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Abstract. Let G be a compact abelian group, let FeL™(G) and let T be the associated
convolution operator L' (G) — C(G). Werelate the essential oscillation of F and points of weak-norm
continuity of T; or points of w*-norm continuity of T, and get characterizations of p-Riemann
integrable functions in L*(G). We also study geometrical properties of the image under Ty of the
positive face of L'(G), such as the Krein-Milman property and weak sequential precompactness.

Introduction. Recently many properties of operators from L' to a Banach
space have been investigated (see [T,], [GGMS] for example). We will be more
particularly concerned here with Bochner representable operators, strongly
regular operatots, and operators which send the unit ball of L! into a weakly
sequentially precompact set.

We restrict ourselves in this paper to convolution operators

To: LHG) = C(G), p~sFxo,

where G is a compact abelian group and F belongs to L*(G). Our aim is to relate
regularity properties of the function F to properties of Tp.

Our interest in this specialization is twofold: on the one hand, the situation
seems more transparent than the general setting, gives a link to classical notions
on the regularity of functions and furnishes instructive examples: on the other
hand, we obtain in this special setting some stronger results than in the general
One.

Let us outline the organization of the Iiaper: in part I we specify some
definitions and notation and recall rather obvious facts. In part IT we investigate
points of weak-norm continuity for Tp: P,(G) +C(G) (where P, (G) denotes the
set of absolutely continuous probability measures on G) and points of w*-norm
continuity for

T P(G) +L(G)
(where P(G) denotes the set of probability measures on G) and

— a1, "
T+ PG)" PT ~C(G).
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We thus get in Coroilaries I1.11, I1.13, IL.16 characterizations of Riemann
integrable and p-Riemann integrable functions which simplify and generalize a
result of [GGMS]. We also give in Proposition IL4 an example (announced in
[GGMS]) showing that T7*(¢”) can belong to C(G) without p” being a point of
w¥-norm continuity for T}*.

As Fx P, (G) " and F P (G) are nice closed convex sets in L™ (G) we study
in part Il the extreme points of these sets and their convex subsets. We give
examples where F x P, () Il has extreme points without F being continuous and
examples where F s P, (G) "'¥ has no extreme points. By using an operator version
{Theoremm ITI1.3) of the main result of [S,] we show in Corollary IT1.4 that if F is
Riemann integrable and discontinuous the set F*_Pa "1 does not have the Krein-
Milman property, ie. contains a closed convex set without any extreme point.

As F € L*(G) is continuous iff F « P(G) is compact and iff F » P(G) is weakly
compact, it is a natural question to consider the classes of functions F such that
F « P(G) or F « P,(G) ate weakly sequentially precompact sets in L= (G). We give
in part IV examples of functions which do or do not belong to these classes.
Actually, the first is strictly included in the second (Propositions IV.7 and IV.8),
which is itself strictly included in the class of Riemann integrable functions
(Proposition IV.5).

A motivation for part IV is of course Rosenthal’s theorem ([R,], [R,]).

L. Notation, definitions and remarks. All Banach spaces considered in this
paper are vector spaces over R. The dual of a Banach space X is denoted by X*.
We denote by G a compact abelian group. C(G) is the space of continuous
real-valued functions on G. M{(G)is the dual space of C(G). L' (G) is the space of
classes of real functions on G whose modulus is integrable with respect to the
Haar measure dt on G. L°(G) is the dual space of L' (G). The duality between
LY(G) and L*(G) is defined by
Vopel'(G) YFsL®(G) (F,pd>= [F{®) e{—1t)dt = F % (0).

If tpeG and ¢ €L'(G), @(t—1,) is denoted by ¢, (1) or ¢"°(r). Notice
that Fxo(t) = (F, ¢_,).

We denote by T the convolution operator associated to F eL® (G):

Te: ING) — C(G), prFxp.
T# is the adjoint operator:
¥ M(G) > L2(G), pumFxp.

T#* is the adjoint operator of T*:
T LY (G) - C"(G),
and TF*(¢") is denoted by F ¢

@ s TE* (07,
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We have chosen the duality between L*(G) and L!(G) in such a way
that Ty and the restriction of TF to L'(G) coincide. The w*-topology on
M(G) {respectively L*(G)) is o(M(G), C(G)) (respectively o{L*(G), L' (G)).
The Haar measure of a measurable set 4 =G is denoted by |4]. P(A4)
denotes the set of probability measures on 4. If |A| > 0, P,(A) is the subset
P(4) ~n L' (G).

P, (A)™" denotes the w*-closure of P,(4) in L' (G) (i.. for the topology
a(L'(6), L*(3)).

Let F eL®(G). We denote by Oscess(F| A) the essential oscillation of F
on the measurable set A:

Oscess(F| )
=sup{AeR|3aeR |{F <a)ln4|>0 and |{F >a+4] n4| >0].
The essential oscillation of F at teG is
Oscess F(f) = iI;f Oscess(F| V)

where V' runs through a basis of open neighborhoods of ¢ in G. The
spectrum of L®(G) is denoted by ¥, ¥, is the subset of those he.% whose
restriction to C(G) is d,. Hence .

& = () %ohec-

Let I' be the dual group of G. The Fourier transform of peM(G) is
defined by fi(y) = u, Rey>+i'¢u, Imy) for every yerl'. Let A be a symme-
tric subset of I, We denote by M ,(G) the space of real measures on G whose
Fourier transform is zero outside A. As A is symmetric, M (G)+iM ,(G) is
exactly the space of complex measures on G whose Fourier transform is zero
outside A. The subspaces C,(G) and L3(G) are defined in the same way.

Dernrrion 11, Let 4 =G with |A] > 0. A point t€A is said to be a
point of density 1 if limy|4 ~V|/|V| =1 where V runs through a basis of
neighborhoods of ¢ in G. We denote by A’ the set of points of A with density
1

We recall that |A\A'] = Q.

Dermumion L2, Let C be a bounded convex subset of a real Banach
space X. A slice of C is a nonempty set of the form

S = S{x* )=

where ||x*|iy- = 1. If X is the dual of the space Y and x*€Y, § is said to be
a w*-slice.

(xeC| (x*, x> > ol

Dermvirion 1.3. A bounded convex set C in a real Banach space X is
dentable if it has slices of arbitrarily small diameter.
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Derinrion L4, An operator T: Y—X is strongly regular if for every

closed convex bounded subset C of Y and every & >0 there are slices

Sl’ [ Sﬂ Of C al'ld 0 <0€,~, ZE;I o == 1, Such that
diam T(} &, 5;) <e.
] i=1 '
DrerFintTion LS. A closed bounded convex set € in a Banach space X has
the Krein—Milman property (denoted by KMP) if every closed bounded
convex subset D of C has an extreme point.

DerNimion 1.6, A set B in a Banach space X is called weakly sequentially
precompact (w.s.p) if every sequence in B has a weak Cauchy subsequence.

If the space X is separable, by the Main Theorem of [R,] and [OR], B
is ws.p. iff its closure in X" (for ¢(X", X") is sequentially compact.

Dermamion: L7. A sequence (e,),»; in a real Banach space is an I'-
sequence if there exists > 0 such that '

) n n
Vay,....,a,6R || ¥ ael 20 21 lay].
i=t i=

Rosenthal’s theorem [R;] asserts that every bounded sequence in a
Banach space has either a weak Cauchy subsequence or an [*-subsequence.

Remark 18 Without loss of generality we may assume that G is
metrizable and we will assume it from now on: as every F e L*(G) belongs to
L*(G) it has a countable spectrum which spans a countable subgroup 4 of
I' (I is the dual group of G) and F belongs to L*(G/AY). This is the dual
space of L'(G/A%) and the quotient group G/A* is metrizable.

Remark 19. Let G be a compact abelian group. Every convolution
operator T: L}(G) —+L*(G) (ie. every bounded operator which commutes
with translation by every teG) is of the form T;:

I o Fxg
where FeL*(G).

More precisely, F = w*-lim, T'(pg) where (¢,) is an approximate identity
in L'(G) (i.e. ¢, €P,(G) and @, §,).

Remark L110. Let G be a compact abelian group. Every convolution
operator L'(G) = L®(G) is a Dunford-Pettis operator. Indeed, if
Fel®(G), Tr maps L*(G) into the space A(G) of Fourier transforms of
I'(I). As I'(I') has the Schur property, Tj: I} (G)~A(G) > C(G) s a
compact operator, :

Remark L1L Let G be a metric compact abelian group and F eL™(G).
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The continuous functions lying in F » P(G) belong to the norm closure of
F+P (G) in C(G), denoted by F«P, : indeed, if ueP(G) and if F+pu is
continuous,

0o
(Fep)sp,=Fs{uxo)—~Fxpu

where (¢,),=, I8 an approximate identity in L'(G).

Remark 1.12. Let F e L*{G). The set F+ P(G) is convex, w*-compact in
L®(G) and translation invariant. The set of its extreme points is of course
translation invariant. Let us show that it is exactly (F),.c. Let Fxu be an
extreme point of F « P(G), and let u, be an extreme point of {4/ eP(G)|F+ u
= F+yu'l. Then p, is an extreme point of P(G), hence y, =8, for a t €G and
Fxu=F,. .

We find in the same way that the set of extreme points of F » P,(G) " in
C(G) i (F*hlyesrpies- ‘

I1. Points of weak-norm continuity for Tp. Points of w*-norm continuity
for 77* and T**. We first show that for FeL®(G) the set F«P,(G)'" is
never dentable unless F is continuous.

ProrosiTion I1.1. Let FelL™(G).
(a) For any B = G with {B| > 0 let § be a slice of P,(B). Then

diam F « S = inf {diam F * P, (4)| 4 < G, |4} > 0}
> d(F, F+P,(G)) > d(F, C(G)).

(b) d(F, C(G)) = 4 sup,cOscess F(1).
(c} For any he ¥, and t G

d(F x by, F* P(G)) > d(F * b, C(G)) > d(F,,, C(G)) = d(F, C(G)) :
where the first distances are taken in C'(G) whfle the last one is taken in
L*(G).

Proof (a) A slice S<P,(B) is of the form Sy ,={peP,(B)|
{p, F'y > a} where F'eL™(G). Hence there exists A < B with |4] > 0 and
P(A)cS. Let A =G, |4 >0, and let ¢, be a point of density 1 for A. Let
(¥).=1 be a basis of neighborhoods of t; in G. Then

1AnV" 1Vn

il S — =0 as n—+oo,
AV %l

Ly
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hence
]'AnV

o 1,
diam F % P, (4) = lim diam (F* r ) = [imdiam (F* ")
N AV jizn W WVl J

=N

Iy,
Fg=Frh > d(F, Fx P,(G))

L® Gy

H

Blim’

= d(F, C(G)).
(b) For any feC(G) and teG

Oscess F (1) = Oscess (F~f){t) < 2|iF —f |l o).
{c} is obvious. =
Let us now recall some equivalent properties of continuous functions.
Proposimion 112, Let F eL*(G). The following assertions are equivalent:

(@) F is continuous.

(b} (Fiheo is norm compact in L™(G).

() Tp: LY@ —C(G) is compact.

(€) (Foheg is weakly compact in L%(G).

(d) Tp: L'(G) = C(G) is representable.

(€) There exists B < G with |B| > 0 such that for any & > 0 there exists
a slice § of P,(B) with diam Ty (S) <s. :

() For any BeG with |B| > 0 and for any ¢ > 0 there exists a slice S of
P,(B) with diam T; (S) <.

Proof. (a) «(b) «(b’} «(c} are well known, (a) +>(d) is obvious by the
definition of a representable operator. (f)==(e) is obvious and (e)=1{a) by

Proposition IL1. (f)<(d) by [B, Lemma 1.1] (this is a general fact for
operators I! - X). m

Obviously T#(u) or T#*(¢") belong to C(G) as soon as i or " are
points of w*-norm continuity for T#: P(G) +L*(G) or T¥*: P,(G) .
—+L*(G) respectively.

+ We will now give examples of FeL®(G) and ¢"cP,(G) such that
7 (@"}eC(G) but ¢” is not a point of w*-norm continuity for
T#*: P,(G) —C"(G).

These examples were announced in [GGMS, Remark VIIi.11]. They
contrast with the key construction in [S,] which provides an operator
T: 1! »X sucg*that T**(¢") X only if ¢" is a point of w*-norm continuity
of T** P (G} —=X.

Lemma 11.3. (a) Let ueP(G) be a nondiffuse measure. It cannot be a point
of w*-norm continuity for T¥: P(G) — L(G) unless F is continuous.
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(b) Let p" eP,(G) i be such that its restriction p to C(G) is a nondiffuse

JE——
measure. @" cannot be a point of w*-norm continuity for T¥*: P,(G)
= C"(G) unless F is continuous.

Proof The proof of (a) follows the same lines as the proof of (b) and
will also be a consequence of the subsequent Theorem IL.8. Hence we only
prove (b}, Let 0 <2 <1 and let ¢y emw* be such that 0 < Agf < ¢".
Then there exists ¢} e}—’a(*(})w* such that

9" =i +(1-2) ¢}
and for any w*-neighborhood V(¢") in mw there exists a w*-neighbor-
hood W(e}) such that
Vie") = AW (e +(1-2) o3
Hence
diam F * V (") = Adiam F x W (¢}).

Let now t;eG be such that p{t,} >0 and let (0),>; be a basis of |
neighborhoods of t, in G. Let ipy be a w*-limit point of (Lo, @ Vaz1. As
g, @"ll, 1~ 2 ulto) we have 0 <4 = u(re) <1 and the restriction of @Y to
C(G) 18 6,,. ¥V and W being as above,

diam F » V (¢") 2 Adiam F « W(¢!) = M (F * ¢}, C(G))
> 1d(F,,, C(G) > 0. u

Prorosition 114, Let Ay, A, be two disjoint symmetric subsets of I' (the
dual group of G) such that M 4, (G) contains nondiffuse positive measures and
41 (G\C 4, (G) is nomempry. Then for FeL% (G)\C 4, (G) and peM 4, (G),
Fxp is continuous, though if moreover neP(G), u is not a point of w*-norm

— ¥ ” .
continuity for Tp*. Moreover, no ¢" eP,(G) 'r\L‘Az(G) whose restriction to
C(G) is such a p can be a point of w*-norm continuity for TF*.

Proofl Under the above assumptions Fxp =0 and Fx¢" =0; the
remaining assertions come from Lemma [1.3. We now have to prove that the
assumptions of Proposition 114 are nonempty. Indeed, let O,, 0, be two
disjoint symmetric open sets in the dual group of G, (the group G provided
with discrete topology) and let A, =TI'n0; (i=1, 2. By [Ru, Theorem
2617, M ,(G) contains positive atomic measures. In particular, M, (G)
contains non-absolutely continuous measures, hence by [LP,, Theorem 3.17],
L% (G) contains discontinuous functions. Taking for A, an infinite subgroup
of I' we see that F may be arbitrarily irregular. m
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We now need more details on w*-neighborhoods of ¢" in P,(G) L
of uin P(G).
As was shown in [S;] or [GGMS, IV] a basis of w*-neighborhoods of

¢" e, (G) " s given by
Wt &
Voo (") = [ €P,(G) | X 140", 1o >— <", L) <e}
i=1

where & = (A;)i-, runs through the partitions of G into sets of positive Haar
measure and £€]0, 1]. Moreover,

s

Ve (07) = [Vpo(@")+¢-unit ball of LI (G)") AP,(G)  where

k w
Vaol9") = 2. (9", 14> Po(4)

=1
In particular, a finite convex combination of weakly open sets in P,(G) is still

open [GGMS, Remark IV.57.
For ¢ <P, (G) define

Waelo) = W eL' (G)| -Z; [<h—, Lyl <&, Il < 1)

hence Vj, (@) = W, (@) n P, (G). Then it is easy to verify that

Wgﬂ,;((ﬂ) = [I —&, 1] X Vd“,u(q))'
Let @ €L'(G) be such that |||l < 1. We have ¢ = 4, ¢, — A, p, where
Ay, 1,420 and ¢,€P,{G) (i=1,2). Hence A Wy, (¢))—4, ¢, is a

‘weakly open neighborhood of ¢ in the unit ball of L!'(G) included in
[A(1~¢), 4,] nga(%) Az 2.

We now study w*-nc1ghborhoods of uin P(G).
Dermirrion 115, For 0 <¢, 8 < 1 let
_ Kse = {feCOI <1, YOSt <SS (Ifi—fIl < ¢/8)
For peP(G) let
Vs () = yeP(@[Iu—w, [ < e VfeK,,}

As K;, is compact in C(G), (¥, ;(1), s is clearly a basis of w*-neighbor-
hoods of u. Notice that K;, is translation invariant, hence for every t,€G

Vg,ﬁ(tuto) = a,g(nu)'
Lemma IL6. Let p=P(G) and let (W)=, be a finite family of open sets in
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G. Then for every & >0 there exists a family (U, of open sets in G such
that:

@ Visn U, cW.

i) e+ U W)<al V)< 3 a0 < u(

1= i=1

..
0
-

W)+e.

Proof. We prove this lemma by induction on »r. Assume it is true for »
—~1 open sets and consider the family (W) ,. Take U, = W,. As u is regular
there exists an open set O « G such that

@ Win U Weoc (W,
i=2 i=2
® w0 < (Wi ) W)+,

We apply the inductive assumption to the family (W, n 0)/-, and £/3. Hence
we get (U)i=, and

'“(I,QI WJ = p{(W U 0) € p(Wi)+u(0) < M(Wﬁ)-!-u(ig}z U;)+e/3
B(U V)23 (because u(O ;) < 5/3 by (o)
< z (U +23 < w(W)+ 1 (0) + 21/3
AT u(u1 W)+e

Lemma I1.7. Let ueP(G) and 0 <g, 8 < 1. There exists a finite fdmily of
open sets (U)-y in G such that:

L3

|3 w(UI—1] <s/4 #(U U) 2 1-e/a.
i=1

(i1} (_Z pUY ™ Z p(U) PUY) = ¥, 5(1)-

= i=1

Proof, Let (W), be a finite open covering of G by open sets whose
diameter (for the metric of G) is less than 4, and let (U)., be chosen as in
Lemma IL6 for u and /8. Set a =Y _ u(U). For every ve},_ u(U)P(U)
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and fekK;,
= £ < Y=L+ [ v =g, £

< o+ (0 U Toy =t

+ Zn: u(U)Oscess(f|U)< e

_ =1
We can now prove one of the key results of part Il

Tueorem 118. Let F eL®(G) and pueP(G). Then

lim diam F % ¥, 5(y2) = sup <Oscess F (1), u,,> 2> | Oscess F(t)dr.
G

2,50 tneG
S

Proof. (a) Let us prove that for every t, eG
(Oscess F (i), 1y, < limdiam F x ¥, 5(u).
&8

By Lemma IL7 applied to u and V, (1) we get open sets (U)/—, in G
such that

n n

{Oscess Fy (1), py < Y {Oscess F, (1), 1, ,u>+2I]F||mu( g ¥)

i=1

A
lM=

(U)Oscess (F, | U)+5el|Fllo

1

s

=3 WU sup (F, gi=yi>+hellFll

i PiWieP (U

<diamF *(Z w(U) P (U; )+§£||Fl|m
<{i+ie)diam Fx ¥, ,(w)+3 & F) .

{(b) Let us now prove that

limdiam F « ¥, 5 (1) < sup (Oscess F (1), 7993

&8 tgeG
For every n> 1 let ¢,, y,eP,{G) and 1,eG be such that
diam F « Vi 1 (1) < CF, 7>~ CF, "5+ 1.
Let {t,)>1 be a subsequence of (t,),», converging to a point t,€G; then

"k w" g

nuto’ e _)#IO
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As twsupessF(t) and t~ —infess F(7) are us.c. we get
< (F, (p kS~ (F, wn">< (supess F(t), qo"") (infess F (1), z[/,, >
< supess F (1), pu,»— dinfess F(t), 14, > = (Oscess F (1), iy >
which proves the claim.

(c) Let (f,),>, be a bounded sequence in C(G) converging pointwise on
G to Oscess F(t). Then

sup {Oscess F(t), Heg = j(OsccssF(t), My pdty = lim {Ufn = ) (to) dto
10 n
=lim (£, (z)dt [du = [Oscess F(t)dt. m
Rem ark II.8 bis. Let peP(G) be a point of w*-weak continuity for
P(G) = L=(G). Then p is a point of w*-norm continuity for T7F: indeed,

w1th the notation of (b} in the above proof the assumption on g implies
(F, qo,,”) (F, l,[l,,)-rO as n— +co.

For ueP(G) define
b(y) = {(p”e%ﬂ u is the restriction of ¢” to C(G)]}.
We have the following estimation:
Prorosition 119, Let peP(G) and FeL™(G). Then

lim diam F # ¥, 5(p) = diam F = D (p).
e.rﬁ =0

Proof (a) Let qo "" (k 1) and t, G be deﬁned as in the proof of
Theorem I1.8(b). Let qo” and Y be limit points of (go,,k b=, and (i,b,,k Y1
respectively in P, (G) w*. Then " and ¥ belong to D (k) = D(u),. hence

limdiam F = ¥V, ;(1) € (F, @">— (F, "> < diam F =D ().

£,8 .
(b) For every ¢ > G let ", " eD (1) and veP(G) be such that
diamF s« D() € (Fxv, " —y">+s& '

and let @, = ¢, Y, =¥, (coa) () €P,(G). In particular, g, ™ and ¥, > .
Hence

<F*v, (P“-l,l’/”) = lim <F*v: ‘;Da—'\[’u> g ]im”F*qo!-—F*'f’lc(”

£ limdiam F » V, ;(u). =

e,d .
We now give consequences of Theorem [1.8. We fist complete the result
of Proposition II.1:
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- Proposimion 1110, Let FeL®(G) and ¢" €D (dy). Then
© ssupOscessF(t) < d(F, FxP) < d(F x¢", FxP)
t
£ limdiam F » V5, (9")
P
< limdiam F » ¥, 5(0,) < sup Oscess F(z).
8,8 1
-Thus in particular
ilimdiam F x V, ;(8¢) € limdiam F = ¥V, ,(¢"} < lil? diam F * V, 5(8,).
£,8 e &

We will see in Theorem I1.15 below that this is still true for @ eP,(G) in

place of 8, and ¢". We do not know whether this equivalence is true in other

. cases or not. '
Theorem ILE also implies:

" Corortary IL11. Let FeL™(G) and pueP(G). u is a point of w*-norm
continuity for T iff for every t,€G, (Oscess F(1), w,> =0, ie. iff for every
o €Gy, F is p-Riemann integrable. If F is not continuous such a p is
necessarily a diffuse measure.

CoroLiary IL12. Let FeL®(G). The set Ar of points of essential
discontinuity for F is countable iff every diffuse measure ueP(G) is a point of
w¥-norm continuity for T#: P(G) — L™(G).

Corovrrary IL13, The following properties for F e L®(G) are equivaleni:

(a).F is Riemann integrable. ‘

(b) Every @€P,{G) is a point of w*-norm continuity for T¥F: P(G)
- L®(G).
. (©) There exists peP(G) which is a point of w*-norm continuity for
¥ P(G) = L*(G).

(d) For every &> 0 there exists a w*-open set U in P(G) such that
diamF+ U <e.

The following lemma will permit us to compare points of w*-norm
contirjisity and points of weak-norm continuity in P,(G).

‘ Liemma 114, Let A = G be such that |A} >0 and let ¥ be a symmetric
neighborhood of 0 in G.

(8) For every ¥, 1, %1, is continuous and strictly positive on the open set

AT

(b) There exists ¥y such that |An(A+1)| >0 for every te¥,.
_ ) Let C =G and ¥ be such that |C (A" + %3 > 0. There exists te¥"
such that |Cn{d+1) > 0.
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(d) Let FeL®(G). Define h: G =R by h(f) = Oscess(F|A+zt). If ¥ is
small enough (depending only on A)
Oscess(F| A"+ %) < 2suphir).

tev’

(e) h is a function of first Baire class on G; for any ¢ >0, t, and ¥
there exists ¥7+1t, < ¥ +t, such that

Osc(h| ¥ +1t,) <s.
Proof. (a) Let a’'ed’, te¥ " Then
Lyxly(@+8) =4 (7 +a+i = A @+ 7)) >0

if < ¢ '+t is a small enough symmetric neighborhood of 0, because a' is
a point of density 1 for A.

(b) |JAn(A+2) =1,%1_4() and 1,x1_, is a continuous function
which is strictly positive at ¢t = Q.

(c) By assumption and (a)

0<lCn(d+7)=IC A +r)< IC" 11, %1, > 0]|.

Take x €C’ such that & = 1,%1,(x) > 0 and take ¥ such that 1,1, > Ja
on x+ 75 and |C n{x+ ¥ ) > 0. Then

[lex1_g(dt =(le 1. J*1,(0) = Lex(1- 4 #1,)(0)
!
= [(Lex 1) (Bdt = 4 |C (Y 5+ > 0.
4

As 1o%1_, is continuous there exists t&¥ " such that
0 <lpxl_,@)={C(A+1).
(d) By (b) choose ¥, such that |4 m(4+1)| >0 for any te¥’ and et
¥ be such that ¥+ ¥ = ¥%. By (c)
supess (F| A'+ ¥) < supsupess(F|A+1) = a.

ey

For every ¢ > 0 there exists ¢, €¥" such that o < e+supess(F|4+t,). In the
same way there exists t, €% such that :
infess (F| A'+ %) > infess (F| A+1;)—e.

Put € =(A+t)n{A+1ty). Hence |C| =[Am(4+1—~1;)] >0 by our choice
for ¥". Hence :

supess(F | A+1t;) < h(t,)+infess (F{C},
infess(F|A+t,) = —h(t;)+supess(F[C),
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Oscess (F|A'+ %) < 22+ 2sup h(1).
te¥’

¢ being arbitrary, the last inequality implies (d).
(e) Let us verify that g(f) = supess(F|A+1) is 1s.c. on G: for 1eR

lg> A} = (teG||{F > 2 n{A+0)] >0 = {1p,;#1., >0)

is open since 1., %1_, is continuous. Hence h(t) = supess(F|A4+1)
—infess(F | A+41) is Is.c. and in particular belongs to the first Baire class.

We can now state the second key result of part II:
THeorem IL15. Let FeL®(G) and ¢ &P,(G). Then:

(2} lim, diam F » W, (¢) < lim, diam F * ¥, () < 2lim, diam F « W, (¢) where
(We(@) is a basis of weak neighborhoods of ¢ in P,(G) and (Vo (@)1 is a
basis of w*-neighborhoods of ¢ in P(G).

(b) For every weakly open set U in P,(G)

diam F+U > § [Oscess F (1) dt.
G
Proof (a) The left inequality is obvious. By Theorem IL.8 we only have
to show that

sup <Oscess F (1), ¢,,> < 2limdiam F W, (¢).
toeG a

As 'ro?»(._OscessF (t}), @1, > is a continuous function on G, it is sufficient to
majorize 1ts supremum on a dense subset of G. By the result of [S 1] we have
recalled we can take

W. (o) = WAl,..‘.An,e (p) = ‘Zl {p, 14> P,(A4).

Put <o, 1,,>=0; and h(5) = Oscess(F|A;+1) (t€G, i < n). Hence

diam F+ 3 o, P,{4) =sup ¥ o Oscess(F| 4 +1) = sup ¥ « by(f).
f=1

i teG =1 156G §= 1

For every open set (' = G and every &> 0 there exist, by Lemma I1.14(e),
tp€l" and a neighborhood ¥ of 0 in G such that

Vi -.“-: n OSC(hi , V‘i" to) << ED:I'_ 1.

Hence by Lemma II.I4(d)

. i
Y« Oscess(F_, | Ai+ 7)< 23 asuph(t+t) <2 T a; hfto)+e.
’ i=1 tet’ i=1

=1 .
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As

(Oscess F_, (0, 9>< ¥ o Oscess(F_, [Ai+ 1)
i=1
the claim is proved. _
(b) Let U be a weakly open set in P,(G) and pel. By (a)

diam F » U > limdiam F » W, () > 4 sup {Oscess F (1), @, >.
a IDEG

By Theorem IL8, sup,, (Oscess F(t), ¢;,> > [Oscess F(r)dt. m

Theorems IL§ and I1.15 imply the following Corollary 11.16 which must
be compared to the above Corollary 11.13. Corollary 11.16 is a slight
generalization of [GGMS, Example VIIL.10; see also the general Theorem
IV.10]. Our preof here is much simpler. In particular, it does not use the
deep characterization of R.I. functions proved in [T,, Theorem 1547

(;OROLIARY I1.16. Let FeL®(G). The following assertions are equivalent:

(a) F is Riemann iniegrable.
(b) Every ¢ €P,(G) is a point of w-norm continuity for Tp: P(G) = C(G).

(¢) There exists <p"ePa(G)w which is a point of w*-norm continuity for

T+ P(G) —C"(G).

"(d) For every ¢ > O there exists a weakly open set U in P,(G) such that
diam F x U < g,

() For every A =G, |A] >0, and every £ > 0 there exists a weakly open
set U in P,(A4) such that diamFxU <.

) Tp: L'(G) = C(G) is a strongly regular operator.

Proof. (a)=(b) by Theorem IL8; (b)=(c)} =={d) and (b) = {e) =(d) are
obvious; (d) = (a) by Theorem I1.15.

(b)=>({0) by a lemma of Bourgain [GGMS, Lemma II.1] showing that
every relatively weakly open subset of a bounded convex set C contains a
convex combination of slices of C, and the structure of weakly open sets in
the unit ball of L'(G).

(f)=(d) because a convex combination of slices of P,(G) is a weakly
open set in P,(G).

The equivalence (a) < (f) in the above corollary has an analogue for the
w*-topology on P(G):
ProrositioN I1.17. Let F e L®(G). The following assertions are equivalent:

(8) F is Riemann integrable.
(b) For every convex subset C of P,(G) and every &> O there are w*-
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S, 0f Cand 0 <u, z:__,lrxi =1, such that

n

T(Y o 8) <s.

i=1

slices 84, ...,

(¢) For every ¢ >0 there are w*-slices Sy, ..., S8, of P(G) and 0
<w, Yo, %=1, such that

h
diam T¥ (Y 2, 5) <
i=1
Proof. (a)=(b) by Corollary I1.13 and the same lemma of Bourgain
[GGMS, Lemma I1.17 showing that every relatively w*-open subset of C
contains a convex combination of w*-slices of C.
(b)=>(c) is obvious.
(cy=>(a). By Corollary II.13 it is sufficient to verify that a convex
combination of w*=slices of P(G) contains a w*-open set. This is easy to
check directly. It is also a consequence of the subsequent Lemma IV.6.

Remark IL18. We have considered so far convolution operators L*(G)
— C(G). Let us now consider convolution operators L!(G) — L' {G). They are
exactly convolution operators T, by a measure ueM(G). It is known that
every strongly regular operator L' — X has a Pettis density with values in
X" [GGMS, Proposition 1V.19], hence by {GGMS, Proposition VI1.4] when
- X =L' such an operator is representable. Thus if pg¢L!(G), T, is not
strongly regular. It is interesting to notice that for these particular operators
the result is also an obvious consequence of the much easier [GM, Lemma
V.2]: let A be a bounded subset of L!(G) and define

0(A) = limsup {{p, 1g>|pcd, B<G, |B| <¢}.
&—+0

Let 5y, ..., 5, be slices of P,(G) and let @; >0 (i < n) be such that ), _
= 1. There exists A, < G {1l €i< n) such that |4} > 0 and P, (A) c§;. Then

diampx ) oS 2 diamﬁ* Z @ P, (A) = 8(pux Y a P, (4))
i=1 i=1 =1

Z ai d(.u’li! LI)
i i=1

where t; €4;, hence y, belongs to the w*-closure of usP,(4) in M(G).

~1=

2,6 (ux Py (4)) =d(4, LY

3

1

III. Extreme points of FxP,{G) "I and its closed convex subsets. We

begin with examples showing that for FeL*(G)\C(G), F*PH(G)H ! may
have no extreme points or may have plenty of extreme points.

Exampie IIL1. Let us identify the group T of complex numbers with
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modulus 1 with [~m, n] and let 0 <a < n be such that a/n is itrational. Let

I={(~a,a] and let F =1, Then 1,+ P (T) UM has no extreme points in
C(7):

Actually, for 0 £ neZ, F(n) = (sinna)/(nn). and F(0) = a/n. Hence F is
never zero on Z and T¥: M(T) — L®(T) is one-to-one. By Corollary 11.12,

FxueF *PH(T)" ' for every diffuse measure peP(T), but cannot be an
extreme point of this set. Let us show that if ueP(T) is atomic F = u is not
continuous. This will prove the claim.
Let @, = nlyg 1y and ¥, = nli_ ;o (12 1} in L'(T), and assume F*p
is continuous. Then for every teT
0 =Im 1 xlg,~ ), 1) = (@) —p(—a).
n
Hence Ho = Heas (eﬂ"f“l)ﬁ(n) ==
neZ, n 0, which is impossible.

0 for every neZ, and f(n) =0 for every

. The example of the next proposition goes along the same lines as [S,,
Proposition 3.1].

Prorosimion 1112, Let FeL®(T\C(T) be such that:
{a) F(n s 0 for all neZ.
(b) F+F_eC(T).
Then F, =r=-%(50+6,,)‘is an extreme point of FxP (" for every teT.

Proof. By Remark L11, (b) implies that F, 3 (8o+0) €F » P.(T) " *. Let
v = %(8,+8,). By (a), T#: P(T) —L>(T) is a one-to-one operator. Hence if

F.+v is not an extreme point of F«P,(T) 1 there exist vy, v, €P(T) such
that v =4%(v;+v,) and F,xv,, F,xv,eC(T). Clearly v,,v, belong to
LYW nP(T) = Ao+ (1-d,: 0<A< . Let v =45, +(1—A)8, with
A #4 Then vy—2lv = (1—21)8,, hence F, = F+v, —24F xv is continuous,
which is a contradiction. m

. Indeed, there are plenty of examples of functions F satisfying the
assumptions: let F, e L®(T)\C(T) be such that Fy+F; x5, =0 and define a
perturbation F, by

F,im=0 if Fm#0, F,(m=2"" if F,(n) =0,
Then F, is continuous with real values and we put F=F +F; The
assumption on Fy is satisfied if £, is supported by 2Z-+1. Note that we may
choose the set 4y of discontinuity points of F arblttary except for the
condition dy = dg-+-m. -



126 F. Lust-Piquard and W. Schachermayer

In order to establish our next result on the Krein-Milman property for

FxPA{G) "} we need an operator version of the main result of [§,]. This will
be proved in the appendix to this paper.

Tueorem IIL3. Ler X, Y be Banach spaces, U o bounded operator ¥
=X, a>0and D =Y a bounded convex set such that:

(a) For every slice § of D
diam U (8) > 2a.

(b} For every slice S of D and every g > 0 there exist slices Sy,
and 0 <oy such thar Y, _ o =1 and
diam U( Z o Sl) < g,
=1

Trerm i

Then U(D)" " contains a closed convex set without extreme points,

Recall that, by a lemma of Bourgain [GGMS, Lemma I1.1], assumption
(b) is satisfied as soon as_every slice of D contains a weakly open set V such
that diam U(V) <e.

As  every slice of D=P(G) contains P,(4) for a set
A =G, |A| >0, Corollary 1116 and Theorem IIL.3 imply the following
corollary:

Corovrary II14. Let FelL™(G)\C(G)} be Riemann integrable. Then
F*P,(G) "V does not have the Krein-Milman property.

This result was motivated by the following question of G. Godefroy: Let
A be a subset of I' and assume that C,(G) has KMP. Does this imply that
C4(G) has the Radon-Nikodym property (ie. C ,(G) = LT(G) [LP1})?

Let us also recall the following result:

Prorosimion 1115 [LP,, Proposition 5]. Let FeL™(G). The following
assertions are equivalent:

(@) F#P,(G) lies in the norm closure of the convex hull of the extreme
points (F),.c of F*P(G).,

(b} F is totally ergodie (ie. for every continuous character y on G and
every mean m on L™(G), {yF,m> = {yF dt).

By [T;] there are totally ergodic non-Riemann integrable functions.

IV. When is F+P,(G) or {F}, g weakly sequentially precompact in
L=(G)y?
Prorosirion IV, The ser

of functions FelL®(G) such that

LS ins
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F P (G) (respectively (Fog, F*P(Q) is ws.p. in L(G) is a norm closed
subspace of L%(G).

Proof. The set of fuitttions F eL*(6) such that F + P,(G) (for example)
contains an I'-sequence in L*{G) is a norm open set in L*(G). Rosenthal’s
theorem finishes the proof.

Another easier proof would go as follows: identify L™ (G) with C(.¥) and
apply the following well-known lemma which we will need again later on:

Lemma IV.2. Let K be a compact topological space and (f,),», a bounded
sequence in C(K). Ler (o), be a decreasing sequence of real numbers, o, — 0.
Assume that for every k = 1 there exists a sequence (f),», in C(K) such that:

(i) limsup || f% || < & (n = +o0).
(i) (fBhs1 is wap.

Then (f)pn1 is ws.p.
Proof. Use a diagonal process. =

By applying [GGMS, Theorems VI.6 and VL.16] to our context we get:
Prorosition IV.3, Let FeL™(G). The following assertions are equivalent:

(@) F+P,(G) is ws.p. in C(G). 4
~(b) F«P(G) is w*-strongly regular in L™(G), i.e. for every & > 0 and every
w*-compact subset C of F« P(G) there exist w¥-slices §4,...,8, of C and 0
<w; such that 3 w;=1 and diam}y_ S; <=

CoroLLarRY IV4, Let FeL™(G) be a non-Riemann integrable function.
Then Fx P,(G) contains an I'-sequence.

Proof If F is not R.L, F« P(G) is not w*-strongly regular by Proposi-
tion IL.17. Hence Proposition 1V.3(a) = (b) (or [B, Lemma 3.7]) proves the
claim. m

However, an example of M. Talagrand shows the following:

Prorosition 1V.5. There exists a Riemann integrable function F e L*(T)
such that F= P, (T) is not ws.p.

Proof In [T,] a R.I function FeL*(T) is constructed in such a way
that F =1,, the boundary of A is the union of the Cantor set and a
countable set, and for every he¥', the function f: t~~F (h) is not u-
measurable, where u is the canonical measure on the Cantoy set. Hence f,
does not belong to the first Baire class on T, though f, lies ih the pointwise
closure of F«+P,(T) (more precisely, f,{t) = lm, {F,, ¢,) = km, F*q,(?)

where teT and ¢,eP(T), @, 'ﬂh). By the main theorem of [R,],
FxP,(T) is not w.s.p. m
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We now give an example where FxP,(G) is ws.p. We first need
Lemma IV.6. Let 1;€P(G) (j=1,2), 0<d <1, and p= Apy +{1—-Au,.

(a) For 0 <&, 8 <1, AV, s{us)+(L—=A) V, ; () +4e - unit ball ofM(G) coh-
tains a w*-neighborhood of n in P(G).

(b} Let ()y»1 be a sequence in P,(G) such that o, LS Ayl +(1—A)u,.
Then there exist sequences (oil=, (j =1, 2} in P,(G) such that:

) Yezl @o=lo+(1-A)of

@ @lDu (=12

Proof (b) is an obvious consequence of (a). Let us prove (a). By
revisiting the proof of Lemmas I1.6 and II.7 we get the assertion of Lemma
IL.7 both for p; and p, and the same family of open sets (U)!.,. Hence,

writing a; = (}_ | w4, (UD) ™"

E w(U)P(UY =1I21 (U PUY+(1-A4) Z uz (U P(UY)

i=1 i=1

n

[)+- unit ball of M(G)

Uy =1 i=

< AV, 5(u)+(1-—-2) V_,,,,,(,uz)—kg unit ball of M (G).

We will now define a w*-neighborhood V(u) in P(G) such that
V(W< Y u(U) P(U)+Be+2¢/3) unit ball of M(G).
i=1

Let K, Ui U’ < U; (1<i<n where K, is compact, Uj is open,
w(U K <8/(3n) and let fo, LS (1 <i < n) be functions in C{G) such that:

i) Vil<i<n) 0<fi<1l, 0<f<1, 0<fo<1

() fo=1o0n () K,

[=1
() Vvi(l<i<n
(ivv Vi(lgi<gn)

fo =0 outside O U;.
P=1

j;=1 on Kl':
fi=1onUj,

Ji = 0 outside U},
£ =0 outside U,,

Let us define

[y~ ﬂ,f>!<~—(0 <), - i €

Vg = {v eP(G) ( <ig n)}:
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hence for 1 i< n and veV(y)

PUI=3 < Gy € O fi> < 0 U

& g
<D< G f+ g < U+
and it is easily checked that

”V—— Z #(Ut)lug"”lu;.VII—i” <3e+2/3. =
i=1

Prorosition IV.7. Let Fel*(G) be such that its set Ap of points of
essential discontinuity is countable. Then Fx P,(G) is w.s.p.
Proof. (a) Let (s be a sequence in P,(G). By éxtracting a subse-

quence we may assume that ¢, “Su=ip+(1—A)p, where
0< A<, py eP(G) is diffuse and u, € P(G) is discrete. By the above lemma
Froy=AF sl +(1—A)F+p? and by Corollary I1.12, (F * ¢l)}», i§ norm
convergent in C(G). Hence we are left with the case where u is discrete.

(b} Assume first pu =3, (to €G) and let (W), be a basis of neighbor-
hoods of t; in G. For every k > 1 there exists N; such that

Vnz Ny (o Lysd <1/k.

Put ¢y, = on, v,/ {¢x,, lv,>. Hence
Hm|F # @y, —F » oy Il = 0.
k

Moreover, (F * @y ), converges at every point ¢ €G such that Oscess F(t}
=0, hence outside a countable set. Thus a subsequence of (F % @}, k>, (and

of (F* @y )k»1) converges pointwise on G.

(¢) If p is finitely supported, (b) and the above lemma imply that
(F+¢,),» has a pointwise convergent subsequence.

(d) If u is discrete and not finitely supported, then for every ¢ >0, u
wo Ay (1A, where yeP(G) (i=1,2), O <A<e and py, is finitely
supported. Then by the above lemma, (c) and Lemma IV.2 we see again that
(F*x@unz1 1S WSD. &

On the other hand, we have:

Prorosirion IV.8. There exists FeL™(T) such that Ay is countable but
(F)or contains an [*-sequence. :

Proofl We identify L°(T) with L®[0, 1]. Let (F,),»; be a sequence of

3 — Studin Muath. 93.2
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functions which are continuous on kR \(0), supported on {0, 37*} and
|Fille < L (k= 1). Define t, = 27* Z,~«13 Hence (t)i», decreases to 0
and F,{u—t,) is supported by e, ty—1]. Define
F(H) = Z Fk(u““‘tk
Kz 1
(this series is w*-convergent in L*[0, 1]). Clearly 4y < {0} U Uiz, (5] We
will choose (F)),» in such a way that (F_ )5, Is an I’ -sequence. We have

F-—:k(u) = Z Folu—t,+4).
n=1
As F, is zero in a neighborhood of —t,-+1, except if k =n or k+1 =n and
Fi.y is zero and continuous at t,—2,,,; = 37%" we get

VheSy F_, (h)=Fy(h.

In order that (F., ) be an ['-sequence in L*(T) it is sufficient that there
exists 6 > 0 such that

Yay, ..., ax R Ihe ¥y |z aka(h)[ s z |y

Hence it is sufficient that there exists a real sequence (u,),», such that
U, 0%, u, <37% and

Vm?l lz aka um)l 5Z}akf

Take F,(u) = sin(2n3*u~") on ]0, 37%] and F, (1) = 0 outside. It is well
known that (sin(2n3* x)),» is an I'-sequence in C([0, 1]) [Ru, 5.7.6]. Hence
there exists § > 0 such that

K K
Vg, ..., ageR 3xel0, 1] |Y 4sin@2n3*x)| 26 ¥ |a

k=1 k=1
and this inequality remains true with x-+m (m €N) instead of x. Putting
U, ={(x+m)~' proves the desired inequality. w

Remark IV9. Let FeL*(G). By [GGMS, IV.C] the set (F,), is said
to be a set of small oscillation if for every ¢ > 0 there exists a finite partition
Ay, ..., A, of G into sets of positive Haar measure such that
' n
Y |4 Oscess(F,| 4) <e.

. i=1
This means exactly that lim,diam F * W, (1) = 0, hence by Corollary IL.16
that F is Riemann integrable.

YVieG
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The function F in Proposition IV.8 thus gives an example of a set (Fy),.r
which is of small oscillation but not wsp. in L®(T). Another example of
such a set was given in [GGMS, Example VIIL.i2].

We will now consider examples where (F,),.¢ is w.s.p. We recall some
facts which will be useful to establish the next two resulits.

Let FeL®(G). We identify L*(G) with C(.%). A scqucnce (F_inz1 18
weak Cauchy in L=(G) iff

Vhe¥o VteG F._, (h)=F(h+,) converges.

If t, —+0 every limit point of k., belongs to %4.1If t is a point of continuity
for F, ie. if t¢dp,

Vh,Be#y F(h)=F{h)=F().
Hence if t, —0 and t¢ A,

VheSy  Flhe) =F(t).

In order to prove that (F),. is Ws.p. we can restrict ourselves to
sequences (F, ),»; such that 7, —0: indeed, if (z,),>, is a sequence in G, a
subsequence (t,).»1 tends to t, and if (Ftnk-ro)k?l has a weak Cauchy
subsequence, so does (F,nk),‘;l.

ProposiTion IV.10. Let F e L*(G) be such that Ag is finite. Then (F,),.q is
W.s.p.

Proof. Assume t,# 0 (n>1) and r, —0. We have already proved _
above that (F_, },, converges pointwise on {hihe%,, teds]. Let tedy.
Hence ¢ +1, belongs to df if nis large enough and F(t+t,) = F (h4, )} for any
he.y. There exists a subsequence (¢, )i, such that F{t+t,) converges for

every t €4p, hence (F _t"k)kZI is weak Cauchy. m

We now give another kind of example:

Prorosrrion IV.11. Let I? = [—%, $1* and D =I? the closed disk cen-
tered at the origin with radius 47", Let F =1, in L®(I*) and let F be the
canonical image of F in L*(T?. Then (F),.z2 is ws.p.

Proof. First step. By the observation above we only have to show that
(F,"),,?l has a weak Cauchy subsequence in L™(T?) when , —+0in T2 Let J
be the canonical isomorphism L% (1%} —L=(T?). If t, =0 there exists x, =0
in I* such that J (Fy)= F, . 1,- Hence it is sufficient to show that (Fx)az1 has a
weak Cauchy subsequence in L*({%) when x, —»0. Moreover, if R* is
provxdcd with an orthonormal basis (0, i, j) we can assume that 6, =
(Ox,., i) =4
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Second step. Denote by #(I%) the algebra of first Baire class functions
on I?, provided with the nprm ||f| =sup,,2|f(x)l. Consider f
= 1, e (I*); fis continuous outside the boundary 4 of D. Let 4,, 4, be the
two open arcs of A4 with endpoints @, b where the tangent to the circle has
direction 8. Then:

(x) Yxed® f is continuous at x+x, and f is constant on the sequence
(x+x, if nis large enough.
() Vxed;ud, f is continuous at x+x, if n is large enough,

Yxed,

Vxed,

() Let x =q. Either there exists (x, %>, such that (a-+x, )1 €D or
{a+xy)k»1 €D°. Then f is continuous at a+x, and f is constant on th_is
sequence, hence f(a4x,) converges. Or there exists. (x,)i»; such that
(a+x, =1 €4y or (a+x,)u>1 €4, Assume (a+x, 1 €4,. Let (), be

flx+x,)=1if nis large enough,

f(x+x,)=0if nis large enough.

such that w0 in I? and (G, § = 8", If k is large enough all d+x,, lie on
the same arc of A with endpoints ¢, d where the tangent has direction €. By
(B) applied to x=a+x,, lim,f(a+x, +u) exists and does not de-
pend on k.

Third step. Let R be the canonical map #(I*) »L*(I*). As F_,
= R(f_.,) it is sufficient to show that (f_, ),>, has a weak Cauchy subse-
quence in #(I%). Let 7 be the spectrum of #(I%) and F, = heJ|the
restriction of k to C(I%) 18 &g}. It is clear that I? is dense in 7, and that if f
is continuous at x, '

ﬂk’

VheZy [fihd=1().
Hence by (a), (B), for every he. 7y, J-«,(hy) converges if x # a, b. By (y) (first
case), for every he.J, f-xn,( (k) converges.

In the second case of (y) consider the separable subalgebra of #{I%)
gpanned by ( f_ﬂ_xnk)kzl. For every he 7, there exists a sequence ()54
such that w,—~0 in I* and

Vk> 1 S, @) = £ (@ +ind = f (e, ) = fog, (h) a5 140,

By (), f_x"k(ha) does not depend on k if k is large enough, hence it
converges. The case x = b is similar to the case x = a. We have proved the

© claim. =

Remark IV.12, The same kind of proof would work for F =1 p where

D is a (not necessarily convex) set in I* whose boundary is regular enough
(e.g. D a square).
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Prorosition IV.13. Let F eL®(G). Then:

(@) F*P,(G) contains an I'-sequence iff (F),.q contgins an [*-sequence
which is w*-dense in itself in L®(G).
(b) F+P(G) contains an I*-sequence iff (F),.¢ does.

Proof. Propesition IV.13 is a particular case of the following two
results applied to C = F s P(G) and Extr C = (F,),.q: either F + P,{G) is w.s.p.
and Proposition I1V.14 below applies, or F P,(G) is not ws.p. and Proposi-
tion TV.15 below applies. We denote by Extr C the set of extreme points of a
convex set C.

‘ProrosiTion IV.14. Let X be a separable Banach space and C a w*-
compact convex subset of X' such that every bounded sequence in X has a
subsequence which converges pointwise on C. Then C is the norm closed convex
hull of Extr C and C contains an 1'-sequence iff Extr C does.

The first assertion is proved in [H, Proposition 3.1], the second in [R,,
Addendum]. See also [GGMS, Theorem VL6 and Proposition VL.7].

Prorosmmion 1V.15. Let X be a separable Bamach space and C a w*-
compact set in X'. The following assertions are equivalent:

(8) C contains an *-sequence (x)),»; which is w*-dense in itself.

(a) Extr C contains an -sequence (x)},», which is w*-dense in itself.

(b) There exists a bounded sequence in X such that no subsequence
converges pointwise on C.

(b} There exist a bounded sequence in X and a w*-compact set K in
Extr C such that no subsequence converges pointwise on K.

(c) There exist a bounded sequence (fz1 in X and & > 0 such that

K K
Va;,...,ax6R  sup|Y 4 x| 26 leakl.
n k=1 k=

Proof. (a)=(a) is obvious; {a)=>(c} is proved in [St;, Theorem IIJ;
(¢)=>(b) is obvious.

{b)=(b") is proved in [St,, Lemma 6,54 and Theorem 6.46]. (In the
particular case of Proposition 1V.13 this is just the dominated convergence
theorem.)

(b") = (a’). The proof is a modification of the argument in [R,, Theorem
2 and Proposition 1], By assumption and [R,, Theorem 2] there exists a
bounded sequence (fi)i>1 in X which converges pointwise to a limit fon a
countable subset L — K dense in itself and there exist », § > 0 such that for
every relatively open subset U in L there exist y, zeU such that f{y) >r+46
and f(z) <r. For k= 1 let (6,5), . be an enumeration of {+1, —1}* and let
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B, (i) be the ith coordinate. For every k >

1 we can construct pairwise
disjoint open sets (), . in K such that '

Vezict W = Vogy  (i<247h,

the diameter of each ¥, ; is less than 27% the trace of each ¥ ; on L is not

empty, and for every 6, ; (j < 2% there exists f, ;€(fil> 1 such that for every
i<

foy >+ on W, if 6,() = +1,
Joj<r on W, if 8, ;() = —1.
Now define
. o
H=N U I_/;c.i-

kzii=1
By a standard argument one verifies, using the (f ), that

N N
Vxy,...,xy€H Yay, ..., ayeR 2311)| Y an {fi Xud 256 Y lad
. 1 p=1 n=1

CoroLrary IV.16. Let X be a separable Banach space and C a w*-
compact convex set in X'. Then C contains an I*-sequence iff Extr C does.

We had first proved the particular case of Proposition IV.13 and we are
indebted to C. Stegall for having pointed out to us the above general result.

Appendix

THEOREM. Let X, Ybe Banach spaces, D = Y a closed bounded convex set,
>0, and U: Y-+ X a bounded operator such thai:

(a) For every slice § of D
diam U (S) > 2.

(b) For ever'y slice S of D and every ¢ > 0 there exist slices §4, ..., S,, inS
and 0 <o; such that 3, o =1 and
diam U(},

=1

% S;) <.

Then U(D) "V contains a closed convex set without extreme points.

This operator version of the result of [S;] requires a weaker hypothesis
than in [S]: it was observed in [R;] that it is sufficient to require (b) as
above for every slice § instead of every closed convex subset of D. The proof

follows exactly the same lines as in [S,], hence we will only sketch the
_ necessary modifications.
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By [GGMS, Proposition II19] we may as well assume that D i3
separable. The theorem follows from the following proposition just as
Theorem 2.1 follows from Proposition 2.6 in [S,]:

Provosrrion. Under the assumptions of the theorem above there is an

operator T: L'[0, 1] =X such that T(P,[0, 1]} = U(D) and assertions (11),
(i) of [Sy, Proposition 2.6] are satisfied.

The proof of the proposition is parallel to that of [S,, 2.6], and we use
the same notation. (x;)2, is now a dense sequence in the linear span of
U(D). All slices are slices of D = Y. In all formulas involving diameter or
distance the slices will be replaced by their images under U, With this
modification the proof carries over verbatim. Finally, choose the x, at the
end of the proof to be arbitrary elements of U (T,).
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 Some properties of weakly countably
determined Banach spaces

by

M. VALDIVIA* (Valencia)

Abstract. Let Y be a closed subspace of a Banach space X, If Y**/Y is separable and X/Y
is weakly compactly generated, then X is also weakly compactly generated. Analogous results
are obtained with “weakly compactly generated” replaced by “weakly K-analytic” and also by
“weakly countably determined”.

The vector spaces we use here are over the field of real or complex
numbers. N denotes the set of natural numbers. Qur notations are standard.
If (x,) is a sequence in X, [x,] will stand for the closed linear hull of (x,).
Given a subset A of X, A will denote its weak-star closure in X**; if 4 is
absolutely convex, i.e. convex and circled, and also closed and bounded, we
shall write X, for the Banach space on the linear hull of A with A as its
closed unit ball. Given x in X and u in X*, we shall write {x, u instead of
u(x). If P is a continuous projection on X, P* denotes the conjugate
projection on X*. . '

A Banach space X is said to be weakly compactly generated whenever
there exists a weakly compact set K < X such that the linear span of K is
dense in X. In particular, every separable or reflexive Banach space is weakly
compactly generated.

A Banach space X is said to be weakly K-analytic (respectively, weakly
countably determined) whenever there exists a Polish topological space (res-
pectively, a metrizable and separable topological space) F and a mapping T
from F into the family of weakly compact subsets of X such that.

X = {Tu: ueF}

with the following property: whenever (x,} is a*sequence in F converging to
xo and U a weakly open neighbourbood of Txo, there exists a positive
integer n, such that Tx, €U, n > no.

* Supported in part by CAICYT.



