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Behaviour of L'-Dini singuniar
integrals in weighted L' spaces

by
OSVALDO N, CAPRI and CARLOS SEGOVIA (Buenos Aires)

Abstract. Singular integral operators K with kernels satisfying an L'-Dini condition of the
type introduced by D. §, Kurtz and R, L. Wheeden are considered here. Weighted morm
inequalitics and weak type estimates for the maximal singular integral operator K* are obtained
in Theorem 1. The convergence in L. of the truncated singular integrals X, f to Kf is proved in
Theorem 2 under the assumption that f and Kf beleng to LI, and w" e4,,

1. Notation. Let R" stand for the n-dimensional euclidean space. As
usual, let (x'y) =3 x;¥% and |x| = (x-x)"/%. The ball B(x, r) is the set {y:
lx—y <r}. If B=B(x, r) and 2 > 0, iB denotes the ball B(x, ). The cube
Q(x,r is the set {y: |x;—yl <r,i=1,...,n} and f Q=0(x,r) and
A >0, AQ will denote the cube Q(x, 4r). All the sets and functions that will
be considered here are Lebesgue measurable. The Lebesgue measure of a set
E is denoted by |E|. If w(x) = 0 is a locally integrable function, the measure
of E with réspect to the weight w(x) is denoted by w(E) = jEw(x) dx. The
element of the surface area of the unit sphere T = {x: x| =1} is denoted by

do,.. The Hardy-Littlewood maximal function Mf (x) is defined as

Mf (x) = SUE(IBI“ ! ;lf.(X)I y),

where B is a ball. For > 1, we define M, f(x) = M{|/])(x)"". The class 4,
of B. Muckenhoupt [11], 1 < p < co, consists of all nonnegative and locally
integrable functions w(x) (called weights) such that

(|B]_1bfw(x)dx)ﬂBl'liw(x}"_““"” dxF-'<ge,

for a comstant ¢, and any ball B. For p=1, wed; -means that
Mw(x) € ¢,,w(x) a.e. The L” spaces with respect to the measure w(x)dx are
denoted by L% and the norm in these spaces by [|ff|.z-

2. Intreduction. In 1979, D. 8. Kurtz and R. L. Wheeden introduced in
[9] a class of singular integral kernels k(x) = @(x)/|x|", xeR", -with the
following assumptions on (x): B N '

() €(x) is a positively homogeneous function of degree zero.
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(i) Qelr(D), l<r< oo, and if
@, (8) = sup ({12 (ex) — Q(x) da, )",

lel <6 »

where ¢ denotes a rotation and |g| = sup,.zlex— x|, then

! ds
{w,(8)— < 00.
S o

(il) Moreover, [zQ(x)do, =0
We shall refer to kernels k(x) = Q(x)/|x|" with Q satisfying (i)-(iii) as L'-Dini
singular integral kernels.

For the case r =1, these kernels were introduced in 1967 by A. P.
Calder6n, M. Weiss and A. Zygmund [3]. They showed that the singular

integral operator Kf associated to k(x) and defined as
Kf (x) =1irr;K.=f(x)~"-“1im { klx—wnfndy

e=0 |x—3| >

1s well defined for ae. x and that it is of strong type (p, p), 1 <p < w0, and
of weak type (1, 1) with respect to the Lebesgue measure. In the already
mentioned paper [9], D. S. Kurtz and R. L. Wheeden considered the action
of these singular integral operators on Lf, spaces, 1 < p < oo, for suitable
classes of weights assuming the stronger condition that k(x) be an L'-Dini
singular integral kernel with r > 1, We now state the results of [9] that will
be needed in this paper:

TueoreM A. Let k(x) be an L'-Dini singular integral kernel, 1 <r < o0,
and let K be irs associated singular integral operator. If
@7 <p<oo and wed,,, or
(i) 1 <p<rand w i Ded, ..,
then there is a comstant ¢ independent of f such that
IKS Tz < ellfllez.

When r < o0, we may take p=1r"in (i) and p=r in (ii).
If (iii) w" €Ay, then

w(lx: RS G >s)) < es™ | flud,
where ¢ is independent of f and s.

s>0,

For the case r = 1 there are counterexamples to this theorem (see [107).
The case r = co had been considered previously by M. Kaneko and S. Yano
in [8]. They proved even more; in fact, they considered the maximal singular
integral operator K* defined as '

K*fx) = Sup K, f(x)
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and proved that K* is of strong type (p, p). 1 <p < co, with respect to
weights weA, and of weak type (1, 1) if wed,. For r= 1, A. P. Calderdn
and A, Zygmund [5] gave a simple and powerful method for proving the
weak type (1, 1) of K* with respect to the Lebesgue measure.

The main purpose of this paper is to prove the convergence of the
truncated singular integral K, f to its limit Kf in L whenever f and Kf
belong to L&L. In addition, we obtain norm estimates for the maximal
singular integral operator K*, proving that Theorem A holds with K* in
place of K. In particular, this implies the convergence of K, fto Kf in the
norm of I2 for p and w suitably related. Using a different technique, R. J.
Bagby and D. S. Kurtz obtained part (i) of Theorem A for K* (see [1], p.
81).

3. The maximal singular integral operator. The following lemma, due to
D. 8. Kurtz and R. L. Wheeden, is the basis for the study of the L’-Dini
singular integral kernels.

Lemma 1. Let k{x) be an I'-Dini singular integral kernel. There exists a
constant oty > QO suck that if |y <wo R, then

| kel y) =kl dx)™”

R <|x| <2R
< eR™" {yl/R+ w, (8)dd/d}.
[¥I/(2R) <3 <]y|/R

Proof. See Lemma 5, p. 359 of [9]

LeMMa 2. Let k(x) be an L'-Dini singular integral kernel. Assume
1 <r<o0. Then ' '

[ lke—yn—k()If (X dx < M, (),

Ix 24031
where |¢| < 81y|. The constant ¢ is independent of f, y and {.
Proof. By Hglder’s inequality,

@l IkG—y)—kOI1S (]dx

|x] 2 4]y|
o
<X .
i=2 2ily|=|x) <2dT Ly

k(x=y)—kElrdx) ([ If G dx)tr.

Ixf <28+ 1|yl

By Lemma 1, (3.1) is bounded by
|f G dx)tr.

¢y 270+

i=2 27~ bg)x <27/

| @, @& ads/sH (@ |

Ix| € 20+ ]3|
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Then, if |¢] < 8|y| we have |&] < 27*!|y| for j> 2. Thus,
1
lk (x— ) —k(x)|1f ()i dx < ¢ {1+ [o,(8)d8/6} M, £ (&).
|xlz 4|5 0

- CoroLLARY. If 1 <r < o0 and W' €A, then

@ [olk(x—y)=k)|wl)dx < cw(y) y-ae,
[=fz4]y|

(i) [ k(x—p)~k(fwx+dx<ew() z-ae
|x] 2 4yl

Lemma 3 (Cotlar’s type lemma, see [6] and [7]). Let k(x) be an L’-Dini
singular integral kernel, 1 <r < oo. Suppose that f €12, WeA,,. and p=v'.
Then

K* f(x) € MKf (x)+cM, (%)
with a constant ¢ independent of x and f.
Proof. Let B = B(x, ¢/4) and B' = B(x, ¢). Set fl = firg and f, = f—f,.
Then L
K. f (9 = Kf, () = Kf ()~ Kf, (&) + Kf, (%)~ K3 (2).

Integrating with respect to z on B and dividing by |B|, we obtain

(3.2) (Ko f () < |BI7* gIKf (2)| dz+|B|~* jj;inl (2)f dz

+B|7! [1Kf, (x) — Kf (2)] dz.
B
Since z €B, we have |x—z| <e/4. Therefore,

K () =KL@l s [ lk(x=y)—k@E—y)]||f O)dy

lx—y|>e
< [ kO —k(y—(x—2)|If (x— ) dy.
ty| > 4|x—z|
By Lemma 2, the last integral is bounded by a constant, times M, f(x).

Since K is of strong type (v, r') with respect to the Lebesgue measure, it
follows that

[BI™! [IKfi ()l dz < e(1B1™ {1 O dy) < eM, £ (x).
B B

Then from (3.2) we obtain |K, f{(x)}) < MKS (x)+cM,. S (x), which implies the
- lemma. ' ‘ . _ _
Tueorem 1. Let k(x) be an L'-Dini singular integral kernel, 1 <r < o,
and let K* be.the maximal singular integral operator associated to k(x). If
@ rF<p<oc and w €Ay, or
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() 1 <p<rand wHrled
then there is a constant c¢ independent of f such that

K™ fllzz, < ellfllez.

When r < oo, we may take p =1+ in (i) and p=r in (il).
If (iil) W’ eA,, then

w(ix: K*fx) >s}) < es™! Ifllet,  s>0,
where the constant ¢ is independent of f and s.
The case r = oo was comnsidered by M. Kaneko and S. Yano in [8].

Proof. To prove part (i), ie. » <p < o, we observe that if WEA
then

(33) UMy fllig = ([P w0 dx)2 < e([iA7w () dx) .

On the other hand, since 4,,. = A4,, by Theorem A we have

34 IMKSlrz < cl!KS Nz, < ¢l fllze.

Therefore, by Lemma 3, (3.3) and (3.4) we obtain (i). To prove (i1) and (iii) we

need the already proved part (i) and the following lemma:

LemMa 4. Let k(x} be an L’-Dini singular integral kernel, 1 <r < <o, and
suppose that w™ """ Ved ., 1 <p <r, or weA, if p=1. Then the maxi-
mal singular integral operator K* is of weak type (p, p), i.e.

w(lx: K* 109 > s}) < el llp/97,
where the constant c is independent of f and s.

Proof. The proof of this lemma follows the same lines as the classical
proof of A. P. Calderén and A. Zygmund for p= 1 and w =1 {[4] and [5]).
Therefore, an outline of the proof is given here, pointing out the modifica-
tions to their proof.

Let ¢ > 0. Since f €12 and since w(x)dx is a doubling measure, we can
apply the Calderén—Zygmund decomposition lemma obtaining a sequence of
dyadic cubes {Q;} such that

(a) the cubes {Q;} are pairwise disjoint,

B3) b)) 7 <w(@) fIf I wix)dx < ct?,
' O ‘

(© |fI<tif x¢JQ,, x-ae.

Since w™ """ Ved, . = A,, we have wed,. From w” €A, we have wed,,
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Therefore, for any cube @,

(3.6) QI fIf ()l dx < c(w(@) " j'lf(x)l"w{x) dx)!ir,
Q
In particular, the average myg [ = |Q|“1§Q x) dx satisfies {mg f| <ct
where ¢ is independent of f and t.
Let b;(x) = (f (x) —mg, f) xg,(x) and b(x =¥, b,(x). We denote by g, the

cube §; expanded A tll‘llCS w1th 1 chosen 50 that the distance from Q, to CJ;
be twice the diameter of Q. For x¢Q;, le

=Y ﬂk(x—y)—k(x-—ym a:() dy,

where y, is the center of Q, and a;(y)
definitions that

(3.7) {a ()P w()dy <

= {Ib; ) +1) %, (). It follows from the

¢ [IFOITw(dy
Q;

Next, we shall estimate the Li-norm of h{x) on the complement of |JQ;.
Let s(x) > 0 be supported outside | JQ;. Then

frG)s(x)dx =3 [a) flk(x—y)—k(x—y)ls(x)dxdy.
By Lemma 2, if 1 < p <r, this expression is bounded by

Z [a; () M, s(y)dy
< ([ a )P w)dy)? ([M, s0) w(p)™ Ve D dy).

Since w™ P~V ed,.., p’ >r, and from (3.7) it follows that
[r(x)s(dx < e [ |f()Pw(x)dx)'?( js(x}" w ()~ YD gx)lir,
_ vy
Hence
(3.8) [ R(Pwx)dx<c [ [fX)"w(x)dx,
crudi Ue;
where ¢ is independent of f and ¢t > 0. This estimate holds even if p= 1. In
fact, integrating 2(x) on C[|JQ;] with respect to w(x)dx, we get
[ kwxdx <Y fa() [ Mk(x—y)—kx—y)|w(x)dxdy.
ci@d i CQ; )
By part (i) of the Corollary of Lemma 2 and (3.7), we obtain
(3.9) | h@wdx<e | |fx)Iwx)dx.
cg;l UQ;

Now;- following [5], we find that for x¢{JQ;, K*b(x) < c(h(x)+1).

icm
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Therefore, if we take s =4der, by (3.8) or (3.9) and (3.5) (b) we obtain

(3.10) w(ix: K*¥b(x) >s/2])<es™” |- h(xPdx+ew([U Q)

ClUg;

Ses™? [ [P

g

w(x)dx.

Let g =f—b. It follows from (3.6) that lg(x)| < ¢t = ¢'s. Therefore,
geLll for any p, > p. On the other hand, since w™ Y~V eA,, c A,, we
have w €A, = A, . Let us choose p, > pr'; then we 4, ;- and, by Theorem 1,
part {i) already proved, we have

w(tx: K*g(9 > 5/2}) < clgll 22/
<ellfl g5

This estimate, together with (3.10), finishes the proof of the lemma.
Now, we can continue with the proof of Theorem 1. We observe that for
T<p<gr, if wr=Yed ., then there exists py, 1 < py <p <r, such that

w HpomD €A, - On the other hand, as was shown in the proof of Lemma 4,

< c(lgl, /s

thereis p; > psuchthat we4, , . Thus, by Theorem 1) and Lemma4, K*isof
strong type (p;, py) and of weak type (po, po} With respect to w(x)dx.

Applying the Marcinkiewicz interpolation theorem, we obtain the strong type
(p, p} of K* with respect to the measure w(x)dx,

This proof includes the limit case p =r. For the case p ==r" the result
follows by the argument used in [8], of interpolation with changes of
measures, which remains valid for sublinear operators (see [12]}. Finally, (iii)
is Lemma 4 for p=1.

4, Convergence in L. of the truncated singular integral. If k(x) is a
singular integral kernel, the truncated kernel k,(x) is defined as k, (x) = k(x} il
|x] > & and k,{x}) = O otherwise. The truncated singular integral K, f is given
by

K. fix= | k@x=ynfydy ==

ix—yl>e
In order to simplify the notation, sometimes we shall write R(x) instead of
the singular integral Khix).

LEmMa 5. Let k(x} be an L'-Dini singular integral kernel, r > 1, and. let

@(x) = 0 be a C* function with support in |x| <1 and [e(x)dx = 1. If ¢,(x) -
=&~ "@(x/s), then R 4

(4.1) 6, (x) = @, (x)— k + (%)
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satisfies
16, % flizl, < el fllel
provided that w' €4,.
Proof. First, we shbw that
4.2) (G, () <ece™™ if |x] < 4e.
In fact, we have

[ k(G e (x~y) —a.(x)]dy.

Iy €5

@, (x) =pv. [k @, (x—p)dy =

Taking absolute values and recalling that ¢, (x) = ¢ " @(x/e), it follows that
(@ <Pollce™ ™t | lke@llyldy =ce™"

|»| < 5¢

Now, let §(x) = §,(x) if |x] < 42 and 8 (x) = O otherwise, We define
812 (x) = 6,(x)— 6" (x). We shall prove that

169 % fllzt < ellflley

which obviously implies the lemma.
Let us comsider j = 1. From (4.2) and the definition of k (x} we get

69 ()] < ee™ (14 |2(x)).

for j=1, 2,

Then
60w At < e §( [ (1+1RCe—)If D)l dy)w(x)d

lx—yl <4z

<cfe™ [ (L) dx)tr

|x| <de
xE™
|x—y|<4e

w(x)" dx)' | f ()l dy.
From the assumption that w" e.Al it follows that
188 AL < e (JL+HQEANY do ) [1f Gl w () dy.

T
Let us consider the case j=2. If |x| > 4¢, we have
8P (%) = @, (x)—k(x) = qu [k (x—y)—k(x)] 0. () dy.
Then
3 BRI  G—3)—k () @) dy.

lyl<e
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Now, we have
162 *f”L:-V < J([162 (NS @~ x) dx) w(z) dz.

By Fubini’s theorem and a change of variables, we see that the right-hand
side of the inequality above-is equal to

[(182 () w (x+2) dx) | f (2)] dz.
Thus, using (4.3), we obtain
182« £l

<[ O b=y —k(d e, () dy)w(x+2) dx) | £ ()] dz

|x) =42 |y|<e

<[ § =y —k@|wx+21dx) ¢, () dy) S (2)] dz.

|xt = 4]y
Therefore, by part (i) of the Corollary of Lemma 2, we obtain
182 % fllcL < e fo. () dy [If (2 w(z)dz,
which cbinpletes the proof of the lemma.

Lemma 6. Let k(x) be an I7-Dini singular integral kernel and r > 1.
Assume that w" &4, feLl and geC,(R™. Then

(W= ae |
Proof. First assume » < co. We shall show (writing L = L. for simpli-
city)

{4.4) If*dll. < ¢, ”f”]..&vs
{4.5) I(F*a) . < g lif et

where the constant ¢, does not dependent on f.
By Minkowski’s integral inequality and Theorem A, we have

1 dlle < (711G Gc— 217wy do ) Lf () dy
< ¢ [(flg(x— " w7 dx) i f () dy.

If g vanishes outside a ball B, since g is bounded and w" €4,, we get

f*dll. < <|Bllighl [(1BI™* iW(X+y)" ax)"' | f () dy

< ¢ [ifGIw()dy,

which proves (4.4), Again, by Theorem A and Minkowski's integral inequali-
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ty, we have

<cllf =ghe
< cf(flgGx—nI" wi) dx) | f ()i dy.
Arguing as before, we get (4.5).
Let f, be a sequence of C,(R") functions converging to f in L}. By

Lemma 3 of [2] we have (f, *g) (x) = (f; *+§)(x) ae. Then by (44) and (4.5)
we obtain

IS *9) Il

I+ ) ~f 8l < I+ @) = (axg) ot I fy wd—f ol
< 26, I/l

showing that ||(f *g)” —fxg|l, = 0. This proves the lemma for r < oo.

The case r = x reduces to the case 1 <r < . In fact, since w ed,, by
the reverse Holder inequality, there exists 1 < < co such that w".e4,. On
the other hand, the L*-Dini condition on k(x} implies the L"-Dini condition
for r=r/(r'—1). Therefore, we can assume that k(x) and w satisfy the
hypothesis for this finite value of . This ends the proof of the lemma.

Let m be a positive integer and k = (k, ..., k,) an n-tuple of integers, ie.
kezZ" Let y stand for the point 2 "keR" and Q@ = {y: 27"k <y,
<27k, +1), 1 i< n). We observe that yJ! eQF and that the length of the
sides of QF is 27™ In addition, for any given m, the family {QF: keZ"l is a
partition of R". Let us assume that g is a bounded function with bounded
support, we 4, and feLl. Then, for any given positive integer m, we define

Cal N = X flx—p0) [ g dy.

kez? Q.fc
The set I of indices k with the property that Qf has a nonempty intersection
with the support of ¢ is finite. If suppg is contained in the unit ball, the

points {ypl.., satisfy |yp < 1427" \[
In the sequel we shall assume m large enough so that V| <

(4.6)

LemMa 7. Let we Ay, £ &L, and let g be a bounded function with bounded
support. Then, for every R > 0,

im | {C.(/)(x)

m—w xSk

—(f*g)(x)|dx =0

Proof. If feL}, and weA,, it is well known that fis locally integrable

with respect to the Lebesgue measure. If the support of g is assumed to be

contained in |x| <1, then the function f;(x)
= 0 otherwise satisfies

Con (f0) (%)

= f{x} if |x] € R+2and f,(x)

= CalNE) Uor@)) = (F2g) (),
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for every |x| € R. Since f,(x) belongs to L', our lemma reduces to formula
(16), p. 325 of [2].

Lemma 8. Let k(x) be an L'-Dini singular integral kernel with r > 1 and [
= Kf the singular integral associated to k(x). If w" €A, and f and f belong to
LY, then
(4.7) (f+9) (0 = (F*g)(x) ae
provided ‘that g is a bounded function with bounded support.

Proof. Without loss of generality we may suppose that suppg is
contained in the unit ball. By Theorem A, Kf is defined for fin L and since

Srgell, (fxg) (x) is well defined ae. Analogously, f in L. implies that
(fxg)(x) is defined ae. Let T> 0 and ¢ > 0. We choose R > T+ 10 satisfying
(48) { SOlwody <2,

¥[>R~-2

Applying Lemma 7 to f and f we see that for m large enough, |y <2

(4.9) | }_[ ICa (N —(fra) M dy < &2,
¥} <R

(4.10) l_f ICu( W)~ (P Ol dy < &>,
I¥l€R

Denote by By the ball {x: |x| < T} and let yg(x) be the characteristic
function of the ball {x: |x| < R]. Then we have

[ix&Br: [(f*g) (x)=(F*g)(x)] > e}
<|fxeBr: [(f*a)" () —{xx (f+g) (¥)] > &/4}]
+|{xeBr: [(xx{/+) (9—(x Cn () (o) > &/4]]
(xx C ()" ()= Cu(F)(¥)] > &/4}|
ICu (D)= (> g) (9] > 24}
=a+f+y+4.

(4.11)

+ I{x €By:
+ |{xeBy:

Let us estimate a. Since w' €4,, by Theorem A(iii), K is of weak type
(1, 1). Therefore,

412) o < c(BrAmwB)w(ix: |(f*g) (00— (xr(S*g)) ()| >8/4})
< ce” H{|Brl/w(B) Il —xa} (F*ilLL-
For this last norm, we have

N =z (fxgllel <

|x{zR

([ 0Ng(x—y)dy}w(x)dx.
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Since suppg is contained in the unit ball, the relevant values of x and y in
the integrand satisfy |x| = R and |x—y| < 1. Therefore, R—|y| < |x| iyl < 1,
which implies R—1 < |y|. Then by the condition A4, and (4.8) we get

||(1—xx)(f*g)llL3,€| | i 1If(y}l {I JA| 1Ig(x--y)lW(x)be}ﬂ’J’
¥|=R— x—¥=
<IBO, Vgl § 1A (B, 1)i'1| Il 1W(x)dX}dy
IplzR-1 x=y| €
<clglle § If(y)IW( < cllgll&?,
M=R-
which together with (4.12) gives
< c{|Byl/w(By))e.

Estimation of B. By the weak type (L, 1) of the operator K with respect
to the Lebesgue measure and (4.9) we obtain

B < | [(r ClD) () —(tr (f5))” ()| > /4]
Sdee™t [ G NG —(fg) () dx < dee.

|x]€R

Estimation of y. By (4.6), we have
(1z Cn () ()= Cnl() ()
ﬂva Je(x=y=yD I y-+y0)—111(dy [ g(2)d

o
Thus,
‘(XR Cm (f))~(x) - cm (f) (x)l
Zflk(x Y=y —k(x—=Mxr+yD=UlL Ody § lgz)dz
o

+[ R lx—~ y)f(y)Z[xR +yp)-11 | g2)dzdy|
o
= T (x}+J(x).

If |yl € R—2, since we assume |yi| < 2, we have |y+ ¥l < R and therefore
yr (¥ —1=0. On the other hand, if xeBy, since T < R—10, we have |x
—y =yl —|x = (R~2)—{R~10) = 8. Thus,

413y [ I(x)w(x)dx

B
<2 [ IkCGe=y=y)=k(x=y)
k |yiZR-2 |x-y|=8

xw(x)dx]|f () dy | lg (@) dz.
or
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Now, by part (ii) of the Corollary of Lemma 2, we have
[ kGx—y=yP—k(x—ylw(x)dx

|lx—yl=8

= [ klx—yD -k wlx+))dx

|x]=8
< | lkfx—yD)—k(®)|wx+ydx<ew(y) y-ae.
jxizaly|
Using this in (4.13) and recalling (4.8) we obtain
II wrdx<se [ IfGIwdy-llgl; < cllgils &

lyI?R 2
By Chebyshev’s inequality and taking into account that wed,;, we obtain

Hix€By: I(x) > ¢/8} < c(|Byl/w(Bp)w({xeBr: 1(x) > 8}

< SolBrfw(B)e™ § 1) w(9dx < e{1Brl/w (Br)e.

The weak type (1, 1) of the operator K for w” €4, (Theorem A) allows
us to write
[{xeBy: J(x) >&/8} < ¢(|Brl/w(Bn)w({x: J(x) > ¢8))
e (Bel/w(Br) | 1FIw()dy-lglly < c(|Brl/w(Br)e.

|s|>R—2
Collecting our estimates for I and J we obtain
p < |{x €BriI () > e/8)|+1{x €Br: J(x) > &/8}] < c(|Bljw (By))e.
Estimation of . By Chebyshev’s inequality and (4.10), we get
{x€Br: |Ca(F)—(Fxg) () > e/}

<47l [ IC{N0 -

|x| <R

(S+9) (x) dx < 4

The estimates just obtained for a, f§, y and & show that (4.11} i8 smaller

than a constant cp times &, Letting & go to zero for any given T, we obtain
4.7).

LemMMa 9. Let weAd, and feLl. Let w(x) be a bounded function w:th

support contgined in |x| < 1 and [@(x)dx = 1. Then
G | 17 ot < cligllullfllct,
(i) linéﬂf* @ —fllet =

3 — Studia Mathematica 521
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Proeof. (i) follows from
(1% @00l wix) dx < J1f OM floe (x =y wix) dx
<JIFOlllella(e™  § wlxdx)dy < cligpllw 1/ W wpidy.

|x~yl <=
For (i), let # >0 and let g be a continuous function with compact
support such that |[f—gll.} <. Then

15 0u=flet < IKF~0) » @ullct 1 @e—glls, +llg =i,

The uniform convergence of g @, to g and part (i) of this lemma show that

imsup || =@, —fll.2 < (cllollo+1)7,
e—+0

proving part (i) of the lemma.

TueoReM 2. Let k(x) be an II-Dini singular integral kernel, 1 <r, and |
= Kf the corresponding singular integral operator. If w'ed, and fand [
belong to L, then

1) kil < c(flit+11f1ILL)  for every &> 0,
(ii) lim |[ £+ ke ~Fllct = 0-
e—+0

Proof. Let g belong to CP(R™ and let §,(x) be defined as in (4.1). We
shall first prove that [|g *d,ll.L tends to zero as ¢ —0. Assume that suppg is

contained in |x| < N. By applying L.emma 6 twice, we have
(6. +g)(x) = (g9, * §) (x) — (ks % g) (x).
Therefore, adding and subtracting §, and taking into account Lemma 9, and
Lemma 2(iii) of [2], we obtain
18, %8l < g +G =41l +k, xg =g, >0
as ¢ =0. Then
(4.14) [ 1@xg) 0l wlidx < o, xgll ([ wiydx,

x| €8N e

which also tends to zero as ¢ tends to zero.
Using Lemma 6, we have, for |x| =z 4N and 0 <¢ <N,

@*d))= | k(x=p[(g.*g)(»—g®]dy.

rl 2N

Since () <an [(@c*9)(3)—g (¥)]dy = 0, we obtain
@*8)(x)= | [k(x—»-kxIKe,+a) () —g()1dy.
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Multiplying by w(x) and integrating on x| = &N, we get
§ Ig*800dlw(x)dx

Ixj=8N

< J (] b=y —k@Iwx)dx: (e, xg) (¥) —g () dy

I»| €2N |x|=8N
< [ ele=y) =k wlx)dx (@, *g) () —g ()| dy.
¥ S2N |x[= 4]y
Then, by part (i) of the Corollary of Lemma 2, we have
" [ Kgxd) ()l wix)dx < c [ll@.+ g} () —g (Ml w(3)dy —0
x| =8N
as & =0, This, together with (4.14), proves that |lg = 5[l tends to zero, as we

wanted to show.
Now, by the very definition (4.1} of 8,(x) and Lemmas 6 and 8 we have

(k) (X) = (> @)~ (F*3) () = (F* @) ()= (F%8) ()  ae.
Then by Lemmas 9 and 5 it follows that

If* kIt < 117 @it +I1LS* 8t < el +11A11cD),

which proves part (i) of the present theorem.
In order to prove (i), we choose geCg (R") such that [ f—gl,L <#.

Then )
e ke =Tt < 17% @=TFllet, +1(f—g) # 8ol +llg » Sl

By Lemma 5, il(f—g)*5£||L‘lvscléf—glngvécn. Thus, the convergence to
zero of [lg+4,|.1 and Lemma 9 imply

limsupllf+k, ~flley < en.
.

The arbitrariness of n proves part (if) of the theorem,
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Existence of bases and the.
dual splitting relation for Fréchet spaces

by
JORG KRONE (Wuppertal)

Abstract, The present article contains a topological condition for nuclear Fréchet spaces E
and F whick is sufficient for the existence of a basis in the range of every continuous linear
operator from E to F. Surprisingly our condition is in some sense dual to the ones describing
the splitting of short exact sequences of Fréchet spaces.

The problem of Pelczyfiski [207 whether complemented subspaces of
nuclear Fréchet spaces with basis also have a basis is still unsolved. Positive
solutions were obtained by Mityagin and Henkin [16, 17, 18] in the case of
finite type power series spaces, by Vogt and Dubinsky [9, 26] in the case of
tame power series spaces and by Dubinsky [8] and Fachinger [10] in some
more general cases.

The present paper modifies the method of Mityagin and Henkin (see 1.1)
so that it can give a necessary and sufficient topological condition for the
existence -of a basis in complemented subspaces of regular nuclear K&the
spaces (see 1.2). This method leads to a sufficient condition on E and F for
the range of every operator T: E —F to have a basis. Here E and F are
nuclear Fréchet spaces or Kthe Schwartz spaces or their dual spaces. Some
cxamples of nuclear K&the spaces without this property are given in Krone
[13, 14]. It is an interesting fact that the above-mentioned sufficient condi-
tion can be interpreted as the dual splitting relation (see Apiola [2],
Ketonen—-Nyberg [12], Krone-Vogt [15], Nyberg [19], Vogt [24, 25]). Hence
it is called DS and in the case that E and F are Kdthe spaces we have a
simpler version called DS* (see 1.3).

The condition DS is easy to check in the standard cases. If both spaces
are power series spaces we obtain exactly the above-mentioned well-known
results (see 2.1). If one space is a shift-stable power series space the
characteristic properties of the DS partner spaces are the conditions
DN, DN, & and  which are introduced in Vogt [22,23] and Wagner
[27]. Tn 2.3 we evaluate the DS condition for Dragilev spaces.



