o ®,: H*®(Gy) =+ H®(E,) is an algebra
isomorphism which is the identity on the polynomials, Therefore the position
function z —z has the same spectrum in the two spaces H*(G,) and H " (Eo).
So Gy = E,. It follows that int(Gg) =int(Eg). But G, = int(Gy) and E,
=int{E,), from which the conclusion is immediate. w

Recall that for f e H* and z, €D we define the cluster set C(f, zq) of f
at z, in either of the following two equivalent ways:

(D) C(f, zo) is the set of points o in C such that thete exists a sequence
{z,} =D such that lim,_ .z, =z, and lim,., f(z,) = «.

(i) CUf, zo)=,. o f(D "Bz, 7).

In the next result we use the fact that if feH™ then the essential
spectrum o (Ty) of T, is given by (J,C(f, €% ([5].

(44) Prorosimion. Let o,y eH®, and let ¢ be univalent. Let
X,YeL(H* be operators with dense range such that X L=TX and
YT,=T,Y Then o ,,,)—a('[;‘,)

Proof. Since X* and Y* are one-to-one and ¢ is univalent we conclude
that dimker(T}*~1) = dimker(T¥—2) =1 or 0 for every AeC. It follows
that the number of zeros of ¥—A in D is at most 1, Hence y is univalent.

Now let G = ¢ (D) and Q = (D). By a result of Deddens [4, Theorem
2] G =2. We now show that ¢ and y have the same set of cluster values.
That is, |J,C(p, &) ={J,C{, €9 or equivalently ¢,(T,) = o.(T).

Note that if @ =lime(z,) and |z, —1, then, by univalence, « is not
an interior point of @(D). Let @(z,) =y (w,). If w, has a cluster point
on- the circle’ we are done. But if |w, €<r <1 for all n then Wy, =+
for some subsequence and « = ¢(w) is interior to (D), a contradiction.
Hence we conclude that ¢,(T,) = 0,(T;). Since this argument is reversible
we obtain o,(7)} <o (T,). Combining the two inclusions we have 0.(T)
=0,(T).

Note. The referee has pointed out that H. Wang [9] proves Proposition
(44) under the stronger hypothesis that one of the symbols is a weak-star
generator of H* and therefore obtaining the stronger result of wunitary
equivalence, The author would like to thank the referee for his helpful
comments.
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