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Generalized convolutions V
by

K. URBANIK (Wroclaw)

Abstract. The paper is devoted to the study of limit sets consisting of cluster points of
normalized powers under a generalized convolution of probability measures. A relationship
between topological and probabilistic properties of these limit sets is established.

1. Notation and preliminaries. For the terminology and notation used
here, see [16]. In particular, P denotes the set of all probability measures
defined on Borel subsets of the positive half-line R, =[0, cc). The set P is
endowed with the metrizable topology of weak convergence. For peP and
a>0 we define the map T, by setting (T, W)(E) = p(a™' E) for all Borel
subsets E of R,. By 4, we denote the probability measure concentrated at
the point ¢. We define the equivalence relation ~ on P by setting g ~v
whenever p= T,v for a certain ¢ > 0. According to [16], Lemma 1.1, this
relation is continuous on P\ {d,}. Given A, B « P we write 4 ~ B whenever
Af~ = Bj/~. A set A is said to be a ~ selector if the natural map from A
onto A/~ is one-to-one or, in other words, if the relations p, ved and p ~v
yield y=v. Given ueP and p>0, we shall use the notation m,(1)
= (;’ x? u(dx). A commutative and associative P-valued binary operation ¢
on P, continuous in each variable separately, is called a generalized convolu-
tion if it is distributive with respect to convex combinations and the maps T,
(a > Q) with 8, as the unit element. Moreover, we assume the existence of
norming constants ¢, and a measure yeP\ {8,) such that

(1) T, 85" =y

where 4" is the nth power of §, under o. - _ _
Let mq, be the sum of 8, and the Lebesgue measure on Ry. By Py we
shall denote the subset of P consisting of all measures absolutely continuous
with respect to my. It has been proved in [16] (Theorem 4.1 and Corollary
4.4) that each generalized convolution o admits a weak characteristic function,
ie. a one-to-one correspondence p -+ [i between measures i from P and real-
valued Borel functions ji from L. (mg) such that the functions 4 are conti-
nuous for APy, (cu+(1—o)v)" =cfi+(1-a)¥ 0 <e< 1), (L") = fi(at)
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{a > 0) and (pov)" = iV forall u, veP. Moreover, the weak convergence u,
—p is equivalent to the ceunvergence f, —j in the L, (mg)-topology of
L. (my). The weak characteristic function is uniquely determined up to a

scale change and for any neP
B [+s]

(12 i) = [ Q9 pidx)
0

mg-almost everywhere. The kernel € is a Borel function and [Q{r)] < 1. A
generalized convolution is said to be regular if the kernel Q is continuous

([161, p. 93).

A measure 4 from P is said to be c-stable if 4 # dp and T, u*" —4i for a
f

measure peP and a norming sequence {a,! of positive numbers, the measure
¢ which can arise here belongs to the domain of attraction of A. By Theorem
4.2 in [16] there exist a constant »x (0 <x < oo) called the characteristic
exponent of o and a family ¢, (0 <p <) of standard o-stable measures
defined by the condition &,(f) = exp{—1?) if p < o0 and ¢, = 8, such that
for every o-stable measure A we have the relation A ~ g, for a certain
pe(0, x]. We note that by Proposition 4.5 in [16], y ~ 0, where y is

defined by (1.1); Moreover, by Lemma 2.1 in [16], » = oo if and only if o

is the max-convolution. The measure o, is called the characteristic measure
of o

2. Attraction by compact subsets. We say that a measure p from P
belongs to the domain of attraction of a compact subset of P\ {84} if there
exists a norming sequence {a,} of positive numbers such that the sequence
1,,#°" 1s conditionally compact in P and the set G{(a,, 1) is compact. The set

of all norming sequences {a,} with the above properties will be denoted by
N{p). The set of all measures ¢ belonging to the domain of attraction of a
compact subset of P\{5,} will be denoted by Q. It is evident that @ is
invariant under the maps 7, (a = 0),

Attraction by compact subsets of P\ {dy} for the ordmary convolution
has been studied by W. Doeblin [2], W. Feller [3], R. A. Maller [11] and W.
E. Pruitt [12]. The case of the max-convolution has been considered by L.
de Haan, 5. J. Resnick and G. Ridder in [4] and [5]. For generalized
convolutions a description of the sets @ and N(y) in terms of moments and
medians of the powers 4° has been established in [18] and [19].

It is evident that u&Q, {a,} eN (1) and G(a,, p) is a one-point set if and
ounly if ,u belongs to the domain of attraction of a o-stable measure o,
(0 < p < ). In this case the limit set will be called o-stable Now we sha.l]
quote less trivial examples of limit sets.

Exampie 2.1. Put 5, =0 and for n>2 let s, be the positive integer
determined by the inequality

(= 0Y2" " <n g, 2
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Setting x, = n2"s,l, v, ={s,— /(n2" 1) {(n > 2) we have the inequalities

0<x,<1and 0 <y,,.<1 Moreover, it is easy to check that [0, 1] x {0}

w10} x[0, 1] is the set of all cluster points of the sequence {(x,, y,)}. Put
= (1+y /(5,1 x,). Taking the measure u with the Laplace transform

r)_expz e~ — 1) 2¢/k

k=0
we have

oy
(To, 14 (1) = expr 3 (7" — 1) 2!
b=

where * denotes the ordinary convolution. By standard caleulations we
conclude that a subsequence 7:,% "™ converges if and only if the subsequen-
c¢ (X, V) does. Moreover, T, 1 = Ay 0 (%, ¥,,) —(a, 0) and T, T
=V if (xp,, Y} (0. @) where 0 € a £ 1. Here we have 4, = Vo = d, and the
Laplace transforms of 4, and v, (0 <a < 1) are given by the formulae

2. (t) = exp(—t+ale” 1)),

7a(t) = exp(—4(L+a) 107" (e7oC T2 1)),
Consequently, p€Q, {a,)eN(w) and G(a,, W) = {4, V. 0K a< 1}, Since
dg=vg, A; =v, and the measures 1, 0 <a<x1) and Vg ((} <a <) are

nonequivalent we conclude that Gla,, ) is a ~ selector homeomorphic
to a circle.

Example 2.2. Let mbea positive integer and I, = {(¢y, ..., ¢): 0 < ¢
<1,j=1,...,ml. Let gy, ..., g, be an arbitrary m-tuple of positive num-
bers such that 0 < ¢ = Z;‘quj < 1 and the numbers 1, g4, ..., g,, are linearly
independent over the field of rational numbers. Taking the measures g,
{cel,,) with the Laplace transform

[24] m
B (6 =exp [ (e —1jexp 3. (¢;—[q;log x+c/Tpdx
0 J=1
where the square brackets denote the integral part and setting a, = n~ M we
get, by simple calculations, 4, €Q, {,} €N (1) and Glay, @) = (1! bel,}. It
is clear that the limit set G(a,, u) is a ~ selector homeomorphic tolthe m-
dimensional torus. '

As a consequence of Lemma 1.1 in [16] we get the following simple
statements.

Prorosirion 2.1, If peQ and {a,}, {b,} €N (1), then G(a,, i) ~ G(by, 1)
ProrosmioN 2.2, If peQ, \a,} €N (1) and G(a,, p) is a ~ selector, then
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for every {b,) eN(y) the set Gla,, p} is a continuous image of G(b,, u). More
precisely, there exists a positive continuous function g on G(b,, pt) such that

G(am H) = {T;(A);L: ’1 EG(I)", /"‘)}

Proposimion 2.3. If peQ, la,}, (bt eN@ and both limit sets G{a,, w
and G(b,, p) are ~ selectors, then G(a,, ) and G(b,, 1) are homeomorphic.

Proprosirion 2.4, If peQ, la,) eN{) and f is a positive continuous
function on G(a,, 1), then there exists |b,} eN(p) such that

G(b,, u) = {Tf(a) A A€G(ay, W)}

Proof Let ¢ be a metric defining the topology of weak convergence on
P. Setting

A =Ty At 2eG(ay W}
we have ¢ = p(d,, A) > 0. Consequently, there exists an index ng such that
e(T, b, Gla., @) <c for n > ny. Since

inf {(T; 4", A): b >0} < (T, 4, Gla,, W),

for every n> n, we can find a positive number b, such that
o(T 1™ A) < o(T, 1™, Glay, ).

Setting b, =1 for 1< n< ny, we infer that {b,}eN(w) and G(b,, ) < 4,

which completes the proof

Put K, = {u peP, m,(4) =1} (p > 0). It is clear that the set K, is a ~
selector. Denote by @, the subset of Q consisting of all measures u admitting
a normmg sequence {a,} satisfying thc condition G(a,, p) < K,. The set of
all norming sequences w1th the above property will be denoted by N, (w). By
Lemma 1.1 in [16] we have lim,..., a,/b, = 1 and G(a,, g) = G(b,, 1) for all
la,}, 1b,} €N, (1). This enables us to introduce the notatlon Gp{(u) for the

uniquely determined limit set G(a,, g) with {¢,} €N, (1. It is C]Bdl’ that G,(4)
is always a ~ selector.

Lemma 2.1 Let pe@, {a}eN(u) and 0<p<g. If s=sup {my (A
A&G (a,, W} < 0, then neQ,.

Proof. Setting f(A} = m, ()" * for AeG(a,, 1) we get a continuous
function satisfying the inequality f(4) = s~ 1. Since

Tk AeG(a,, W<k,
our assertion is a direct consequence of Proposition 2.4.

The above lemma yields the following statement.

icm

Generalized convoltitions V 157

ProrosiTioN 2.5, If O <p <gq, then @, < Q,.
Our next result liss somewhat deeper.
Turorem 2.1, Q=) _, Q-

Proof. Let u&Q. By Theorem 3.1 in [197] there exists a positive number
g such that 0 < m, (") < o (n =1,2,..) and {m, (4" V) e N{w). Setting
a, = m,(u*") " we have my(T, 1) = 1(n=1, 2, .., which yields m,(1) < 1
for all A€G(a,, 1). Applying Lemma 21 we get peQ, for 0 < p < g, which
completes the proof,

As a consequence of the above theorem we get the following statement.

CoroLLArY 2.1, For every ueQ there exists la,) eN(u) such that the
limit set Gia,, p) is a ~ selector.

TraeorEM 2.2. The set Q Is invariant under the generalized cmwolutwn o,
ie. 000 < Q.

Proof Given u,ve@, la,teN(uw, b, eN{(v}) we put ¢, =min(a,, b,}.
It suffices to show that each subsequence of the sequence T, (10v)°" has a
subsequence convergmg 1o a measure other than &,. In fact we can always
choose a subsequence T, (;,tov) "% with the properties
¢ ¢
=" p, qk=»—'-'='i—>q, T, 1A,
Oy, by, k

<1, max(p, g) = 1, A % 8, and ¢ # §,. Then we have

T v e

L/
where 0 p< 1,05
T, (uov} =T (L, 1O T, V™M~ TA0 T 0

Taking into account Lemma 2.3 in [20] we infer that T,40 T, # &, which

completes the proof.

Lemma 2.2, Suppose that 0 < p < x. Then m,(uov) < m,(@)-+m,(v) for
all p, veP.

Proof, By Lemma 4.4 in [16] for every AeP we have the inequality
1] <1 mg-almost everywhere. Moreover, by Theorem 4.1 and Lemma 3.7
in [16] for every p with 0 < p < we have the 'formula -

- i(r

¢y mp(l) r m?“l“"‘;_“;“ de
0
where
0 <e, = n-mﬂwmdt < 0.
o !

Our assertion is an immediate consequence of the inequality (o)~
= a9 = pB+v@ -1 ‘
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LEmMMa 23. Let g <ny <..., Uy, ¥y €P, 0<exl
on, o
(et +(1—€) V) * 58,. Then y.,,:" — 8.

and  suppose

Proof By Lemma 11 in [19] each subsequence of the sequence n,
<1, < ... has a subsequence m; <my, < ... such that

(ctmeH L= va) 1) (0) 1
my-almost everywhere. Since the left-hand side of the above formula is equal
16 (Clim, (8) +(1 )7 ()~ and, by Lemma 44 in [16], {f, (1 <1 and
[ (] <1 (k=1,2,..) mo-almost everywhere, we conclude that |, (0™
— 1 mg-almost everywhere. Consequently,

-]

. 2
(o™ (1) = (i (1) =1
a1 an
i

meg-almost everywhere, which, by Lemma 1.1 in [19], yields L,
our assertion is a consequence of Corollary 24 in [20].

—+dy. Now

THEOREM 23. The set Q is convex.

Proof. Suppose that p, veQ. By Theorem 3.1 in [19] there exists a
positive number p < such that m,{p®") <o, m,(»*") <0 (n=1,2, ...
fm, (1) 7} eN() and im, (v~ 1Pt eN (v). Setting

a, = min {m, (uF) " k=1,..., 8},
by = min {m, (v?5}" M k=1, ..., n]
we have, by Lemma 2 in [18], {a,) eN(w) and (b, eN(v). Put ¢,

= min(a,, b,). Then m,(u™) <c; ¥, m,(*) <c;?(k =1, ..., n) and, by Lem-
ma 2.2, for 0 <c¢ <1

. n ‘
my(T, ent (L=0n)") = et T (7)e* (1=~ m, (™t 0v70r=4)
‘R

se kgn (Z)Ck(l—C)nwk(mp(ﬂok)'f'mp("Q("mm)) <2

Hence the sequence T, {cu+(1~c)v)™ is conditionally compact in P, It
~ remains to show that d, is not its cluster peint. Suppose the contrary.

Passing to a subsequence if necessary we may assume that there exists a
sequence my < i, < ... of integers such that

T, (eus(1—c)v) ™ =4,

ity ‘”‘k
7;‘”" [T N T;’"k v g,

Cofan, —a and ¢, /b, —b where 13, 6#5;, 0€a<1, 0<h< 1 and
max (g, b) == 1. Setting Py, == Jgnk By V= ’I;hkv we have

oRg n
{cun+=cvy) " =8, wp =T vi¥-Ta
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and at least one limit measure T, 4, T, ¢ is not concentrated at the origin. But
this contradicts Lemma 2.3, which completes the proof.

By(1.1) we have d,eQ for ¢ > 0. Since the convex combinations of these
measures form a dense subset of P, as an immediate consequence of Theorem
2.3 we get the following statement.

Tueorem 24, The set @ is dense in P.

3. Limit sets. We start with the following simple topological property of
limit sets.
Tuporem 3.1. Each ~ selector limit set is a continuum.

Proof, Since ~ selector limit sets are compact it suffices to prove their
connectedness. Suppose that pe@, |4} eN(w) and the limit set G(a,, u is a
~ solector. If lim sup,... d, > 0, then, by Lemma 3 in [18], {1} eN(u} and
(" 3, for some ¢ > 0. Consequently, G(1, u) = {é.} and, by Proposition
23, G(a,, 1) is also a one-point set. In this case G(a, 4 is obviously
connected. '

Now consider the case
(3.0 lim a, =90

R o)

and suppose that G({a,, p) is disconnected. There exists then a decomposition
Gla,, p) = A, w A, where 4, and A, are compact and disjoint. Denoting by
o a metric defining the topology of weak convergence on P we have the
inequality d = g(4;, A;) > 0. We denote by N, (i=1,2) the set of all
positive integers n fulfilling the condition (T, #™ A;) < d/3. Since
o(T, 1", A3) > 3d if neN, and o(T, 4" 4;) 2 §4 if neN;, we infer that
N, and N, are disjoint. Moreover, the relation o(T, u™", 41 A4z) 20 as
n - oo yields the existence of an integer np such that neN, v N, whenever
n = ny. Since both N, and N, are infinite, we can find a sequence of inte-
gers ng <ny <n <., such that n,eN; and m+1eN, (k=1, 2,...). Pas-
sing to a subsequence if necessary we may assume without loss of generality
that ‘

T

""k

#Uﬂk -y Aﬂ T

Syt 1 “n("#f" ! -V, A.GAM v EAZ-

Of course A # v. From (3.1) we get T,,"k“b o, wh_ich yields '1;"““ iy,

Consequently, by Lemma 1.1 in [16], A ~ v. Since Gla,s 1) 15 & ~ selector

the last-relation implies 4 = v, which yields & contradiction. The theorem is

thus proved. : | :
ProvosiTion 3.1. Let e, {a,) eN () and AeGa,, p). Then reQ and

there exists {h,) €N(4) such that G{b,, ) < G(a,, W
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Proof. By Lemma 4 in [I8] for every 4AsG{a,, #) there exists a
sequence {b,] of positive numbers such that T, reGla, w k=1,2,..).

Hence Aeg, |b,)eN(4) and G(b,, A) = G(an p)-

As a consequence of the above proposition we get the following state-
ment.

CororLary 3.1. Let peQ, and AeG,(u). Then A€Q, and G,(4) = G, ().

Let peQ and a,} e N(w). The limit set G(a,, y) is said to be irreducible
if it is a ~ selector and for every AieG(a,, ) there exists a sequence
{b,} € N{4) such that G(a,, @} = G(b,, A). In particular, G, () is irreducible if
and only if G,(4) = G,() for every AeG,(u). It is evident that o-stable limit
sets are irreducible. The limit set G(a,, £} appearing in Example 2.2 is also
irreducible. One can easily check that the limit set from Example 2.1 is not
irreducible. ' '

Tusorem 3.2. Let pe@, {a,) eN{uw) and suppose that G(a,, 1) is a ~
selector. There exist then leG{a, 1) and (b eN() such that
G(b,, 2} = Gla,, ) and the limit set G(b,, A) is irreducible.

Proof. By Proposition 2.3 and Theorem 2.1 we may restrict our
attention to the case G(a,, 4) = G,(u) for some p > 0. Consider the family of
limit sets F = {G,(v): veG,()}. This is a family of compact sets. Conse-
quently, if v,eG,(w) and G,(v)=G,(v,4) (r=1,2,..), then
Neey Go(v) #@. Let oe(\_, G,(v). Then, by Corollary 3.1, G,(o) =
ﬂ:; , G (v,). Applying Brouwer’s theorem to the family F ({10], Ch. 4, § 42,
IV) we infer that there exists 1eG,(u) fulfilling the condition: 4 = G,(4)
whenever 4 = G,(4) and AeF. It is clear that G,(/) is irreducible, which
‘completes the - proof.

‘Before going on we recall a few simple properties of c-infinitely divisible
probability measures. For regular generalized convolutions o-infinitely divi-
sible measures were studied in [14] and [15]. Here we consider arbitrary
generalized convolutions. We say that a probability measure g from P is o-
infinitely divisible if for every positive integer » there exists a measure j, &P
such that g = p". It is easily seen that in the case of the max-convolution
each measure from P is infinitely divisible.

Lemma 31. Let n, <n, <..., 4, weP (k=1,2,..) and Monk._,ll

Then A is o-infinitely divisible.

Proof. For the max-convolution our assertion is evident. Consequently,
we may assume that » < co. Let m be an arbitrary positive integer and p,
=[n/m] (k=1,2,..). Write n, = mp, +q, where 0 € g; <m, By Lemma 2.3
in 197 we bhave g, -+8,. Consequently,

(3.2) 't = b,
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Since pp* = (1, 04", we infer, by Corollary 2.3 in [20], that the
sequence m i conditionally compact in P. Let A, be its cluster point.
Taking into account (3.2) we get A = A", which completes the proof.

As an immediate consequence of the above lemma we get the following
proposition.

Provosimion 3.2, Let peQ and {a,}eN(y). Then each measure from
Gla,, p) is o-infinitely divisible.

Let A be a o-infinitely divisible grobability measure. Since A = 13% for
some 1, & P we infer that L(1) = (12 (6)” = 0. We note that in the case % < 0
we have, by Lemma 2.4 in [19], an even stronger tesult: 1(t) > 0 mg-almost
everywhere, ‘

Levva 3.2 Let A be o o-infinitely divisible measure. Then for every

ke "o, . . " . h
positive number u, {A(0) is the weak characteristic function of a probebility
measure,

Proof. Denote by W the set of all rational numbers of the form r/(2s
1) (5=0,1,...; r=1,2,..). It is easily seen that v—weW whenever
v>w and v, we W, Suppose that A = A}" or, equivalently,

(33) =40 B=12.)

my-almost everywhere. Given an arbitrary positive number u, we can choose

‘weeW (k=1,2,..) and veW with the properties w, <u <v and wy, —u.

Setting .
F Hy

P T T o

N JR—-

= 2Sk “‘+"T’

we have, by virtue of (3.3),

Wk

Wkt =(0) ", %00 =>E0),

ok w0 (0 = (A
my-almost everywhere. Hence
S O =25y k=1,2..)
which, by Corollary 2.3 in [207, shows that the sequence AZZ’L,. ; 18 conditio-

'3
2

nally compact in P, Let v be its cluster point. Then 7(ty = (A(8))", which
completes the proof.

From now on, for every o-infinitely divisible measure 4 and > 0, A°*
will denote the measure with the weak characteristic function (A().

Provostrion 3.3, Let ueQ and la,}eN (1). Then for every AEG(ay, 1)
we have ‘

0w >0 S Gay W



162 K. Urbanik

Moreover, if G(a,, 1) is a ~ selector, then there exists a positive continuous
function c(u) on the half-line (0, o) such that T, A% eGla,, 1.

Proof. Let AeG(q,, ). By Lemma 4 in [18] for every positive rational
number w there exists a positive number ¢ such that T,1°" eG(a,, 4). Now
the compactness of G(a,, ) and the continuity of the relation ~ on P\{d,}
yield the assertion.

Given a o-infinitely divisible measure 4 we put A(4) = fu: u>1, 1
~ A% Since (T, A7 = T,A™ (4, u > 0), we infer that the set 4(1) is either
empty or a closted multiplicative subsemigroup of the half-line (1, ov). Put
d(A) =infd (4) if A(%) is nonempty and d(A) = oo otherwise.

ProrosiTioN 3.4. Let A4 be a c-infinitely divisible measure other than §,.
Then d{A) =1 if and only if A is o-stable,

Proof, If 1 is o-stable, then, by Proposition 3.3, A ~ A% for all u > 0.
Consequently, 4 (1} = (1, oo), which yields 4{4) = L. Conversely, suppose that
A is o-infinitely divisible, A % 39 and d(1) = 1. Then 4(4) must be equal to
(1, c0). Thus 4 ~4°" for n=1, 2, ..., which shows that 1 is c-stable.

A measure v from Pis said to be o-quasi-stable if v # 0, and there exists
a measure peP, a sequence ny < n, <... with img o m /B =r <co and a
norming sequence {¢;} such that T, u"* —v. The measure u which can arise
here belongs to the domain of partial attraction of v. For ordinary convolu-
tion this notion has been intreduced and studied by V. M. Kruglov in [9]
and for generalized ones by R. Jajte in [6]. We note that, by Lemma 3.1,
each o-quasi-stable measure is o-infinitely divisible. Moreover, each o-stable
‘measure is o-quasi-stable.

Lemma 3.3. Let 1 be a c-quasi-stable measure, ueP, n, <n, < ...,

(34) , HII] nk+1/ﬂk =7

= “k-ron

ony .
and T, p " = A for a norming sequence |c). Then for every sequence {m,} of

integﬂe;;s with me < me < ey (k=1,2,..) and limy ..o, my/n, = u the relation
T u " =A% holds.

Proof. By (3.4) there exists an integer s such that nk vy < smy (k

=1,2,..). Put sk=snk—mk (k=1,2,..). Then
Tl O T = (T T

and, consequently, by Corollary 2.3 in [20] the sequence T, #™ is conditio-

3ally compact in P. By Lemma 3.1 all its cluster pomts are O-infipitely
Ivisible and, consequently, their weak characteristic functions being nonne-
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gative are cluster points in the L, {mg)-topology of L., (mg) of the sequence of
functions (7; ,u ™A (1), Since

(T ™0 =2 (T ™) 0 = (T 1™ @™,
we conclude that all cluster points of the sequence T,
weak characteristic function (4(H)".
completes the proof.

k,um"" have the same
In other words, T, i = 1% which

ProrositioN 3.5, Let A be a o-infinitely divisible meusure other than 8,.
Then d(Ay < oo if and only if 1 Is o-guasi-stable.

Proof. Suppose that A is o-quasi-siable and for a measure ueP and a
norming sequence ¢

(3.5 Ty, k™ =

where ny <ny < ... and limg. e q/m =r. Passing to a subsequence if

necessary we may assume without loss of generality that r > 1. Setting m,
! , |

=y in Lemma 3.3 we get T,y “*' =+2°". On the other hand, by (3.5),

Tons T 2 Applying Lemma 1.1 from [16] we get A ~ 2%, Thus
(3.6) dA)<r

Conversely, supposo thai 4 is o-infinitely divisible, A # d, and d (1) < c0.
By Proposition 34 we may restrict ourselves 1o the case d{2) == r > 1. There
exists then a positive constant ¢ such that A = 7, A%, Inductively we get

3.7 A= T (k=1,2,..).

First we shall prove that ¢ < 1. Contrary to this, suppose that ¢ > 1 If
¢ =1, then, by (3.7) 4=4" (k=1,2,..), which yields i() =@} (k
=1,2,..) Letting k — oo we infer that the function 1(f) takes the values 1
and 0 only. Thus for every u > 0, (1(t))' = 1(2) or, equivalently, A** = 4, This
yields d(A) = 1 whmh contradicts the assumption. Further, if ¢ > 1 then, by
(3.7), Aolutrt- = Ty A =8, which, by Corollary 24 in [20], implies the

contradiction A = &,, This completes the proofl of the inequality ¢ < 1,
Put a == [r*], co=c¢* and pes=rf—n (k=1,2,..) Of course
WMo By /1y sm e aind O p < 1 (k= 1, 2,..). Since

7:,k Aaﬂkd Tzklafl P == T;RA . 50’
we have, by Corollary 24 in [20], T, A% 3y, From (3.7) the formula
T A™ o T, 2" = 4

follows. Now taking into account Corollary 2.3'in [20] we have LA e
which shows that A is o-quasi-stable. The proposition is thus proved.
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A limit set G{a,, ) is said to be o-guasi-stable if there exists a o-quasi-
stable measure A called the gemerator of G(a,, w) such that G{a,,
~ {A*": 1 € u € d(4)}. By Proposition 3.4 each c-stable limit set is o-quasi-
stable.

Prorosimion 3.6. Each o-quosi-siable measure is the gemerator of a o-
quasi-stable limit set.

Proof. Suppose that A is o-quasi-stable and for a measure peP and a

norming sequence ic!, T, @™ -+ where n, <n, <...and limy g, B0 /M
=r. By Propositions 3.4 and 3.5 we have d(J) < cc. Moreover, one can

easily prove the relations
(3.8) A 1 Sud() ~ A 1gugr) ~{4% w00,

Put a, = ¢, if m <n<my,. Then, by Lemma 3.3, ueQ, {a,} eN(y) and
G(a,, w) = {4*: 1 <u <r}. Now our assertion is a consequence of (3.8),

Let 4 be a subset of P. A point u of 4 is said to be regular if each
neighbourhood U of u contains a neighbourhood ¥V of u such that the set
AnFr(V})is finite (see [10], Ch. 6, § 51, I). The set of all regular points of 4
will. be denoted by reg(4).

The fellowing theorem gives a relationship between topological and
probabilistic properties of limit sets. :

TrHeOREM 3.3. Let A be a limit set. Then the following conditions are
equivalent :

() A is a ~ selector and o-quasi-stable.

{i) A is irreducible and either a one-point set or homeomorphic to a
circle.

(ii) A4 is irreducible and reg(A) £ Q.

Proof. By Propositions 2.1 and 2.3 and Theorem 2.1 it suffices to prove
the theorem for limit sets of the form A = G,(u) where p >0 and peQ.

(i) = (ii). Suppose that G,(u) is o-quasi-stable with a generator A There
exists then a continuous positive function c(u) on the interval [1, d(4)] such
that G,(y) = [T, A 1 <u<d(4)). Introducing the notation Ay == Ty A%
we have G,(u}=1A: Il <u<d(d)] and A =1y, Suppose that | <u
<vsd(d) and A, =2,. Then A% ~ 1%, which by the formula (T, A
= T,(4*), yields 2 ~ 1°¢ where ¢ = v/u. Consequently, by the definition of
d(4), we have g = d(%), which implies u =1 and v =d(4). Thus the map u
= A, 1s one-to-one on [1, d(4)). It follows that G, (W is a one-point set if d (1)
=1 and it is homeomorphic to a circle if d() > 1. Further, taking into
account Proposition 3.3 we have G, (1) = G,(4,) for every ue[1, d(4)], which
shows that G,(u) is irreducible. :

The implication (i) = (iii) is evident.
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{iif) = (i). Suppose that G,(y) is irreducible and reg (G, (p) # @. Let
Aereg(G,(w). Then

(3.9) G, = G,(4),

which yields 1&G,(4). First we shall prove that d(d) < o,

Contrary to this, suppose that d(J) = o. By Proposition 3.3 there exists
a positive continuous function ¢(u) on the half-line {0, o) such that
LA™ eG,(A). Put for brevity A, = T4 and <o, b= 11 a<u< b}
(0 <a <b <) Since d{A) = oo, we infer that G,(A) is infinite, <a, b) is a
homeomorphic image of the interval [a, bl and <{a, b>n a', b’ = @ when-
ever [a, b]1n[a,b']=0. Letv €G,()) and v # 1. We can choose neighbour-
hoods U, and U, of 4 and v respectively such that T, n U, = (. Since
G,(4) is a ~ selector, we infer that both 4 and v are cluster points of the
sequence {4,}. Given an arbitrary neighbourhood V of A, for every positive
integer k we can choose a pair n,, m, of positive integers with k < ny, < my,
An €V and 4, eU,. It is clear that {n,, m,> ~Fr(V) # @. Taking an infinite
subsequence of disjoint intervals [n,, m,] we conclude that G,(1) ~"Fr(V) is
infinite, which contradicts the assumption Aerag(Gp(,u}). Thus d(4) < oo,

Now taking into account Propesition 3.5 we infer that A is o-guasi-
stable, which immediately yields the equality Go(A) = A 1€ud),
Thus, by (39), G,(u) is c-quasi-stable, which completes the proof.

We note that the limit set G(a,, z) in Example 1.1 is a ~ selector
homeomorphic to a circle, but is not o-quasi-stable. This shows that the
assumption of irreducibility in conditions (i) and (i} in the last theorem is
essential and cannot be replaced by the assumption that the lLimit set is a ~
selector.

4. Regular convolutions. Throughout this section we assume that the
convolution in question is regular. Then the kernel Q of the weak characteri-
stic function (1.2) is continuous and the continuous version of i is called the
characteristic function of p. In this case the convergence in the Ly {my)-topology
of Ly (myg) is equivalent to the uniform convergence on every compact subset
of R. (see [16], Lemma 4.5). From now on ji will denote the characteristic
function of u. By Theorem 7 in [14] the characteristic exponent x is
finite and :

4.1 1= Q(x) = x* L(x)

where the function L is slowly varying at the origin. Moreover, the kernel Q
satisfies the inequality Q(x) <1 in a neighbourhood 0 < x < x,. Changing
the scale Q(x) »Q(ax) (@ >0) we get another kernel of a characteristic.

function. Consequently, we may assume without loss of generality that
Xo>1, le. Q(x) <1 if xe(0,1]. Let w(x) = 1—-Q(x) if x&[0, 1] and e (x).

6 -~ Sludin Mathemalice XCLZ
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= 1—Q(1) otherwise. M, Klosowska proved in [8], Lemma 1, the following
formula:

w{x) _ _1
(o)

2 lim
(4.2) fim ==
where @, is the characteristic measure of o. Moreover, it has been proved in
[14], Theorem 13, that a measure u from P is o-infinitely divisible if and
only if its characteristic function is of the form

=091
,u(t)-—expgw——m(x) M (dx),

where M is a finite Borel measure on R, and the integrand is assumed to be
—t* if x==0. By Theorem 1 in [15] this representation is unique. In the
sequel we shall use the notation u = e(M). In particular, o, = ¢(d,) and &,
= ¢(0). One can easily prove the formulae

4.3) e(M+N)=e(M)oe(N), e(Mf™ =e@M) (u>0),
(44 Te(M)=e(M) (a>0)
where M, (E) = | | (w(ax)/w(x))M (dx) and the integrand is assumed to be

a* if x =0, We fioté that, by Lemma 3 in [18], for regular convolutions we
have lim, . a, =0 for all ue@ and all {a,} eN(w).

Given peP we put f{F) = .(Ew(x)u(dx). By Jurek’s theorem on accom-
panying laws {[7], p. 115) we have the following statement.

Prorosirion 4.1, ueQ if and only if e(f} 0. Moreover, N(y) = N{e(jD)
and G(a,, p) = G(a,, e(D)} for any la,) eN{g). ‘

Further, taking into account Theorem 2 in [7] on convergence of o-
infinitely divisible measures and the formula T, e(3)°" = e(n(T, 1) ™) (a > 0) we
obtain the following criterion.

ProrosiTion 4.2, peQ and la,) €N if and only if the sequence of
measures n(T, 1)~ is conditionally compact and the measure identically van-
ishing is not its cluster point. If H{a,, 1) is the set of all cluster points of the
sequence n(T, W)™, then

G(ay, ) = le(M): MeH{a,, 1).

Levma 4.1, Let peQ and la,) e N(u). Then

T.’ M (dx)

p @(x)

for all M eHl{a,, 1.
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Proof. Suppose the contrary, ie.

‘- TM(dx)

b w(x)

< 0

for a measure M H (a,, p). Since, by Proposition 4.2, M does not vanish
identically, we have ¢ > 0. Put

oy Mdx)
B = ;L[m(x) ‘

Evidently veP and the measure A defined by the formula

o Ck
A=e" o+ ) emt vk
k=1 k!
also belongs to P. Moreover,

(4.5) Aloh z e

and () = exp(ev (1) —~c¢) = e(M)" (1), which, by Proposition 4,2, yields
A€G(a,, 4). From Lemma 5 in [18] we get 2({0}) = 0, which contradicts
{4.5). The lemma is thus proved. '

Given peP we introduce the notation
x

Fu(x) = [ (y/x) u(dx)
0

{x > 0).

It is clear that the function F, is continuous on the right, the left-hand limit
F, (x—) exists and

(4.6) Fix=)=F,(x—opu(x}) (x> 0.
Moreove.r,
4.7 lim F,(x}=0,

Put for ueP\{3,) and n=1, 2,...

1
By =lt: t=0, n(l— [A(rx)dx) =1},
]

D"(#) = {3: -4 >O, .HFN(Z—I)Z 1}‘

Since the characteristic function 7 is continuous, f(0) =1, |i(A| <1 for all
teR, and f is not identically zero we infer that the sets B, (u) are nonvoid
for n large enough. The sets D, (u) are also nonvoid for sufficiently large n
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because F, does not vanish identically. Consequently, there exists an index 7,
such that bo’th B, (1) and D, () are nonvoid for n 2 n,. Define

by (1) = min B, (1),

d,(wy=infD, (1) for n = ng,

by (1) = by, (10, d, (1) = d, (1) for n < ng.

It is clear, by (4.7), that d,(s) >0 (n=1,2,...), d{t) =0 and, by {4.6),

(4.8) . aF, (d7 (W) =1 (n2n).

Lemma 4.2. Let 5 8y, Then dyy () <d,(1) dyt ) =1 for

nz np.

and nF,(

Proof. Given n 2 n, we have, by the definition of d, (1), the inequality
nF“(z‘l} <1 for z &0, d,(u)). Hence, by the continuity of ¥, on the right,
nF,(d, ' (1)) < 1. Comparing this with (4.8) we get nF (d”(;,t)) = 1. Now the
inequality (n-+1)F,{d; (@) > 1 yields d, (@)} > dpiy (y) which completes the
proof.

Lemma 4.3, Let pe@Q and {a,) eN(;e\), There exisis then a positive integer
s such thar a, >dg, (1) (n=1,2, ...

Proof. By Proposition 4.2 the sequence of measures n(T, p)~ is condi-
tionally compact and

iminfn (T, )" ([0, )= b

i}

where b = inf {M([0, 1)): M €H(a,, p)}. Since the set H{(a,, 1) is compact, we
have, by Lemma 4.1, b > 0. Observe that nF,(a; ') = n(T,, W~ (0, 1) (n

=1,2,..). Consequently, we can find a positive integer s such that
nF,{ay)y > s (n'=1,2,..). For n = n, the inequality snF,(a; ') > 1 yields
a, > dg, (1), which completes the proof.

Lemma 44, Let peP and p # 6. There exists then a positive integer v
such that d, (1) 2 b,, (1) for nz ng

Proof. Put
g(x) =inffo(xz)fw(zy 0 <z 1),

Taking into account (4.1) we have g(x) > 0 for x > 0. Moreover, for u > 0
and xe{0, 1]

R0 3 [ (o) uldy) > g () Fy ),
0
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Hence, Settmg for brevity d, =4, (1), we get

' ldn—l_x—l
n(l—[i (d" x)a'\);:n [ (1-2d,xy) udydx
0 0 0 ’
!
=n|F,d; " x"")dx = nF( \J(\)a‘\
b

Taking a positive integer r satisfying the inequality r~! <jug(x )dx and

‘gbserving that, by Lemma 4.2, nF,(d;') =1 for n > n, we get

1
ra(l={ji{d,x)dx)>1 {(nzn
o

which yields d, > b, (1) for n = n,. The lemma is thus proved.
ProrositioN 4.3, If neQ, rthen d, (1)) e N(1).

Proof. It follows from Theorem 3.3 in [19] that b,{x)! eN (g). Conse-
quently, by Lemmas 4.3 and 4.4 there exist positive integers s and r such that
b, () = dg, (1) and d,{p) = b, (1) for n = ny. The last inequality implies d, (1)
2 b, (1) {n 2= ny). Taking into account Corollary 1 in [18] we get by, (1)
=ab,(u) (n=1,2,..) where a is a positive constant, Thus b, (u} = d,, (1)
> ab, (1) for n = ny, which, by Lemma 1 in [18], yields {d;,(x0)) € N (). Since,
by Lemma 4.2, the sequence {d,(x)} is nonincreasing, the last relation and
Lemma 3.1 in [197 imply id,(1)} €N(y), which completes the proof.

The following result is an analogue of Feller’s criterion established for
the ordinary convolution in [3], p. 387.

THeorem 4.1. neQ if and only if' u+# 8y and
4.9 llm sup p((x, OO))/‘ (y/x) uldy) < 0.

Proof. Nece531ty Suppose that ueQ. Then us 6, and, by Proposi-
tion 4.3, |d, (1)) €N (w. Put for brevity d, = d, (1) and x, = d, ! where nq is
determined in the definition of d,(x). Then for every x = x, We can choose
an index k 2= 1, such that d; ' < x < d;y,. Setting

ca = sup np((d;t, o)) n=1,2...}

we have, by Lemma 2.6 in [19], a<co. Moreover, ku((x, 20))
< kp((dp !, o)) < a. Since, by Lemma 42, kF,(d7") =1 the last inequality
yields

(4.10) w((x, o)) < aF, (di ).

Further, by Corollary 1 in [18], we have
: b=sup{d/dy: n=1,2,..} <cw.
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Setting
(4.11) h{u) = sup{w{zv)/w(z): 0 <z<1, 0<v<u)

for u 2 0 we get, by (41), a nondscreasing function with h(x) < co and
(4.12} 1iu; h{u) =0,
Moreover, it is easy to check that
(4.13) F (xty < h(t™ ") F,(x)
for t€(0, 1]. Substituting ¢ =d; ' x~* in this inequality we obtain
Fu(di?) < hixdi) Fou(x) < R(B) F (),
which together with (4.10) yields
{(x, o)) < ah(B)F, (x

for x > x;. The necessity of condition (4.9) is thus proved.

Sufficiency. Suppose that (4.9) is fulfiled and u # &,. For simplicity
of notation we put d, =d,(x) and M, = n(L, W™ (n=1,2,..). By Proposi-
tion 4.2 it suffices to prove that the sequence of measures {M,} is conditio-
nally compact and the measure vanishing identically is not its cluster point.

Denote by s the left-hand side of (4.9). Since w(r) < 2 for all t = 0, we
have

My(R)) = 1 [ o(dy ¥ 4(d) < nF (45 )+ 2, o),
[} .

which, by (4.9) and Lemma 4.2, yields limsup, ., M,(R,) €14 2s. Hence the
sequence of measures {M,] is conditionally compact on the compactified
half-line [0, co]. Consequently, each its subsequence contains a subsequence
1M, | converging on [0, «].

Assume that

(4.14) M, - M+qd,,

where g > 0 and M is concentrated on R, . Define the auxiliary funclions
fofa>1 on Rj, by setting f,(x) = xw(@™?) in [0, 1], w(@™'x) in [1,a],
w(l)(l—f-a—x) in {(@,1+a), and 0 in [14a, o). It is evident that the
functions f, (a > 1) are continuous, uniformly bounded and

(4.15) lim f,(x) =0

a-—+og

for every x €R,. Moreover, by (4.13),

(.16 1 £09 My (d5) — | £, M(dx)
0 0
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for every a > 1. Let & be the function defined by (4.11). Taking into account
{4.12) and (4.15), for every ¢ > 0 we can find & > 1 such that

417 h(b~"Y <e, [filoM{dx) <c.
0
Since ‘
azl n
nF,(bdy )y =n | wid,xb™ Y u(dx)+ [w(x/by M, (dx),
b i

b

[ (</6) M, () € | ) My )
1 0

and, by Lemma 4.2,
a !

n [ w(d,xb™ ) uldx) < h(b™YYnF,(d; ") = h(b™1),
[¢]

we have, by (4.16) and (4.17),

limsupn, F,(bd, ") < 2,

koo
which, by (4.9), implies the inequality
4.18) timsup n, 4 ((bd;, ', 00)) < 268,

k=w

Since w(t) £ 2 for t = 0 we have

M, (b, o)) =n | @d,x p(dx) < 2nu(ibd, !, ).
bt
Consequently, form (4.18) the inequality
limsup M, (b, o)) < 4es
k—rou

follows. By the arbitrariness of & this shows that the sequence {M,,k} is
conditionally compact on R, and, by {4.14), M, — M. Since M, ([0, 1])
=nF,(d, ') =1, we conclude that the limit measure M does not vanish
identically, This proves that the sequence of measutes |M,! is conditionally
compact on R, and the measure vanishing identically is not its cluster point,
which completes the proof,

The following theorem has been proved in [1] and [8] under the
additional assumption m,(0,) < co.

Turonem 4.2, A measure y from P belongs to the domain of attraction of
the characteristic measure o, if and only if ust 8y and

X

(4.19) lim a(x, )@ 0/ uldy) =0.

g
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Proof. Sufficiency. Suppose that (4.19) is fulfilled and i % 5. Then,
by Theorem 4.1, pe@ and, consequently, by Proposition 4.3, {d, (1)} e N(u).
Put for brevity d, =d, (1) and M, = (T w™ (n=1,2,..) Let as(0 1].
Then, by (4.13) and Lemma 4.2,

nF,(ad; ") <nh(@™ ) F,(d; ) = h(a™),
which together with the inequality
M,((a, 00)) < 2np((ad; *, o))

and (4.19) yields lim,. ., M,((a, c0)) = 0. Consequently, all measures M from
H(d,, p) are concentrated at the origin, which, by (4.4), vields e(M) ~a,.
Applying Proposition 4.2 we obtain G(d,, y) ~ {s,}. By Corollary 2.1 we can
find a norming sequence {a,} €N (1) such that G{a,, 4 is a ~ selector. Then,
by Proposition 21, G(a,, ) = {T,0,} for some ¢ >0. Thus G(c™'a,, u)
= |a,}, which shows that the condition in question is sufficient.

Necessity. Suppose that u belongs to the domain of attraction of Ty
Obviously, ue@ and, by Proposition 2.1, G(a,, u} ~ {o,} for every
la,} €N (p). Observe that we can always choose a strictly decreasing norming
sequence :b,| from N(u). Indeed, by Proposition 43 and Lemma 4.2 it
suffices to put b, = d, (1) for n > n,. Denote by s the left-hand side of (4.9).
Since b, =0, we can find a sequence {x,! fulfilling the conditions

(4.20) bil<x,<biy (n=1,2,..),
(@.21) © Timsup (%, 00)) § oy pldy) =s.
0o h

By Corollary 1 in [18] the sequence b b,} is bounded. Comnsequently,
from (4.20) it follows that 1 < x,b, (n =1, 2, ...) and the sequence [x,b,} is
bounded, which, by Lemma 1 in [18], yields {x; '} N (). Since Gx7*, 1
~ |o,], all measures from H(x;!, 1) are concentrated at the origin and

c=inf{M{R,): MeH(x7!, w)} > 0.

Consequgntly, setting M, =n(T__ )~ (n=1,2,..) and taking into account
Proposition 4.2 we have lim,., M,((1, 00)) = 0 and liminf,_,, M, ([0, 1))
= ¢. Since

0

M, ((1, 0)) = n [w/x) pdy) = np((x, o))o(l),
M0, 1) = n [ 0(y/x) uldy),
0

we conclude, by (4.21), that s = 0, which completes the proof,
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Suppose that p >, peP, u+# 8§, and my(44) < oq. Let L be the slowly
varying function appearing in (4.1). Then lim, . x*~? L(x) = oo ([13], p. 18).
Consequently, lim, _,w(x)/x? = co. Put

Fx) =inflo(p)/y® 0 <y < xl.

Evidently, lim, ., f (x) = co. Taking a positive number b satistying the condi-
tion \‘:’J Y uldy) = 3m,{) we have for x = b

b

xP a[w(y/»’i) uldy) = _([f(y/X) Y uldy) = Tm, (p) f (b/x),

which together with the standard inequality x* u((x, o0)) < m,(y) yields

X

2
wllx, o))/ o (y/x) uldy) € ——
{ ))/_c[ (/) p T
for x = b. Letting x — co we get condition (4.19). Consequently, Theorem 4.2
yields the following corollary.

CoroLLArY 4.1. Let p>ux. If peP, u+ 38, and m,(u} <o, then p
belongs to the domain of artraction of the characteristic measure o,

From Klosowska and Bingham’s description of the demain of attraction
of v, in [1] and [8] it follows that under the condition m,(s,) < oo all
measures i from P\ {8,} with m, () < oo belong to the domain of attraction
of g, too. The converse implication is also true:

Tueorem 4.3, If all measures u from P\ {8,} with m, (1) < oo belong to
0, then m,{s,) < oo,

Proof. Suppose the contrary. Then, by (4.2), lim, ., (x)/x* =0. We
define a sequence ¢; < ¢, <.., of positive numbers recursively as follows,
Put ¢, =L If ¢4, ..., ¢, are defined, then we take c,., > ¢, satisfying the
condition

ey ¢ \7F -1
4.22 nmax {m (___,__) (w-m—-) tk=1,..., n} <
@23 Cntt/ VOt 2

Evidently, ¢ =Y.~ 2 "¢;* <co. Put p,=c™'27"¢;* (n=1,2,..). Then
S Pne= 1 and the measure v =Z:; { Pnd., belongs to P. Moreover, m, (v)
=¢"1 < o0, Thus veQ and, by Theorem 4.1, v fulfils condition {4.9). It is
clear that ¢, - oo and for sufficiently large n condition (4.9) can be rewritten
in the form . R '

[ 4] h
% <b Y pole/y)
k=nti k=1
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where xe€[c,, ¢,+,) and b is a positive constant. Letting x — ¢, ; and taking
into account {4.22) we get

Prr1 < Z Pe s bz peer (Gi/Cp1)

k=nt1l k=

n
-1 = 1 - v
shn™2 Cat'n ORI

b
= Ppr (s
k=1 h

which yields a contradiction as n —oco. The theorem is thus proved.

We say that a- o-infinitely divisible measure A Has a x-component if there
exist a positive number ¢ and a o-infinitely divisible measure v such that 4
= T o,0v. Taking the representation A = e¢(M) we infer that A has a x-
component if and only if M({0})>0. It follows that each o-infinitely
divisible measure A with a x-component has a unique decomposition 1
= T ¢, 0v where ¢ > 0 and v is o-infinitely divisible without a »-component.

Lemma 4.5. Suppese  that - my(o,) <, R <Hy<..., ¢ >0 (k
=1,2,..), imsupe . m ¢f >0, v =v # &g and T, v,™* — 1. Then A has a %-

component.

Proof. First we observe that, by Lemma 3.1, the measure A is o-
infinitely divisible and, by Lemma 2.3 in [19], ¢, — 0. Taking the representa-
tion 1 = e(M)} and setting M, = m (T, w) (k=1,2,..) we have, by Theo-
rems 1 and 2 in [7], M, —» M. Further, the assumption m, (o) < oo and
formula (4.2) yield the inequality .

a=inl{o(y)/y*: 0 <y <1} >0.

Smce v d,, we can find a sufficiently large number x, such that
b= jo y ¥v(dy) > 0 and x, is not an atom of v. Given x&{(, 1] we have for
c, < x;tx

xci:l

M ([0, x) =7, |
0

x4 tdv]
2 m [ oY) (dy) = ane i | v, (dy),
0 o]

w (¢ ¥) v (dy)

which yields

M0, x]) = hmsupMk([O x]) = abhmsupnkck
owr

Hence M (’0}) >0, which shows that 1 has a x-component,

Treorem 44. The set Q, is contained in the domain of attraction of the
characteristic measure o,
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Proof. Suppose that Q, # @, xeQ, and 1 €G, (0. It suffices to show
that A ~ g,. By Lemma 4 in [18] we can choose a sequence la, } of positive
numbers such that T, A" eG,(w. Of course, la,} eN,(J). Taking the repre-

sentation A4 = e(M) and setting M, = n(7, 1)~ we have T, T, A% =e(M,) (n

=1, 2,...). Further, applying Theorem | from [17] we get
4.23) l=m (T, A"y =na;, (n=1,2,..).
From formula (4.2) the inequality

b=sup{w(y/y: y>0 <w

follows. Given x> 0 we have, by (4.23),

My([x, 0))=n | wlgnidy)<b | yildy) (n=1,2,..).
-l 'm;l_ 1
Thus lim, ..o, M,([x, 0)) = 0 and, consequently, by Proposition 4.2, H (a,, 1)

consists of measures concentrated at the origin. In other words, G, (i) ~ {o s
which yields m, (o,) < co. By Lemma 4 in [18] we have the existence of a
sequence [c,} of positive numbers and a sequence {v,] of measures from
G, (1) such that

(4.24) A=T v n=1,2,..)

By Theorem 1 in [17] we have

(4.25) 1= m, (L") =ncy (n=1,2,..}

Takipg the representation v, = e(N,) we have, by (4.3), (44) and (4.24),
M(E) = ncle @ a()c( ;c) N, (dx),

which, by (4.25), vyields M({O:) N, (’0}) n =1,2,..). Setting o=

e(M({0}) d,), M'(E) =
we have the formulae

M(E (0, ), Ny{E) = No(E (0, o0)) (n=1,2,..),

(4.26) A =goe(M),

(4.27) vy =a0e(N) (n=1,2,..)

and, by (4.24), ”

(4.28) e(M) =T, e(N)*" (n=1,2,.).
Now we shall prove that

(4.29) e(N) = 8.

Suppbse the contrary. Since v,€G,(4), the sequence {v,} is conditionally

.compact, From (4.27) and Corollary 23 in [20] we obtain the conditional
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compactness of the sequence {e(N})]. Consequently, there exists a subse-
quence ny; <hg <... such that e(Ny,) tends to a measure other than dy.
Taking into account (4.25), (4.28) and applying Lemma 4.5 we infer that'the
measure (M) has a x-component. But this contradicts the  equality
M'({0)} = 0, which completes the proof of (4.29). '

From (4.27) and (4.29) we get v, —a, which, by the compactness of G, (1)
and the relations v, €G,(y), vields o G, (y). Thus

(4.30)
and m,{o) = [. On the other hand, by (4.26) and Theorem 1 in [17],
L =m, (4} = my,(o)+m,(e{M"),

which yields m,(¢(M’) = 0. Consequently, e(M')=3J, and 1 =0, which
together with (4.30) completes the proof.

a~a,

The following statement is an analogue of Maller’s theorem ([11], p.
267) for the ordinary convolution.

THeoREM 4.5. Suppose that m,(o,) < oo, Let peQ and fa,} e N (). Then
the following conditions are equivalent:

(i) Gla,, ) contains a measure A with m,(4) < o0,

(ii) G(a,,, 1) contains a measure with a x-compohent,

(]1]) !awtl EG((J,,, ,Lt)

Proof. (i}=(iii). From Klosowska and Bingham’s description of the
domain of attraction of o, in [1] and [8] it follows that each measure A from
G{a,, 1) with m, () < oo belongs to this domain. In other words, there exists
a norming seqeence |b,! eN(J) such that G(b,, ) = {e,]. Condition (iii) is
now an immediate consequence -of Propositions 2.1 and 3.1.

(ii)=-{iil). Suppese that G{a,, j¢) contains a measure with a x-component.
Put

a = sup fN(EO}): NeH{a,, ,u)}‘.

Evidently, ¢ > 0 and, by the cbmpactness of Hia,, #), a < oo and there exists
a measure A = e(M)eG{a,, p) with M ({0}) = a. By Lemma 4 in [18] we can
" find a sequence !¢,! of positive numbers and a sequence (M,} of measures
from H(a,, 4) such that A =T, e(M,)™ (n=1,2,..). Of course,

431) M,(0) < M(10) (=1,2,..)
and, by (43) and (4.4),

432 ME) =n | 2L -

(4. :)‘ (E) nc"__q]E 00 M,dx) (n=1,2,..)

icm

Generalized convolurions V 177
Consequently, M ({0}) = nc? M, (10)), which, by (4.31), vields
(4.33) nexzl (n=1,2,..)
Setting M'(E) = M(E n(0, o0)), My{E) = M,{E (0, w)) and v, = ¢(M;) we
have
{4.34) e(M,) =e(M,(i0))d5)ov, (n=1,2,..)
and, by (4.32),
(4.35) e(MY=T, v," (n=1,2,..).

Since ¢(M,) &G(a,, 1) we conclude, by the compactness of G(a,, u). that the
sequence (¢{M,)}! is conditionally compact and all its cluster points be]ong 1o
(y(a,,, f). Moreover, by {4.34) and Corollary 2.3 in [20], the sequences
fe(M, (10} 8, )} and lv,! are also conditionally compact. Consequently,
taking into account inequality (4. 31) we can choose a subsequence ny < n,
< ... such that e(M, ) —o, (M, (i0})do) >e(bdo) and v, ~—v where veP,
0<b< M0,

(4.36) c eG(ay, 1),
(4.37) o =e(hdg)ov

Suppose that v = &5, Then, by (4.33), (4.35) and Lemma 4.5, the measure
¢(M’) has a x-component, which contradicts the equality M'({0}) = 0. Thus
v'= 8, and, by (4.37), o = ¢{hd;), which, by (4.36), yiclds b > 0. Consequently,
¢ ~ a,, which shows that condition (iii} is fulfilled.

The remaining implications (ii)=-(i) and (iii)=>
completes the proof.

Hk

(ii) are evident, which
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