

Generalized convolutions V

by

K. URBANIK (Wrocław)

Abstract. The paper is devoted to the study of limit sets consisting of cluster points of normalized powers under a generalized convolution of probability measures. A relationship between topological and probabilistic properties of these limit sets is established.

1. Notation and preliminaries. For the terminology and notation used here, see [16]. In particular, P denotes the set of all probability measures defined on Borel subsets of the positive half-line $R_+ = [0, \infty)$. The set P is endowed with the metrizable topology of weak convergence. For $\mu \in P$ and a>0 we define the map T_a by setting $(T_a\mu)(E)=\mu(a^{-1}E)$ for all Borel subsets E of R_+ . By δ_c we denote the probability measure concentrated at the point c. We define the equivalence relation \sim on P by setting $\mu \sim \nu$ whenever $\mu = T_c v$ for a certain c > 0. According to [16], Lemma 1.1, this relation is continuous on $P \setminus \{\delta_0\}$. Given $A, B \subset P$ we write $A \sim B$ whenever $A/\sim = B/\sim$. A set A is said to be a \sim selector if the natural map from A onto A/\sim is one-to-one or, in other words, if the relations μ , $\nu \in A$ and $\mu \sim \nu$ yield $\mu = \nu$. Given $\mu \in P$ and p > 0, we shall use the notation $m_p(\mu)$ $=\int_{0}^{\infty}x^{p}\mu(dx)$. A commutative and associative P-valued binary operation \circ on P, continuous in each variable separately, is called a generalized convolution if it is distributive with respect to convex combinations and the maps T_a (a > 0) with δ_0 as the unit element. Moreover, we assume the existence of norming constants c_n and a measure $\gamma \in P \setminus \{\delta_0\}$ such that

$$(1.1) T_{c_n} \delta_1^{\circ n} \to \gamma$$

where $\delta_1^{\circ n}$ is the nth power of δ_1 under \circ .

Let m_0 be the sum of δ_0 and the Lebesgue measure on R_+ . By P_0 we shall denote the subset of P consisting of all measures absolutely continuous with respect to m_0 . It has been proved in [16] (Theorem 4.1 and Corollary 4.4) that each generalized convolution \circ admits a weak characteristic function, i.e. a one-to-one correspondence $\mu \leftrightarrow \hat{\mu}$ between measures μ from P and real-valued Borel functions $\hat{\mu}$ from $L_{\infty}(m_0)$ such that the functions $\hat{\lambda}$ are continuous for $\lambda \in P_0$, $(c\mu + (1-c)\nu)^{\wedge} = c\hat{\mu} + (1-c)\hat{\nu}$ $(0 \le c \le 1)$, $(T_a\mu)^{\wedge}(t) = \hat{\mu}(at)$

(a>0) and $(\mu \circ \nu)^{\wedge} = \hat{\mu}\hat{\nu}$ for all $\mu, \nu \in P$. Moreover, the weak convergence $\mu_n \to \mu$ is equivalent to the convergence $\hat{\mu}_n \to \hat{\mu}$ in the $L_1(m_0)$ -topology of $L_{\infty}(m_0)$. The weak characteristic function is uniquely determined up to a scale change and for any $\mu \in P$

(1.2)
$$\hat{\mu}(t) = \int_{0}^{\infty} \Omega(tx) \, \mu(dx)$$

 m_0 -almost everywhere. The kernel Ω is a Borel function and $|\Omega(t)| \leq 1$. A generalized convolution is said to be *regular* if the kernel Ω is continuous ([16], p. 93).

A measure λ from P is said to be o-stable if $\lambda \neq \delta_0$ and $T_{a_n}\mu^{\circ n} \to \lambda$ for a measure $\mu \in P$ and a norming sequence $\{a_n\}$ of positive numbers; the measure μ which can arise here belongs to the domain of attraction of λ . By Theorem 4.2 in [16] there exist a constant \varkappa $(0 < \varkappa \leqslant \infty)$ called the characteristic exponent of \circ and a family σ_p $(0 of standard o-stable measures defined by the condition <math>\hat{\sigma}_p(t) = \exp(-t^p)$ if $p < \infty$ and $\sigma_\infty = \delta_1$ such that for every o-stable measure λ we have the relation $\lambda \sim \sigma_p$ for a certain $p \in (0, \varkappa]$. We note that by Proposition 4.5 in [16], $\gamma \sim \sigma_{\varkappa}$ where γ is defined by (1.1). Moreover, by Lemma 2.1 in [16], $\kappa = \infty$ if and only if κ is the max-convolution. The measure σ_{\varkappa} is called the characteristic measure of κ .

2. Attraction by compact subsets. We say that a measure μ from P belongs to the domain of attraction of a compact subset of $P \setminus \{\delta_0\}$ if there exists a norming sequence $\{a_n\}$ of positive numbers such that the sequence $T_{a_n}\mu^{\circ n}$ is conditionally compact in P and the set $G(a_n, \mu)$ is compact. The set of all norming sequences $\{a_n\}$ with the above properties will be denoted by $N(\mu)$. The set of all measures μ belonging to the domain of attraction of a compact subset of $P \setminus \{\delta_0\}$ will be denoted by Q. It is evident that Q is invariant under the maps T_a (a > 0).

Attraction by compact subsets of $P \setminus \{\delta_0\}$ for the ordinary convolution has been studied by W. Doeblin [2], W. Feller [3], R. A. Maller [11] and W. E. Pruitt [12]. The case of the max-convolution has been considered by L. de Haan, S. J. Resnick and G. Ridder in [4] and [5]. For generalized convolutions a description of the sets Q and $N(\mu)$ in terms of moments and medians of the powers μ^{n} has been established in [18] and [19].

It is evident that $\mu \in Q$, $\{a_n\} \in N(\mu)$ and $G(a_n, \mu)$ is a one-point set if and only if μ belongs to the domain of attraction of a o-stable measure σ_p (0 . In this case the limit set will be called o-stable. Now we shall quote less trivial examples of limit sets.

Example 2.1. Put $s_1 = 0$ and for $n \ge 2$ let s_n be the positive integer determined by the inequality

$$(s_n-1)!/2^{s_n-1} < n \leqslant s_n!/2^{s_n}.$$

Setting $x_n = n2^{s_n}/s_n!$, $y_n = (s_n - 1)!/(n2^{s_n - 1})$ $(n \ge 2)$ we have the inequalities $0 < x_n \le 1$ and $0 < y_n < 1$. Moreover, it is easy to check that $[0, 1] \times \{0\}$ $\cup \{0\} \times [0, 1]$ is the set of all cluster points of the sequence $\{(x_n, y_n)\}$. Put $a_n = (1 + y_n)/(s_n! x_n)$. Taking the measure μ with the Laplace transform

$$\tilde{\mu}(t) = \exp \sum_{k=0}^{\infty} (e^{-k|t} - 1) 2^k / k!$$

we have

$$(T_{a_n}\mu^{*n})^{\sim}(t) = \exp n \sum_{k=0}^{\infty} (e^{-k!a_nt} - 1) 2^k/k!$$

where * denotes the ordinary convolution. By standard calculations we conclude that a subsequence $T_{a_{n_k}}\mu^{*n_k}$ converges if and only if the subsequence (x_{n_k}, y_{n_k}) does. Moreover, $T_{a_{n_k}}\mu^{*n_k} \to \lambda_a$ if $(x_{n_k}, y_{n_k}) \to (a, 0)$ and $T_{a_{n_k}}\mu^{*n_k} \to \lambda_a$ if $(x_{n_k}, y_{n_k}) \to (a, 0)$ and $T_{a_{n_k}}\mu^{*n_k} \to \lambda_a$ if $(x_{n_k}, y_{n_k}) \to (0, a)$ where $0 \le a \le 1$. Here we have $\lambda_0 = \nu_0 = \delta_1$ and the Laplace transforms of λ_a and ν_a $(0 < a \le 1)$ are given by the formulae

$$\tilde{\lambda}_a(t) = \exp(-t + a(e^{-t/a} - 1)),$$

$$\tilde{\nu}_a(t) = \exp(-\frac{1}{2}(1 + a)t + a^{-1}(e^{-a(1 + a)t/2} - 1)).$$

Consequently, $\mu \in Q$, $\{a_n\} \in N(\mu)$ and $G(a_n, \mu) = \{\lambda_a, \nu_a : 0 \le a \le 1\}$. Since $\lambda_0 = \nu_0$, $\lambda_1 = \nu_1$ and the measures λ_a $(0 \le a \le 1)$ and ν_a (0 < a < 1) are nonequivalent we conclude that $G(a_n, \mu)$ is a \sim selector homeomorphic to a circle.

Example 2.2. Let m be a positive integer and $I_m = \{(c_1, \ldots, c_m): 0 \le c_j < 1, j = 1, \ldots, m\}$. Let q_1, \ldots, q_m be an arbitrary m-tuple of positive numbers such that $0 < q = \sum_{j=1}^m q_j < 1$ and the numbers $1, q_1, \ldots, q_m$ are linearly independent over the field of rational numbers. Taking the measures μ_c $(c \in I_m)$ with the Laplace transform

$$\tilde{\mu}_c(t) = \exp \int_0^\infty (e^{-tx} - 1) \exp \sum_{j=1}^m (c_j - [q_j \log x + c_j]) dx$$

where the square brackets denote the integral part and setting $a_n = n^{-1/q}$ we get, by simple calculations, $\mu_c \in Q$, $\{a_n\} \in N(\mu_c)$ and $G(a_n, \mu_c) = \{\mu_b: b \in I_m\}$. It is clear that the limit set $G(a_n, \mu_c)$ is a \sim selector homeomorphic to the *m*-dimensional torus.

As a consequence of Lemma 1.1 in [16] we get the following simple statements.

PROPOSITION 2.1. If $\mu \in Q$ and $\{a_n\}$, $\{b_n\} \in N(\mu)$, then $G(a_n, \mu) \sim G(b_n, \mu)$. PROPOSITION 2.2. If $\mu \in Q$, $\{a_n\} \in N(\mu)$ and $G(a_n, \mu)$ is a \sim selector, then for every $\{b_n\} \in N(\mu)$ the set $G(a_n, \mu)$ is a continuous image of $G(b_n, \mu)$. More precisely, there exists a positive continuous function g on $G(b_n, \mu)$ such that

$$G(a_n, \mu) = \{T_{q(\lambda)} \lambda : \lambda \in G(b_n, \mu)\}.$$

PROPOSITION 2.3. If $\mu \in Q$, $\{a_n\}$, $\{b_n\} \in N(\mu)$ and both limit sets $G(a_n, \mu)$ and $G(b_n, \mu)$ are \sim selectors, then $G(a_n, \mu)$ and $G(b_n, \mu)$ are homeomorphic.

PROPOSITION 2.4. If $\mu \in Q$, $\{a_n\} \in N(\mu)$ and f is a positive continuous function on $G(a_n, \mu)$, then there exists $\{b_n\} \in N(\mu)$ such that

$$G(b_n, \mu) \subset \{T_{f(\lambda)} \lambda \colon \lambda \in G(a_n, \mu)\}.$$

Proof. Let ϱ be a metric defining the topology of weak convergence on P. Setting

$$A = \{T_{f(\lambda)} \lambda \colon \lambda \in G(a_n, \mu)\}$$

we have $c = \varrho(\delta_0, A) > 0$. Consequently, there exists an index n_0 such that $\varrho(T_{a_n}\mu^{\circ n}, G(a_n, \mu)) < c$ for $n \ge n_0$. Since

$$\inf \{ \varrho(T_b \mu^{\circ n}, A) \colon b > 0 \} \leq \varrho(T_{a_n} \mu^{\circ n}, G(a_n, \mu)),$$

for every $n \ge n_0$ we can find a positive number b_n such that

$$\varrho(T_{b_n}\mu^{\circ n}, A) \leqslant \varrho(T_{a_n}\mu^{\circ n}, G(a_n, \mu)).$$

Setting $b_n = 1$ for $1 \le n \le n_0$, we infer that $\{b_n\} \in N(\mu)$ and $G(b_n, \mu) \subset A$, which completes the proof.

Put $K_p = \{\mu: \mu \in P, \ m_p(\mu) = 1\}$ (p > 0). It is clear that the set K_p is a \sim selector. Denote by Q_p the subset of Q consisting of all measures μ admitting a norming sequence $\{a_n\}$ satisfying the condition $G(a_n, \mu) \subset K_p$. The set of all norming sequences with the above property will be denoted by $N_p(\mu)$. By Lemma 1.1 in [16] we have $\lim_{n\to\infty} a_n/b_n = 1$ and $G(a_n, \mu) = G(b_n, \mu)$ for all $\{a_n\}$, $\{b_n\} \in N_p(\mu)$. This enables us to introduce the notation $G_p(\mu)$ for the uniquely determined limit set $G(a_n, \mu)$ with $\{a_n\} \in N_p(\mu)$. It is clear that $G_p(\mu)$ is always a \sim selector.

LEMMA 2.1. Let $\mu \in Q$, $\{a_n\} \in N(\mu)$ and $0 . If <math>s = \sup \{m_q(\lambda): \lambda \in G(a_n, \mu)\} < \infty$, then $\mu \in Q_p$.

Proof. Setting $f(\lambda) = m_p(\lambda)^{-1/p}$ for $\lambda \in G(a_n, \mu)$ we get a continuous function satisfying the inequality $f(\lambda) \ge s^{-1/q}$. Since

$${T_{f(\lambda)} \lambda \colon \lambda \in G(a_n, \mu)} \subset K_p,$$

our assertion is a direct consequence of Proposition 2.4.

The above lemma yields the following statement.

PROPOSITION 2.5. If $0 , then <math>Q_q \subseteq Q_p$.

Our next result lies somewhat deeper.

THEOREM 2.1. $Q = \bigcup_{p>0} Q_p$.

Proof. Let $\mu \in Q$. By Theorem 3.1 in [19] there exists a positive number q such that $0 < m_q(\mu^{\circ n}) < \infty$ (n = 1, 2, ...) and $\{m_q(\mu^{\circ n})^{-1/q}\} \in N(\mu)$. Setting $a_n = m_q(\mu^{\circ n})^{-1/q}$ we have $m_q(T_{a_n}\mu^{\circ n}) = 1$ (n = 1, 2, ...), which yields $m_q(\lambda) \le 1$ for all $\lambda \in G(a_n, \mu)$. Applying Lemma 2.1 we get $\mu \in Q_p$ for 0 , which completes the proof.

As a consequence of the above theorem we get the following statement.

COROLLARY 2.1. For every $\mu \in Q$ there exists $\{a_n\} \in N(\mu)$ such that the limit set $G(a_n, \mu)$ is $\alpha \sim$ selector.

THEOREM 2.2. The set Q is invariant under the generalized convolution \circ , i.e. $Q \circ Q \subset Q$.

Proof. Given $\mu, \nu \in Q$, $\{a_n\} \in N(\mu)$, $\{b_n\} \in N(\nu)$ we put $c_n = \min(a_n, b_n)$. It suffices to show that each subsequence of the sequence $T_{c_n}(\mu \circ \nu)^{\circ n}$ has a subsequence converging to a measure other than δ_0 . In fact we can always choose a subsequence $T_{c_n}(\mu \circ \nu)^{\circ n_k}$ with the properties

$$p_k = \frac{c_{n_k}}{a_{n_k}} \to p, \quad q_k = \frac{c_{n_k}}{b_{n_k}} \to q, \quad T_{a_{n_k}} \mu^{\circ n_k} \to \lambda, \quad T_{b_{n_k}} \nu^{\circ n_k} \to \sigma$$

where $0 \leqslant p \leqslant 1$, $0 \leqslant q \leqslant 1$, $\max(p, q) = 1$, $\lambda \neq \delta_0$ and $\sigma \neq \delta_0$. Then we have

$$T_{c_{n_k}}(\mu \circ \nu)^{\circ n_k} = T_{p_k}(T_{a_{n_k}}\mu^{\circ n_k}) \circ T_{q_k}(T_{b_{n_k}}\nu^{\circ n_k}) \to T_p \lambda \circ T_q \sigma.$$

Taking into account Lemma 2.3 in [20] we infer that $T_p \lambda \circ T_q \sigma \neq \delta_0$, which completes the proof.

Lemma 2.2. Suppose that $0 . Then <math>m_p(\mu \circ \nu) \leq m_p(\mu) + m_p(\nu)$ for all $\mu, \nu \in P$.

Proof. By Lemma 4.4 in [16] for every $\lambda \in P$ we have the inequality $|\hat{\lambda}(t)| \le 1$ m_0 -almost everywhere. Moreover, by Theorem 4.1 and Lemma 3.7 in [16] for every p with 0 we have the formula

$$c_p m_p(\lambda) = \int_0^\infty \frac{1 - \hat{\lambda}(t)}{t^{1+p}} dt$$

where

$$0 < c_p = \int_0^\infty \frac{1 - \Omega(t)}{t^{1+p}} dt < \infty.$$

Our assertion is an immediate consequence of the inequality $(\mu \circ \nu)^{\hat{}}(t) = \hat{\mu}(t) \hat{\nu}(t) \geqslant \hat{\mu}(t) + \hat{\nu}(t) - 1$.

Lemma 2.3. Let $n_1 < n_2 < \ldots$, μ_{n_k} , $\nu_{n_k} \in P$, $0 < c \le 1$ and suppose $(c\mu_{n_k} + (1-c)\nu_{n_k})^{\circ n_k} \to \delta_0$. Then $\mu_{n_k}^{\circ n_k} \to \delta_0$.

Proof. By Lemma 1.1 in [19] each subsequence of the sequence $n_1 < n_2 < \dots$ has a subsequence $m_1 < m_2 < \dots$ such that

$$\left(\left(c\mu_{m_k}+(1-c)\nu_{m_k}\right)^{\circ m_k}\right)^{\wedge}(t)\to 1$$

 m_0 -almost everywhere. Since the left-hand side of the above formula is equal to $(c\hat{\mu}_{m_k}(t)+(1-c)\hat{v}_{m_k}(t))^{m_k}$ and, by Lemma 4.4 in [16], $|\hat{\mu}_{m_k}(t)| \leq 1$ and $|\hat{v}_{m_k}(t)| \leq 1$ $(k=1,\,2,\,\ldots)$ m_0 -almost everywhere, we conclude that $|\hat{\mu}_{m_k}(t)|^{m_k} \to 1$ m_0 -almost everywhere. Consequently,

$$(\mu_{m_k}^{\circ 2m_k}) \wedge (t) = (\hat{\mu}_{m_k}(t))^{2m_k} \to 1$$

 m_0 -almost everywhere, which, by Lemma 1.1 in [19], yields $\mu_{n_k}^{\circ 2n_k} \to \delta_0$. Now our assertion is a consequence of Corollary 2.4 in [20].

THEOREM 2.3. The set Q is convex.

Proof. Suppose that $\mu, \nu \in Q$. By Theorem 3.1 in [19] there exists a positive number $p < \varkappa$ such that $m_p(\mu^{\circ n}) < \infty$, $m_p(\nu^{\circ n}) < \infty$ (n = 1, 2, ...), $\{m_p(\mu^{\circ n})^{-1/p}\} \in N(\mu)$ and $\{m_p(\nu^{\circ n})^{-1/p}\} \in N(\nu)$. Setting

$$a_n = \min \{ m_p (\mu^{ck})^{-1/p} : k = 1, ..., n \},$$

 $b_n = \min \{ m_p (\nu^{ck})^{-1/p} : k = 1, ..., n \}$

we have, by Lemma 2 in [18], $\{a_n\} \in N(\mu)$ and $\{b_n\} \in N(\nu)$. Put $c_n = \min(a_n, b_n)$. Then $m_p(\mu^{\circ k}) \le c_n^{-p}$, $m_p(\nu^{\circ k}) \le c_n^{-p}$ (k = 1, ..., n) and, by Lemma 2.2, for 0 < c < 1

$$\begin{split} m_p \Big(T_{c_n} \big(c \mu + (1-c) \, v \big)^{\circ n} \Big) &= c_n^p \sum_{k=0}^n \binom{n}{k} c^k (1-c)^{n-k} \, m_p \big(\mu^{\circ k} \circ v^{\circ (n-k)} \big) \\ &\leq c_n^p \sum_{k=0}^n \binom{n}{k} c^k (1-c)^{n-k} \big(m_p \big(\mu^{\circ k} \big) + m_p \big(v^{\circ (n-k)} \big) \big) \leq 2. \end{split}$$

Hence the sequence $T_{c_n}(c\mu+(1-c)\nu)^{\circ n}$ is conditionally compact in P. It remains to show that δ_0 is not its cluster point. Suppose the contrary. Passing to a subsequence if necessary we may assume that there exists a sequence $n_1 < n_2 < \ldots$ of integers such that

$$T_{c_{n_k}}(c\mu + (1-c)\nu)^{\circ n_k} \to \delta_0, \quad T_{a_{n_k}}\mu^{\circ n_k} \to \lambda, \quad T_{b_{n_k}}\nu^{\circ n_k} \to \sigma,$$

 $c_{n_k}/a_{n_k} \to a$ and $c_{n_k}/b_{n_k} \to b$ where $\lambda \neq \delta_0$, $\sigma \neq \delta_0$, $0 \leqslant a \leqslant 1$, $0 \leqslant b \leqslant 1$ and $\max(a, b) = 1$. Setting $\mu_{n_k} = T_{c_{n_k}}\mu$, $\nu_{n_k} = T_{c_{n_k}}\nu$ we have

$$(c\mu_{n_k} + (1-c)\nu_{n_k})^{\circ n_k} \to \delta_0, \quad \mu_{n_k}^{\circ n_k} \to T_a \lambda, \quad \nu_{n_k}^{\circ n_k} \to T_b \sigma$$

and at least one limit measure $T_a \lambda$, $T_b \sigma$ is not concentrated at the origin. But this contradicts Lemma 2.3, which completes the proof.

By (1.1) we have $\delta_c \in Q$ for c > 0. Since the convex combinations of these measures form a dense subset of P, as an immediate consequence of Theorem 2.3 we get the following statement.

THEOREM 2.4. The set Q is dense in P.

3. Limit sets. We start with the following simple topological property of limit sets.

THEOREM 3.1. Each ~ selector limit set is a continuum.

Proof. Since \sim selector limit sets are compact it suffices to prove their connectedness. Suppose that $\mu \in Q$, $\{a_n\} \in N(\mu)$ and the limit set $G(a_n, \mu)$ is a \sim selector. If $\limsup_{n \to \infty} a_n > 0$, then, by Lemma 3 in [18], $\{1\} \in N(\mu)$ and $\mu^{\circ n} \to \delta_c$ for some c > 0. Consequently, $G(1, \mu) = \{\delta_c\}$ and, by Proposition 2.3, $G(a_n, \mu)$ is also a one-point set. In this case $G(a_n, \mu)$ is obviously connected.

Now consider the case

$$\lim_{n\to\infty}a_n=0$$

and suppose that $G(a_n, \mu)$ is disconnected. There exists then a decomposition $G(a_n, \mu) = A_1 \cup A_2$ where A_1 and A_2 are compact and disjoint. Denoting by ϱ a metric defining the topology of weak convergence on P we have the inequality $d = \varrho(A_1, A_2) > 0$. We denote by N_i (i = 1, 2) the set of all positive integers n fulfilling the condition $\varrho(T_{a_n}\mu^{\circ n}, A_i) \leq d/3$. Since $\varrho(T_{a_n}\mu^{\circ n}, A_2) \geqslant \frac{2}{3}d$ if $n \in N_1$ and $\varrho(T_{a_n}\mu^{\circ n}, A_1) \geqslant \frac{2}{3}d$ if $n \in N_2$, we infer that N_1 and N_2 are disjoint. Moreover, the relation $\varrho(T_{a_n}\mu^{\circ n}, A_1 \cup A_2) \to 0$ as $n \to \infty$ yields the existence of an integer n_0 such that $n \in N_1 \cup N_2$ whenever $n \geqslant n_0$. Since both N_1 and N_2 are infinite, we can find a sequence of integers $n_0 < n_1 < n_2 < \ldots$ such that $n_k \in N_1$ and $n_k + 1 \in N_2$ $(k = 1, 2, \ldots)$. Passing to a subsequence if necessary we may assume without loss of generality that

$$T_{a_{n_k}}\mu^{\circ n_k}\to\lambda, \qquad T_{a_{n_k+1}}\mu^{\circ (n_k+1)}\to\nu, \qquad \lambda\in A_1,\ \nu\in A_2.$$

Of course $\lambda \neq \nu$. From (3.1) we get $T_{a_{n_k+1}} \mu \to \delta_0$, which yields $T_{a_{n_k+1}} \mu^{\circ n_k} \to \nu$. Consequently, by Lemma 1.1 in [16], $\lambda \sim \nu$. Since $G(a_n, \mu)$ is a \sim selector the last relation implies $\lambda = \nu$, which yields a contradiction. The theorem is thus proved.

PROPOSITION 3.1. Let $\mu \in Q$, $\{a_n\} \in N(\mu)$ and $\lambda \in G(a_n, \mu)$. Then $\lambda \in Q$ and there exists $\{b_n\} \in N(\lambda)$ such that $G(b_n, \lambda) \subset G(a_n, \mu)$.

Proof. By Lemma 4 in [18] for every $\lambda \in G(a_n, \mu)$ there exists a sequence $\{b_n\}$ of positive numbers such that $T_{b_k}\lambda^{\circ k} \in G(a_n, \mu)$ (k = 1, 2, ...). Hence $\lambda \in Q$, $\{b_n\} \in N(\lambda)$ and $G(b_n, \lambda) \subset G(a_n, \mu)$.

As a consequence of the above proposition we get the following statement.

COROLLARY 3.1. Let $\mu \in Q_p$ and $\lambda \in G_p(\mu)$. Then $\lambda \in Q_p$ and $G_p(\lambda) \subset G_p(\mu)$.

Let $\mu \in Q$ and $\{a_n\} \in N(\mu)$. The limit set $G(a_n, \mu)$ is said to be *irreducible* if it is a \sim selector and for every $\lambda \in G(a_n, \mu)$ there exists a sequence $\{b_n\} \in N(\lambda)$ such that $G(a_n, \mu) = G(b_n, \lambda)$. In particular, $G_p(\mu)$ is irreducible if and only if $G_p(\lambda) = G_p(\mu)$ for every $\lambda \in G_p(\mu)$. It is evident that o-stable limit sets are irreducible. The limit set $G(a_n, \mu_n)$ appearing in Example 2.2 is also irreducible. One can easily check that the limit set from Example 2.1 is not irreducible.

THEOREM 3.2. Let $\mu \in Q$, $\{a_n\} \in N(\mu)$ and suppose that $G(a_n, \mu)$ is a \sim selector. There exist then $\lambda \in G(a_n, \mu)$ and $\{b_n\} \in N(\lambda)$ such that $G(b_n, \lambda) \subset G(a_n, \mu)$ and the limit set $G(b_n, \lambda)$ is irreducible.

Proof. By Proposition 2.3 and Theorem 2.1 we may restrict our attention to the case $G(a_n, \mu) = G_p(\mu)$ for some p > 0. Consider the family of limit sets $F = \{G_p(\nu) \colon \nu \in G_p(\mu)\}$. This is a family of compact sets. Consequently, if $\nu_n \in G_p(\mu)$ and $G_p(\nu_n) \supset G_p(\nu_{n+1})$ $(n=1, 2, \ldots)$, then $\bigcap_{n=1}^{\infty} G_p(\nu_n) \neq \emptyset$. Let $\sigma \in \bigcap_{n=1}^{\infty} G_p(\nu_n)$. Then, by Corollary 3.1, $G_p(\sigma) \subset \bigcap_{n=1}^{\infty} G_p(\nu_n)$. Applying Brouwer's theorem to the family F ([10], Ch. 4, § 42, IV) we infer that there exists $\lambda \in G_p(\mu)$ fulfilling the condition: $A = G_p(\lambda)$ whenever $A \subset G_p(\lambda)$ and $A \in F$. It is clear that $G_p(\lambda)$ is irreducible, which completes the proof.

Before going on we recall a few simple properties of \circ -infinitely divisible probability measures. For regular generalized convolutions \circ -infinitely divisible measures were studied in [14] and [15]. Here we consider arbitrary generalized convolutions. We say that a probability measure μ from P is \circ -infinitely divisible if for every positive integer n there exists a measure $\mu_n \in P$ such that $\mu = \mu_n^{\circ n}$. It is easily seen that in the case of the max-convolution each measure from P is infinitely divisible.

LEMMA 3.1. Let $n_1 < n_2 < ..., \lambda, \mu_k \in P$ (k = 1, 2, ...) and $\mu^{\circ n_k} \to \lambda$. Then λ is 0-infinitely divisible.

Proof. For the max-convolution our assertion is evident. Consequently, we may assume that $\kappa < \infty$. Let m be an arbitrary positive integer and $p_k = [n_k/m]$ (k = 1, 2, ...). Write $n_k = mp_k + q_k$ where $0 \le q_k < m$. By Lemma 2.3 in [19] we have $\mu_k \to \delta_0$. Consequently,

Since $\mu_k^{\circ n_k} = (\mu_k^{\circ p_k})^{\circ m} \circ \mu_k^{\circ q_k}$, we infer, by Corollary 2.3 in [20], that the sequence $\mu_k^{\circ p_k}$ is conditionally compact in P. Let λ_m be its cluster point. Taking into account (3.2) we get $\lambda = \lambda_m^{\circ m}$, which completes the proof.

As an immediate consequence of the above lemma we get the following proposition.

PROPOSITION 3.2. Let $\mu \in Q$ and $\{a_n\} \in N(\mu)$. Then each measure from $G(a_n, \mu)$ is 0-infinitely divisible.

Let λ be a 0-infinitely divisible probability measure. Since $\lambda = \lambda_2^{\circ 2}$ for some $\lambda_2 \in P$ we infer that $\hat{\lambda}(t) = (\hat{\lambda}_2(t))^2 \ge 0$. We note that in the case $\kappa < \infty$ we have, by Lemma 2.4 in [19], an even stronger result: $\hat{\lambda}(t) > 0$ m_0 -almost everywhere.

Lemma 3.2. Let λ be a 0-infinitely divisible measure. Then for every positive number u, $(\hat{\lambda}(t))^u$ is the weak characteristic function of a probability measure.

Proof. Denote by W the set of all rational numbers of the form r/(2s+1) $(s=0,1,\ldots;r=1,2,\ldots)$. It is easily seen that $v-w\in W$ whenever v>w and $v,w\in W$. Suppose that $\lambda=\lambda_n^{\circ n}$ or, equivalently,

(3.3)
$$\hat{\lambda}(t) = \left(\hat{\lambda}_n(t)\right)^n \quad (n = 1, 2, \ldots)$$

 m_0 -almost everywhere. Given an arbitrary positive number u, we can choose $w_k \in W$ (k = 1, 2, ...) and $v \in W$ with the properties $w_k < u < v$ and $w_k \to u$. Setting

$$w_k = \frac{r_k}{2s_k + 1}, \quad v = \frac{p}{2q + 1}, \quad v - w_k = \frac{n_k}{2m_k + 1}$$

we have, by virtue of (3.3),

$$(\lambda_{2s_k+1}^{\circ r_k})^{\wedge}(t) = (\hat{\lambda}(t))^{w_k}, \qquad (\lambda_{2q+1}^{\circ p})^{\wedge}(t) = (\hat{\lambda}(t))^{\nu},$$
$$(\lambda_{2m_k+1}^{\circ n_k})^{\wedge}(t) = (\hat{\lambda}(t))^{v-w_k}$$

mo-almost everywhere. Hence

$$\lambda_{2s_k+1}^{\text{or}_k} \circ \lambda_{2m_k+1}^{\text{on}_k} = \lambda_{2q+1}^{\text{op}} \quad (k=1, 2, \ldots),$$

which, by Corollary 2.3 in [20], shows that the sequence $\lambda_{2s_k+1}^{\circ r_k}$ is conditionally compact in P. Let ν be its cluster point. Then $\hat{\nu}(t) = (\hat{\lambda}(t))^{\mu}$, which completes the proof.

From now on, for every 0-infinitely divisible measure λ and u > 0, $\lambda^{\circ u}$ will denote the measure with the weak characteristic function $(\hat{\lambda}(t))^{\mu}$.

PROPOSITION 3.3. Let $\mu \in Q$ and $\{a_n\} \in N(\mu)$. Then for every $\lambda \in G(a_n, \mu)$ we have

$$\{\lambda^{\circ u}: u>0\} \subseteq G(a_n, \mu).$$

Moreover, if $G(a_n, \mu)$ is $a \sim \text{selector}$, then there exists a positive continuous function c(u) on the half-line $(0, \infty)$ such that $T_{c(u)}\lambda^{\circ u} \in G(a_n, \mu)$.

Proof. Let $\lambda \in G(a_n, \mu)$. By Lemma 4 in [18] for every positive rational number w there exists a positive number c such that $T_c \lambda^{ow} \in G(a_n, \mu)$. Now the compactness of $G(a_n, \mu)$ and the continuity of the relation \sim on $P \setminus \{\delta_0\}$ yield the assertion.

Given a 0-infinitely divisible measure λ we put $\Delta(\lambda) = \{u: u > 1, \lambda \sim \lambda^{ou}\}$. Since $(T_a \lambda)^{ou} = T_a \lambda^{ou}$ (a, u > 0), we infer that the set $\Delta(\lambda)$ is either empty or a closed multiplicative subsemigroup of the half-line $(1, \infty)$. Put $d(\lambda) = \inf \Delta(\lambda)$ if $\Delta(\lambda)$ is nonempty and $d(\lambda) = \infty$ otherwise.

Proposition 3.4. Let λ be a 0-infinitely divisible measure other than δ_0 . Then $d(\lambda) = 1$ if and only if λ is 0-stable.

Proof. If λ is 0-stable, then, by Proposition 3.3, $\lambda \sim \lambda^{\circ u}$ for all u > 0. Consequently, $\Delta(\lambda) = (1, \infty)$, which yields $d(\lambda) = 1$. Conversely, suppose that λ is 0-infinitely divisible, $\lambda \neq \delta_0$ and $d(\lambda) = 1$. Then $\Delta(\lambda)$ must be equal to $(1, \infty)$. Thus $\lambda \sim \lambda^{\circ n}$ for $n = 1, 2, \ldots$, which shows that λ is 0-stable.

A measure ν from P is said to be \circ -quasi-stable if $\nu \neq \delta_0$ and there exists a measure $\mu \in P$, a sequence $n_1 < n_2 < \ldots$ with $\lim_{k \to \infty} n_{k+1}/n_k = r < \infty$ and a norming sequence $\{c_k\}$ such that $T_{c_k} \mu^{\circ n_k} \to \nu$. The measure μ which can arise here belongs to the domain of partial attraction of ν . For ordinary convolution this notion has been introduced and studied by V. M. Kruglov in [9] and for generalized ones by R. Jajte in [6]. We note that, by Lemma 3.1, each \circ -quasi-stable measure is \circ -infinitely divisible. Moreover, each \circ -stable measure is \circ -quasi-stable.

Lemma 3.3. Let λ be a 0-quasi-stable measure, $\mu \in P$, $n_1 < n_2 < \dots$,

$$\lim_{k \to \infty} n_{k+1}/n_k = r$$

and $T_{c_k}\mu^{\circ n_k} \to \lambda$ for a norming sequence $\{c_k\}$. Then for every sequence $\{m_k\}$ of integers with $n_k \leqslant m_k \leqslant n_{k+1}$ $(k=1,2,\ldots)$ and $\lim_{k\to\infty} m_k/n_k = u$ the relation $T_{c_k}\mu^{\circ m_k} \to \lambda^{\circ u}$ holds.

Proof. By (3.4) there exists an integer s such that $n_{k+1} < sn_k$ (k = 1, 2, ...). Put $s_k = sn_k - m_k$ (k = 1, 2, ...). Then

$$T_{c_k} \mu^{\circ m_k} \circ T_{c_k} \mu^{\circ s_k} = (T_{c_k} \mu^{\circ n_k})^{\circ s} \to \lambda^{\circ s}$$

and, consequently, by Corollary 2.3 in [20] the sequence $T_{c_k} \mu^{\circ m_k}$ is conditionally compact in P. By Lemma 3.1 all its cluster points are o-infinitely divisible and, consequently, their weak characteristic functions being nonne-

gative are cluster points in the $L_1(m_0)$ -topology of $L_{\infty}(m_0)$ of the sequence of functions $(T_{c_k}\mu^{om_k})^{\wedge}(t)$. Since

$$|(T_{c_k} \mu^{\circ n_k}) \wedge (t)| \to \hat{\lambda}(t), \quad |(T_{c_k} \mu^{\circ m_k}) \wedge (t)| = |(T_{c_k} \mu^{\circ n_k}) \wedge (t)|^{m_k/n_k},$$

we conclude that all cluster points of the sequence $T_{c_k}\mu^{\circ m_k}$ have the same weak characteristic function $(\hat{\lambda}(t))^u$. In other words, $T_{c_k}\mu^{\circ m_k} \to \lambda^{\circ u}$, which completes the proof.

PROPOSITION 3.5. Let λ be a 0-infinitely divisible measure other than δ_0 . Then $d(\lambda) < \infty$ if and only if λ is 0-quasi-stable.

Proof. Suppose that λ is 0-quasi-stable and for a measure $\mu \in P$ and a norming sequence $\{c_k\}$

$$(3.5) T_{c_k} \mu^{\circ n_k} \to \lambda$$

where $n_1 < n_2 < \ldots$ and $\lim_{k \to \infty} n_{k+1}/n_k = r$. Passing to a subsequence if necessary we may assume without loss of generality that r > 1. Setting $m_k = n_{k+1}$ in Lemma 3.3 we get $T_{c_k} \mu^{\circ n_{k+1}} \to \lambda^{\circ r}$. On the other hand, by (3.5), $T_{c_{k+1}} \mu^{\circ n_{k+1}} \to \lambda$. Applying Lemma 1.1 from [16] we get $\lambda \sim \lambda^{\circ r}$. Thus

$$(3.6) d(\lambda) \leqslant r.$$

Conversely, suppose that λ is o-infinitely divisible, $\lambda \neq \delta_0$ and $d(\lambda) < \infty$. By Proposition 3.4 we may restrict ourselves to the case $d(\lambda) = r > 1$. There exists then a positive constant c such that $\lambda = T_c \lambda^{cr}$. Inductively we get

(3.7)
$$\lambda = T_{k} \lambda^{\text{or}^{k}} \quad (k = 1, 2, \ldots).$$

First we shall prove that c < 1. Contrary to this, suppose that $c \ge 1$. If c = 1, then, by (3.7), $\lambda = \lambda^{\circ r^k}$ (k = 1, 2, ...), which yields $\hat{\lambda}(t) = (\hat{\lambda}(t))^{r^k}$ (k = 1, 2, ...). Letting $k \to \infty$ we infer that the function $\hat{\lambda}(t)$ takes the values 1 and 0 only. Thus for every u > 0, $(\hat{\lambda}(t))^u = \hat{\lambda}(t)$ or, equivalently, $\lambda^{\circ u} = \lambda$. This yields $d(\lambda) = 1$, which contradicts the assumption. Further, if c > 1 then, by (3.7), $\lambda \circ \lambda^{\circ (r^k - 1)} = T_{c-k} \lambda \to \delta_0$, which, by Corollary 2.4 in [20], implies the contradiction $\lambda = \delta_0$. This completes the proof of the inequality c < 1.

Put $n_k = [r^k]$, $c_k = c^k$ and $p_k = r^k - n_k$ (k = 1, 2, ...). Of course $\lim_{k \to \infty} n_{k+1}/n_k = r$ and $0 \le p_k < 1$ (k = 1, 2, ...). Since

$$T_{ck} \lambda^{\circ p_k} \circ T_{ck} \lambda^{\circ (1-p_k)} = T_{ck} \lambda \to \delta_0,$$

we have, by Corollary 2.4 in [20], $T_{ck}\lambda^{\circ p_k} \to \delta_0$. From (3.7) the formula

$$T_{ak}\lambda^{\circ n_k} \circ T_{ak}\lambda^{\circ p_k} = \lambda$$

follows. Now taking into account Corollary 2.3 in [20] we have $T_{c_k}\lambda^{\circ n_k} \to \lambda$, which shows that λ is o-quasi-stable. The proposition is thus proved.

A limit set $G(a_n, \mu)$ is said to be o-quasi-stable if there exists a o-quasi-stable measure λ called the generator of $G(a_n, \mu)$ such that $G(a_n, \mu) \sim \{\lambda^{\circ u}: 1 \leq u \leq d(\lambda)\}$. By Proposition 3.4 each o-stable limit set is o-quasi-stable.

Proposition 3.6. Each 0-quasi-stable measure is the generator of a 0-quasi-stable limit set.

Proof. Suppose that λ is 0-quasi-stable and for a measure $\mu \in P$ and a norming sequence $\{c_k\}$, $T_{c_k} \mu^{\circ n_k} \to \lambda$ where $n_1 < n_2 < \ldots$ and $\lim_{k \to \infty} n_{k+1}/n_k = r$. By Propositions 3.4 and 3.5 we have $d(\lambda) < \infty$. Moreover, one can easily prove the relations

$$(3.8) \{\lambda^{\circ u}: 1 \leqslant u \leqslant d(\lambda)\} \sim \{\lambda^{\circ u}: 1 \leqslant u \leqslant r\} \sim \{\lambda^{\circ u}: u > 0\}.$$

Put $a_n = c_k$ if $n_k \le n < n_{k+1}$. Then, by Lemma 3.3, $\mu \in Q$, $\{a_n\} \in N(\mu)$ and $G(a_n, \mu) = \{\lambda^{ou}: 1 \le u \le r\}$. Now our assertion is a consequence of (3.8).

Let A be a subset of P. A point μ of A is said to be regular if each neighbourhood U of μ contains a neighbourhood V of μ such that the set $A \cap Fr(V)$ is finite (see [10], Ch. 6, § 51, I). The set of all regular points of A will be denoted by reg(A).

The following theorem gives a relationship between topological and probabilistic properties of limit sets.

Theorem 3.3. Let A be a limit set. Then the following conditions are equivalent:

- (i) A is a ~ selector and o-quasi-stable.
- (ii) A is irreducible and either a one-point set or homeomorphic to a circle.
 - (iii) A is irreducible and $reg(A) \neq \emptyset$.

Proof. By Propositions 2.1 and 2.3 and Theorem 2.1 it suffices to prove the theorem for limit sets of the form $A = G_p(\mu)$ where p > 0 and $\mu \in Q$.

(i) \Rightarrow (ii). Suppose that $G_p(\mu)$ is 0-quasi-stable with a generator λ . There exists then a continuous positive function c(u) on the interval $[1, d(\lambda)]$ such that $G_p(\mu) = \{T_{c(u)} \lambda^{ou}: 1 \le u \le d(\lambda)\}$. Introducing the notation $\lambda_u = T_{c(u)} \lambda^{ou}$ we have $G_p(\mu) = \{\lambda_u: 1 \le u \le d(\lambda)\}$ and $\lambda_1 = \lambda_{d(\lambda)}$. Suppose that $1 \le u \le v \le d(\lambda)$ and $\lambda_u = \lambda_v$. Then $\lambda^{ou} \sim \lambda^{ov}$, which by the formula $(T_a \lambda)^{ou} = T_a(\lambda^{ou})$, yields $\lambda \sim \lambda^{oq}$ where q = v/u. Consequently, by the definition of $d(\lambda)$, we have $q \ge d(\lambda)$, which implies u = 1 and $v = d(\lambda)$. Thus the map $u \to \lambda_u$ is one-to-one on $[1, d(\lambda)]$. It follows that $G_p(\mu)$ is a one-point set if $d(\lambda) = 1$ and it is homeomorphic to a circle if $d(\lambda) > 1$. Further, taking into account Proposition 3.3 we have $G_p(\mu) = G_p(\lambda_u)$ for every $u \in [1, d(\lambda)]$, which shows that $G_p(\mu)$ is irreducible.

The implication (ii) \Rightarrow (iii) is evident.

(iii) \Rightarrow (i). Suppose that $G_p(\mu)$ is irreducible and $\operatorname{reg}(G_p(\mu)) \neq \emptyset$. Let $\lambda \in \operatorname{reg}(G_p(\mu))$. Then

$$(3.9) G_p(\mu) = G_p(\lambda),$$

which yields $\lambda \in G_p(\lambda)$. First we shall prove that $d(\lambda) < \infty$.

Contrary to this, suppose that $d(\lambda) = \infty$. By Proposition 3.3 there exists a positive continuous function c(u) on the half-line $(0, \infty)$ such that $T_{c(u)}\lambda^{\circ u} \in G_p(\lambda)$. Put for brevity $\lambda_u = T_{c(u)}\lambda^{\circ u}$ and $\langle a,b \rangle = \{\lambda_u : a \leq u \leq b\}$ $(0 < a < b < \infty)$. Since $d(\lambda) = \infty$, we infer that $G_p(\lambda)$ is infinite, $\langle a,b \rangle$ is a homeomorphic image of the interval [a,b] and $\langle a,b \rangle \cap \langle a',b' \rangle = \emptyset$ whenever $[a,b] \cap [a',b'] = \emptyset$. Let $v \in G_p(\lambda)$ and $v \neq \lambda$. We can choose neighbourhoods U_1 and U_2 of λ and ν respectively such that $U_1 \cap U_2 = \emptyset$. Since $G_p(\lambda)$ is a \sim selector, we infer that both λ and ν are cluster points of the sequence $\{\lambda_n\}$. Given an arbitrary neighbourhood V of λ , for every positive integer k we can choose a pair n_k , m_k of positive integers with $k \leq n_k < m_k$, $\lambda_{n_k} \in V$ and $\lambda_{m_k} \in U_2$. It is clear that $\langle n_k, m_k \rangle \cap \operatorname{Fr}(V) \neq \emptyset$. Taking an infinite subsequence of disjoint intervals $[n_k, m_k]$ we conclude that $G_p(\mu) \cap \operatorname{Fr}(V)$ is infinite, which contradicts the assumption $\lambda \in \operatorname{reg}(G_p(\mu))$. Thus $d(\lambda) < \infty$.

Now taking into account Proposition 3.5 we infer that λ is 0-quasistable, which immediately yields the equality $G_p(\lambda) = \{\lambda_u: 1 \le u \le d(\lambda)\}$. Thus, by (3.9), $G_p(\mu)$ is 0-quasi-stable, which completes the proof.

We note that the limit set $G(a_n, \mu)$ in Example 1.1 is a \sim selector homeomorphic to a circle, but is not o-quasi-stable. This shows that the assumption of irreducibility in conditions (ii) and (iii) in the last theorem is essential and cannot be replaced by the assumption that the limit set is a \sim selector.

4. Regular convolutions. Throughout this section we assume that the convolution in question is regular. Then the kernel Ω of the weak characteristic function (1.2) is continuous and the continuous version of $\hat{\mu}$ is called the characteristic function of μ . In this case the convergence in the $L_1(m_0)$ -topology of $L_{\infty}(m_0)$ is equivalent to the uniform convergence on every compact subset of R_+ (see [16], Lemma 4.5). From now on $\hat{\mu}$ will denote the characteristic function of μ . By Theorem 7 in [14] the characteristic exponent κ is finite and

$$(4.1) 1 - \Omega(x) = x^{x} L(x)$$

where the function L is slowly varying at the origin. Moreover, the kernel Ω satisfies the inequality $\Omega(x) < 1$ in a neighbourhood $0 < x < x_0$. Changing the scale $\Omega(x) \to \Omega(ax)$ (a > 0) we get another kernel of a characteristic function. Consequently, we may assume without loss of generality that $x_0 > 1$, i.e. $\Omega(x) < 1$ if $x \in [0, 1]$. Let $\omega(x) = 1 - \Omega(x)$ if $x \in [0, 1]$ and $\omega(x)$

166

 $= 1 - \Omega(1)$ otherwise. M. Kłosowska proved in [8], Lemma 1, the following formula:

(4.2)
$$\lim_{x \to 0} \frac{\omega(x)}{x^{\alpha}} = \frac{1}{m_{\alpha}(\sigma_{\alpha})}$$

where σ_x is the characteristic measure of o. Moreover, it has been proved in [14], Theorem 13, that a measure μ from P is o-infinitely divisible if and only if its characteristic function is of the form

$$\hat{\mu}(t) = \exp \int_{0}^{\infty} \frac{\Omega(tx) - 1}{\omega(x)} M(dx),$$

where M is a finite Borel measure on R_+ and the integrand is assumed to be $-t^{\varkappa}$ if x=0. By Theorem 1 in [15] this representation is unique. In the sequel we shall use the notation $\mu=e(M)$. In particular, $\sigma_{\varkappa}=e(\delta_0)$ and $\delta_0=e(0)$. One can easily prove the formulae

(4.3)
$$e(M+N) = e(M) \circ e(N), \quad e(M)^{\circ u} = e(uM) \quad (u > 0),$$

(4.4)
$$T_a e(M) = e(M_a) \quad (a > 0)$$

where $M_a(E) = \int_{a-1_E} (\omega(ax)/\omega(x)) M(dx)$ and the integrand is assumed to be a^{κ} if x = 0. We note that, by Lemma 3 in [18], for regular convolutions we have $\lim_{n\to\infty} a_n = 0$ for all $\mu \in Q$ and all $\{a_n\} \in N(\mu)$.

Given $\mu \in P$ we put $\tilde{\mu}(E) = \int_E \omega(x) \, \mu(dx)$. By Jurek's theorem on accompanying laws ([7], p. 115) we have the following statement.

PROPOSITION 4.1. $\mu \in Q$ if and only if $e(\widetilde{\mu}) \in Q$. Moreover, $N(\mu) = N(e(\widetilde{\mu}))$ and $G(a_n, \mu) = G(a_n, e(\widetilde{\mu}))$ for any $\{a_n\} \in N(\mu)$.

Further, taking into account Theorem 2 in [7] on convergence of o-infinitely divisible measures and the formula $T_a e(\tilde{\mu})^{\circ n} = e(n(T_a \mu)^{\sim})$ (a > 0) we obtain the following criterion.

PROPOSITION 4.2. $\mu \in Q$ and $\{a_n\} \in N(\mu)$ if and only if the sequence of measures $n(T_{a_n}\mu)^{\sim}$ is conditionally compact and the measure identically vanishing is not its cluster point. If $H(a_n, \mu)$ is the set of all cluster points of the sequence $n(T_{a_n}\mu)^{\sim}$, then

$$G(a_n, \mu) = \{e(M): M \in H(a_n, \mu)\}.$$

LEMMA 4.1. Let $\mu \in Q$ and $\{a_n\} \in N(\mu)$. Then

$$\int_{0}^{\infty} \frac{M(dx)}{\omega(x)} = \infty$$

for all $M \in H(a_n, \mu)$.

Proof. Suppose the contrary, i.e.

$$c = \int_{0}^{\infty} \frac{M(dx)}{\omega(x)} < \infty$$

for a measure $M \in H(a_n, \mu)$. Since, by Proposition 4.2, M does not vanish identically, we have c > 0. Put

$$\nu(E) = c^{-1} \int_{E} \frac{M(dx)}{\omega(x)}.$$

Evidently $v \in P$ and the measure λ defined by the formula

$$\lambda = e^{-c} \delta_0 + \sum_{k=1}^{\infty} e^{-c} \frac{c^k}{k!} v^{\circ k}$$

also belongs to P. Moreover,

$$\lambda(\{0\}) \geqslant e^{-c}$$

and $\hat{\lambda}(t) = \exp(c\hat{v}(t) - c) = e(M)^{(t)}$, which, by Proposition 4.2, yields $\lambda \in G(a_n, \mu)$. From Lemma 5 in [18] we get $\lambda(\{0\}) = 0$, which contradicts (4.5). The lemma is thus proved.

Given $\mu \in P$ we introduce the notation

$$F_{\mu}(x) = \int_{0}^{x} \omega(y/x) \,\mu(dx) \qquad (x > 0).$$

It is clear that the function F_{μ} is continuous on the right, the left-hand limit $F_{\mu}(x-)$ exists and

(4.6)
$$F_{\mu}(x-) = F_{\mu}(x) - \omega(1)\,\mu(\{x\}) \qquad (x>0).$$

Moreover,

$$\lim_{x \to \infty} F_{\mu}(x) = 0.$$

Put for $\mu \in P \setminus \{\delta_0\}$ and n = 1, 2, ...

$$B_n(\mu) = \{t: \ t \ge 0, \ n(1 - \int_0^1 \hat{\mu}(tx) \, dx) = 1\},$$

$$D_n(\mu) = \{z: \ z > 0, \ nF_n(z^{-1}) \ge 1\}.$$

Since the characteristic function $\hat{\mu}$ is continuous, $\hat{\mu}(0) = 1$, $|\hat{\mu}(t)| \leq 1$ for all $t \in \mathbb{R}_+$ and $\hat{\mu}$ is not identically zero we infer that the sets $B_n(\mu)$ are nonvoid for n large enough. The sets $D_n(\mu)$ are also nonvoid for sufficiently large n

Generalized convolutions V

because F_{μ} does not vanish identically. Consequently, there exists an index n_0 such that both $B_n(\mu)$ and $D_n(\mu)$ are nonvoid for $n \ge n_0$. Define

$$b_n(\mu) = \min B_n(\mu), \quad d_n(\mu) = \inf D_n(\mu) \quad \text{for } n \ge n_0,$$

$$b_n(\mu) = b_{n_0}(\mu),$$
 $d_n(\mu) = d_{n_0}(\mu)$ for $n < n_0$.

It is clear, by (4.7), that $d_n(\mu) > 0$ (n = 1, 2, ...), $d_n(\mu) \to 0$ and, by (4.6),

(4.8)
$$nF_{\mu}(d_n^{-1}(\mu)) \geqslant 1 \quad (n \geqslant n_0).$$

Lemma 4.2. Let $\mu \neq \delta_0$. Then $d_{n+1}(\mu) < d_n(\mu)$ and $nF_{\mu}(d_n^{-1}(\mu)) = 1$ for $n \ge n_0$.

Proof. Given $n \ge n_0$ we have, by the definition of $d_n(\mu)$, the inequality $nF_{\mu}(z^{-1}) < 1$ for $z \in (0, d_n(\mu))$. Hence, by the continuity of F_{μ} on the right, $nF_{\mu}(d_n^{-1}(\mu)) \le 1$. Comparing this with (4.8) we get $nF_{\mu}(d_n^{-1}(\mu)) = 1$. Now the inequality $(n+1)F_{\mu}(d_n^{-1}(\mu)) > 1$ yields $d_n(\mu) > d_{n+1}(\mu)$, which completes the proof.

LEMMA 4.3. Let $\mu \in Q$ and $\{a_n\} \in N(\mu)$. There exists then a positive integer s such that $a_n > d_{sn}(\mu)$ (n = 1, 2, ...).

Proof. By Proposition 4.2 the sequence of measures $n(T_{a_n}\mu)^{\sim}$ is conditionally compact and

$$\liminf_{n\to\infty} n(T_{a_n}\mu)^{\sim}([0,1)) \geqslant b$$

where $b = \inf \{M([0, 1)): M \in H(a_n, \mu)\}$. Since the set $H(a_n, \mu)$ is compact, we have, by Lemma 4.1, b > 0. Observe that $nF_{\mu}(a_n^{-1}) = n(T_{a_n}\mu)^{-1}([0, 1])$ ($n = 1, 2, \ldots$). Consequently, we can find a positive integer s such that $nF_{\mu}(a_n^{-1}) > s^{-1}$ ($n = 1, 2, \ldots$). For $n \ge n_0$ the inequality $snF_{\mu}(a_n^{-1}) > 1$ yields $a_n > d_{sn}(\mu)$, which completes the proof.

LEMMA 4.4. Let $\mu \in P$ and $\mu \neq \delta_0$. There exists then a positive integer r such that $d_n(\mu) \geqslant b_{rn}(\mu)$ for $n \geqslant n_0$.

Proof. Put

$$g(x) = \inf \{ \omega(xz)/\omega(z) \colon 0 < z \le 1 \}.$$

Taking into account (4.1) we have g(x) > 0 for x > 0. Moreover, for u > 0 and $x \in (0, 1]$

$$F_{\mu}(x^{-1}u) \geqslant \int_{0}^{u} \omega(xy/u) \,\mu(dy) \geqslant g(x) \,F_{\mu}(u).$$

Hence, setting for brevity $d_n = d_n(\mu)$, we get

$$n\left(1 - \int_{0}^{1} \hat{\mu}(d_{n} x) dx\right) \ge n \int_{0}^{1} \int_{0}^{d_{n}^{-1} x^{-1}} \left(1 - \Omega\left(d_{n} xy\right)\right) \mu(dy) dx$$

$$= n \int_{0}^{1} F_{\mu}(d_{n}^{-1} x^{-1}) dx \ge n F_{\mu}(d_{n}^{-1}) \int_{0}^{1} g(x) dx.$$

Taking a positive integer r satisfying the inequality $r^{-1} < \int_0^1 g(x) dx$ and observing that, by Lemma 4.2, $nF_{\mu}(d_n^{-1}) = 1$ for $n \ge n_0$ we get

$$rn\left(1-\int_{0}^{1}\hat{\mu}(d_{n}x)\,dx\right)>1\qquad(n\geqslant n_{0}),$$

which yields $d_n > b_{rn}(\mu)$ for $n \ge n_0$. The lemma is thus proved.

PROPOSITION 4.3. If $\mu \in Q$, then $\{d_n(\mu)\} \in N(\mu)$.

Proof. It follows from Theorem 3.3 in [19] that $\{b_n(\mu)\} \in N(\mu)$. Consequently, by Lemmas 4.3 and 4.4 there exist positive integers s and r such that $b_n(\mu) \ge d_{sn}(\mu)$ and $d_n(\mu) \ge b_{rn}(\mu)$ for $n \ge n_0$. The last inequality implies $d_{sn}(\mu) \ge b_{srn}(\mu)$ ($n \ge n_0$). Taking into account Corollary 1 in [18] we get $b_{srn}(\mu) \ge ab_n(\mu)$ (n = 1, 2, ...) where a is a positive constant. Thus $b_n(\mu) \ge d_{sn}(\mu) \ge ab_n(\mu)$ for $n \ge n_0$, which, by Lemma 1 in [18], yields $\{d_{sn}(\mu)\} \in N(\mu)$. Since, by Lemma 4.2, the sequence $\{d_n(\mu)\}$ is nonincreasing, the last relation and Lemma 3.1 in [19] imply $\{d_n(\mu)\} \in N(\mu)$, which completes the proof.

The following result is an analogue of Feller's criterion established for the ordinary convolution in [3], p. 387.

THEOREM 4.1. $\mu \in Q$ if and only if $\mu \neq \delta_0$ and

(4.9)
$$\limsup_{x \to \infty} \mu((x, \infty)) / \int_{0}^{x} \omega(y/x) \, \mu(dy) < \infty.$$

Proof. Necessity. Suppose that $\mu \in Q$. Then $\mu \neq \delta_0$ and, by Proposition 4.3, $\{d_n(\mu)\} \in N(\mu)$. Put for brevity $d_n = d_n(\mu)$ and $x_0 = d_{n_0}^{-1}$ where n_0 is determined in the definition of $d_n(\mu)$. Then for every $x \ge x_0$ we can choose an index $k \ge n_0$ such that $d_k^{-1} \le x < d_{k+1}^{-1}$. Setting

$$a = \sup \{n\mu((d_n^{-1}, \infty)): n = 1, 2, \ldots\}$$

we have, by Lemma 2.6 in [19], $a < \infty$. Moreover, $k\mu((x, \infty)) \le k\mu((d_k^{-1}, \infty)) \le a$. Since, by Lemma 4.2, $kF_{\mu}(d_k^{-1}) = 1$ the last inequality yields

(4.10)
$$\mu((x, \infty)) \leq aF_{\mu}(d_k^{-1}).$$

Further, by Corollary 1 in [18], we have

$$b = \sup \{d_n/d_{n+1}: n = 1, 2, \ldots\} < \infty.$$

Setting

(4.11)
$$h(u) = \sup \{ \omega(zv) / \omega(z) \colon 0 < z \le 1, \ 0 \le v \le u \}$$

for $u \ge 0$ we get, by (4.1), a nondecreasing function with $h(u) < \infty$ and

(4.12)
$$\lim_{u \to 0} h(u) = 0.$$

Moreover, it is easy to check that

$$(4.13) F_{\mu}(xt) \leq h(t^{-1}) F_{\mu}(x)$$

for $t \in (0, 1]$. Substituting $t = d_k^{-1} x^{-1}$ in this inequality we obtain

$$F_{\mu}(d_k^{-1}) \leq h(xd_k) F_{\mu}(x) \leq h(b) F_{\mu}(x),$$

which together with (4.10) yields

$$\mu((x, \infty)) \leq ah(b)F_{\mu}(x)$$

for $x \ge x_0$. The necessity of condition (4.9) is thus proved.

Sufficiency. Suppose that (4.9) is fulfilled and $\mu \neq \delta_0$. For simplicity of notation we put $d_n = d_n(\mu)$ and $M_n = n(T_{d_n}\mu)^{\sim}$ (n = 1, 2, ...). By Proposition 4.2 it suffices to prove that the sequence of measures $\{M_n\}$ is conditionally compact and the measure vanishing identically is not its cluster point.

Denote by s the left-hand side of (4.9). Since $\omega(t) \leq 2$ for all $t \geq 0$, we have

$$M_n(\mathbf{R}_+) = n \int_0^\infty \omega(d_n x) \, \mu(dx) \le n F_\mu(d_n^{-1}) + 2n \mu((d_n^{-1}, \, \infty)),$$

which, by (4.9) and Lemma 4.2, yields $\limsup_{n\to\infty} M_n(R_+) \le 1+2s$. Hence the sequence of measures $\{M_n\}$ is conditionally compact on the compactified half-line $[0, \infty]$. Consequently, each its subsequence contains a subsequence $\{M_{n_k}\}$ converging on $[0, \infty]$.

Assume that

$$(4.14) M_{n_k} \to M + q\delta_{\infty}$$

where $q \ge 0$ and M is concentrated on R_+ . Define the auxiliary functions f_a (a > 1) on R_+ by setting $f_a(x) = x\omega(a^{-1})$ in [0, 1], $\omega(a^{-1}x)$ in [1, a], $\omega(1)(1+a-x)$ in (a, 1+a), and 0 in $[1+a, \infty)$. It is evident that the functions f_a (a > 1) are continuous, uniformly bounded and

$$\lim_{a \to \infty} f_a(x) = 0$$

for every $x \in \mathbb{R}_+$. Moreover, by (4.13),

(4.16)
$$\int_{0}^{\infty} f_a(x) M_{n_k}(dx) \to \int_{0}^{\infty} f_a(x) M(dx)$$

for every a > 1. Let h be the function defined by (4.11). Taking into account (4.12) and (4.15), for every $\varepsilon > 0$ we can find b > 1 such that

(4.17)
$$h(b^{-1}) < \varepsilon, \qquad \int_{0}^{\infty} f_b(x) M(dx) < \varepsilon.$$

Since

$$nF_{\mu}(bd_{n}^{-1}) = n \int_{0}^{d_{n}^{-1}} \omega(d_{n}xb^{-1}) \mu(dx) + \int_{1}^{b} \omega(x/b) M_{n}(dx),$$
$$\int_{1}^{b} \omega(x/b) M_{n}(dx) \leq \int_{0}^{\infty} f_{b}(x) M_{n}(dx)$$

and, by Lemma 4.2

$$n \int_{0}^{d_{n}^{-1}} \omega(d_{n}xb^{-1}) \mu(dx) \leqslant h(b^{-1}) nF_{\mu}(d_{n}^{-1}) = h(b^{-1}),$$

we have, by (4.16) and (4.17),

$$\limsup_{k\to\infty}n_k F_{\mu}(bd_{n_k}^{-1})\leqslant 2\varepsilon,$$

which, by (4.9), implies the inequality

(4.18)
$$\limsup_{k\to\infty} n_k \,\mu\big((bd_{n_k}^{-1},\,\infty)\big) \leqslant 2\varepsilon s.$$

Since $\omega(t) \le 2$ for $t \ge 0$ we have

$$M_n((b, \infty)) = n \int_{bd_n^{-1}}^{\infty} \omega(d_n x) \, \mu(dx) \leqslant 2n\mu((bd_n^{-1}, \infty)).$$

Consequently, form (4.18) the inequality

$$\limsup_{k\to\infty} M_{n_k}((b,\,\infty)) \leqslant 4\varepsilon s$$

follows. By the arbitrariness of ε this shows that the sequence $\{M_{n_k}\}$ is conditionally compact on R_+ and, by (4.14), $M_{n_k} \to M$. Since $M_n([0, 1]) = nF_\mu(d_n^{-1}) = 1$, we conclude that the limit measure M does not vanish identically. This proves that the sequence of measures $\{M_k\}$ is conditionally compact on R_+ and the measure vanishing identically is not its cluster point, which completes the proof.

The following theorem has been proved in [1] and [8] under the additional assumption $m_{\kappa}(\sigma_{\kappa}) < \infty$.

THEOREM 4.2. A measure μ from P belongs to the domain of attraction of the characteristic measure σ_x if and only if $\mu \neq \delta_0$ and

(4.19)
$$\lim_{x \to \infty} \mu((x, \infty)) / \int_0^x \omega(y/x) \, \mu(dy) = 0.$$

Proof. Sufficiency. Suppose that (4.19) is fulfilled and $\mu \neq \delta_0$. Then, by Theorem 4.1, $\mu \in Q$ and, consequently, by Proposition 4.3, $\{d_n(\mu)\} \in N(\mu)$. Put for brevity $d_n = d_n(\mu)$ and $M_n = n(T_{d_n}\mu)^{\sim}$ (n = 1, 2, ...). Let $a \in (0, 1]$. Then, by (4.13) and Lemma 4.2,

$$nF_{\mu}(ad_n^{-1}) \leq nh(a^{-1})F_{\mu}(d_n^{-1}) = h(a^{-1}),$$

which together with the inequality

$$M_n((a, \infty)) \leq 2n\mu((ad_n^{-1}, \infty))$$

and (4.19) yields $\lim_{n\to\infty} M_n((a,\infty)) = 0$. Consequently, all measures M from $H(d_n,\mu)$ are concentrated at the origin, which, by (4.4), yields $e(M) \sim \sigma_{\kappa}$. Applying Proposition 4.2 we obtain $G(d_n,\mu) \sim \{\sigma_{\kappa}\}$. By Corollary 2.1 we can find a norming sequence $\{a_n\} \in N(\mu)$ such that $G(a_n,\mu)$ is a \sim selector. Then, by Proposition 2.1, $G(a_n,\mu) = \{T_c \sigma_{\kappa}\}$ for some c > 0. Thus $G(c^{-1} a_n,\mu) = \{\sigma_{\kappa}\}$, which shows that the condition in question is sufficient.

Necessity. Suppose that μ belongs to the domain of attraction of σ_{κ} . Obviously, $\mu \in Q$ and, by Proposition 2.1, $G(a_n, \mu) \sim \{\sigma_{\kappa}\}$ for every $\{a_n\} \in N(\mu)$. Observe that we can always choose a strictly decreasing norming sequence $\{b_n\}$ from $N(\mu)$. Indeed, by Proposition 4.3 and Lemma 4.2 it suffices to put $b_n = d_n(\mu)$ for $n \ge n_0$. Denote by s the left-hand side of (4.9). Since $b_n \to 0$, we can find a sequence $\{x_n\}$ fulfilling the conditions

$$(4.20) b_n^{-1} \leq x_n < b_{n+1}^{-1} (n = 1, 2, ...),$$

(4.21)
$$\limsup_{n\to\infty} \mu((x_n, \infty)) / \int_0^{x_n} \omega(y/x_n) \, \mu(dy) = s.$$

By Corollary 1 in [18] the sequence $\{b_{n+1}^{-1}b_n\}$ is bounded. Consequently, from (4.20) it follows that $1 \le x_n b_n$ (n = 1, 2, ...) and the sequence $\{x_n b_n\}$ is bounded, which, by Lemma 1 in [18], yields $\{x_n^{-1}\} \in N(\mu)$. Since $G(x_n^{-1}, \mu) \sim \{\sigma_n\}$, all measures from $H(x_n^{-1}, \mu)$ are concentrated at the origin and

$$c = \inf \{ M(\mathbf{R}_+) : M \in H(\mathbf{x}_n^{-1}, \mu) \} > 0.$$

Consequently, setting $M_n = n(T_{n-1}\mu)^{-1}$ (n = 1, 2, ...) and taking into account Proposition 4.2 we have $\lim_{n \to \infty} M_n((1, \infty)) = 0$ and $\lim_{n \to \infty} M_n([0, 1)) \ge c$. Since

$$M_n((1, \infty)) = n \int_{x_n}^{\infty} \omega(y/x_n) \,\mu(dy) = n\mu((x_n, \infty)) \,\omega(1),$$

$$M_n([0, 1]) = n \int_{0}^{\infty} \omega(y/x_n) \,\mu(dy),$$

we conclude, by (4.21), that s = 0, which completes the proof.

Suppose that $p > \varkappa$, $\mu \in P$, $\mu \neq \delta_0$ and $m_p(\mu) < \infty$. Let L be the slowly varying function appearing in (4.1). Then $\lim_{x\to 0} x^{x-p} L(x) = \infty$ ([13], p. 18). Consequently, $\lim_{x\to 0} \omega(x)/x^p = \infty$. Put

$$f(x) = \inf \left\{ \omega(y) / y^p \colon 0 < y \leqslant x \right\}.$$

Evidently, $\lim_{x\to 0} f(x) = \infty$. Taking a positive number b satisfying the condition $\int_0^b y^p \,\mu(dy) \geqslant \frac{1}{2} \, m_p(\mu)$ we have for $x \geqslant b$

$$x^{p} \int_{0}^{x} \omega(y/x) \, \mu(dy) \geqslant \int_{0}^{b} f(y/x) \, y^{p} \, \mu(dy) \geqslant \frac{1}{2} \, m_{p}(\mu) \, f(b/x),$$

which together with the standard inequality $x^p \mu((x, \infty)) \leq m_p(\mu)$ yields

$$\mu((x, \infty))/\int_{0}^{x} \omega(y/x) \,\mu(dy) \leqslant \frac{2}{f(b/x)} \quad .$$

for $x \ge b$. Letting $x \to \infty$ we get condition (4.19). Consequently, Theorem 4.2 yields the following corollary.

Corollary 4.1. Let $p > \kappa$. If $\mu \in P$, $\mu \neq \delta_0$ and $m_p(\mu) < \infty$, then μ belongs to the domain of attraction of the characteristic measure σ_{κ} .

From Klosowska and Bingham's description of the domain of attraction of σ_{κ} in [1] and [8] it follows that under the condition $m_{\kappa}(\sigma_{\kappa}) < \infty$ all measures μ from $P \setminus \{\delta_0\}$ with $m_{\kappa}(\mu) < \infty$ belong to the domain of attraction of σ_{κ} too. The converse implication is also true:

THEOREM 4.3. If all measures μ from $P \setminus \{\delta_0\}$ with $m_{\mathbf{x}}(\mu) < \infty$ belong to Q, then $m_{\mathbf{x}}(\sigma_{\mathbf{x}}) < \infty$.

Proof. Suppose the contrary. Then, by (4.2), $\lim_{x\to 0} \omega(x)/x^x = 0$. We define a sequence $c_1 < c_2 < \ldots$ of positive numbers recursively as follows. Put $c_1 = 1$. If c_1, \ldots, c_n are defined, then we take $c_{n+1} > c_n$ satisfying the condition

(4.22)
$$n \max \left\{ \omega \left(\frac{c_k}{c_{n+1}} \right) \left(\frac{c_k}{c_{n+1}} \right)^{-\kappa} : k = 1, ..., n \right\} < \frac{1}{2^{n+1}}.$$

Evidently, $c = \sum_{n=1}^{\infty} 2^{-n} c_n^{-\kappa} < \infty$. Put $p_n = c^{-1} 2^{-n} c_n^{-\kappa}$ (n = 1, 2, ...). Then $\sum_{n=1}^{\infty} p_n = 1$ and the measure $v = \sum_{n=1}^{\infty} p_n \delta_{c_n}$ belongs to P. Moreover, $m_{\kappa}(v) = c^{-1} < \infty$. Thus $v \in Q$ and, by Theorem 4.1, v fulfils condition (4.9). It is clear that $c_n \to \infty$ and for sufficiently large n condition (4.9) can be rewritten in the form

$$\sum_{k=n+1}^{\infty} p_k \leqslant b \sum_{k=1}^{n} p_k \omega(c_k/x)$$

where $x \in [c_n, c_{n+1})$ and b is a positive constant. Letting $x \to c_{n+1}$ and taking into account (4.22) we get

$$p_{n+1} < \sum_{k=n+1}^{\infty} p_k \leqslant b \sum_{k=1}^{n} p_k \omega (c_k/c_{n+1})$$

$$\leqslant b n^{-1} 2^{-n-1} c_{n+1}^{-\kappa} \sum_{k=1}^{n} c_k^{\kappa} p_k \leqslant \frac{b}{n} p_{n+1},$$

which yields a contradiction as $n \to \infty$. The theorem is thus proved.

We say that a 0-infinitely divisible measure λ has a \varkappa -component if there exist a positive number c and a 0-infinitely divisible measure ν such that $\lambda = T_c \sigma_{\varkappa} \circ \nu$. Taking the representation $\lambda = e(M)$ we infer that λ has a \varkappa -component if and only if $M(\{0\}) > 0$. It follows that each 0-infinitely divisible measure λ with a \varkappa -component has a unique decomposition $\lambda = T_c \sigma_{\varkappa} \circ \nu$ where c > 0 and ν is 0-infinitely divisible without a \varkappa -component.

Lemma 4.5. Suppose that $m_{\varkappa}(\sigma_{\varkappa}) < \infty$, $n_1 < n_2 < \ldots$, $c_k > 0$ ($k = 1, 2, \ldots$), $\limsup_{k \to \infty} n_k \, c_k^{\varkappa} > 0$, $v_k \to v \neq \delta_0$ and $T_{c_k} \, v_k^{\circ n_k} \to \lambda$. Then λ has a \varkappa -component.

Proof. First we observe that, by Lemma 3.1, the measure λ is oinfinitely divisible and, by Lemma 2.3 in [19], $c_k \to 0$. Taking the representation $\lambda = e(M)$ and setting $M_k = n_k(T_{c_k}v_k)$ (k = 1, 2, ...) we have, by Theorems 1 and 2 in [7], $M_k \to M$. Further, the assumption $m_{\kappa}(\sigma_{\kappa}) < \infty$ and formula (4.2) yield the inequality

$$a = \inf \{ \omega(y)/y^{\kappa} : 0 < y \le 1 \} > 0.$$

Since $v \neq \delta_0$, we can find a sufficiently large number x_0 such that $b = \int_0^{x_0} y^{\varkappa} v(dy) > 0$ and x_0 is not an atom of v. Given $x \in (0, 1]$ we have for $c_k \leq x_0^{-1} x$

$$M_{k}([0, x]) = n_{k} \int_{0}^{xc_{k}^{-1}} \omega(c_{k} y) \nu_{k}(dy)$$

$$\geqslant n_{k} \int_{0}^{x_{0}} \omega(c_{k} y) \nu_{k}(dy) \geqslant a n_{k} c_{k}^{x} \int_{0}^{x_{0}} y^{x} \nu_{k}(dy),$$

which yields

$$M([0, x]) \geqslant \limsup_{k \to \infty} M_k([0, x]) \geqslant ab \limsup_{k \to \infty} n_k c_k^{\kappa}.$$

Hence $M(\{0\}) > 0$, which shows that λ has a κ -component.

Theorem 4.4. The set Q_{κ} is contained in the domain of attraction of the characteristic measure σ_{κ} .

Proof. Suppose that $Q_x \neq \emptyset$, $\mu \in Q_x$ and $\lambda \in G_{\kappa}(\mu)$. It suffices to show that $\lambda \sim \sigma_{\kappa}$. By Lemma 4 in [18] we can choose a sequence $\{a_n\}$ of positive numbers such that $T_{a_n}\lambda^{\circ n} \in G_{\kappa}(\mu)$. Of course, $\{a_n\} \in N_{\kappa}(\lambda)$. Taking the representation $\lambda = e(M)$ and setting $M_n = n(T_{a_n}\lambda)^{\sim}$ we have $T_{a_n}\lambda^{\circ n} = e(M_n)$ ($n = 1, 2, \ldots$). Further, applying Theorem 1 from [17] we get

$$(4.23) 1 = m_{\kappa}(T_{a_n}\lambda^{\circ n}) = na_n^{\kappa} (n = 1, 2, ...).$$

From formula (4.2) the inequality

$$b = \sup \{\omega(y)/y^x \colon y > 0\} < \infty$$

follows. Given x > 0 we have, by (4.23),

$$M_n([x,\infty)) = n \int_{xa_n^{-1}}^{\infty} \omega(a_n y) \lambda(dy) \leqslant b \int_{xa_n^{-1}}^{\infty} y^{\kappa} \lambda(dy) \quad (n = 1, 2, \ldots).$$

Thus $\lim_{n\to\infty} M_n([x,\infty)) = 0$ and, consequently, by Proposition 4.2, $H(a_n, \lambda)$ consists of measures concentrated at the origin. In other words, $G_{\kappa}(\lambda) \sim \{\sigma_{\kappa}\}$, which yields $m_{\kappa}(\sigma_{\kappa}) < \infty$. By Lemma 4 in [18] we have the existence of a sequence $\{c_n\}$ of positive numbers and a sequence $\{v_n\}$ of measures from $G_{\kappa}(\mu)$ such that

(4.24)
$$\lambda = T_{c_n} v_n^{\circ n} \quad (n = 1, 2, ...).$$

By Theorem 1 in [17] we have

$$(4.25) 1 = m_{\varkappa} (T_{c_n} v_n^{\circ n}) = n c_n^{\varkappa} (n = 1, 2, ...).$$

Taking the representation $v_n = e(N_n)$ we have, by (4.3), (4.4) and (4.24),

$$M(E) = n \int_{c_n^{-1}E} \frac{\omega(c_n x)}{\omega(x)} N_n(dx),$$

which, by (4.25), yields $M(\{0\}) = N_n(\{0\})$ (n = 1, 2, ...). Setting $\sigma = e(M(\{0\}) \delta_0)$, $M'(E) = M(E \cap (0, \infty))$, $N'_n(E) = N_n(E \cap (0, \infty))$ (n = 1, 2, ...), we have the formulae

$$(4.26) \lambda = \sigma \circ e(M'),$$

(4.27)
$$v_n = \sigma \circ e(N'_n) \quad (n = 1, 2, ...)$$

and, by (4.24),

(4.28)
$$e(M') = T_{e_n} e(N'_n)^{\circ n} \quad (n = 1, 2, ...).$$

Now we shall prove that

$$(4.29) e(N'_n) \rightarrow \delta_0.$$

Suppose the contrary. Since $v_n \in G_{\varkappa}(\mu)$, the sequence $\{v_n\}$ is conditionally compact. From (4.27) and Corollary 2.3 in [20] we obtain the conditional

Generalized convolutions V

177

compactness of the sequence $\{e(N'_n)\}$. Consequently, there exists a subsequence $n_1 < n_2 < \dots$ such that $e(N'_{n_k})$ tends to a measure other than δ_0 . Taking into account (4.25), (4.28) and applying Lemma 4.5 we infer that the measure e(M') has a \varkappa -component. But this contradicts the equality $M'(\{0\}) = 0$, which completes the proof of (4.29).

From (4.27) and (4.29) we get $v_n \to \sigma$, which, by the compactness of $G_{\kappa}(\mu)$ and the relations $v_n \in G_{\kappa}(\mu)$, yields $\sigma \in G_{\kappa}(\mu)$. Thus

$$(4.30) \sigma \sim \sigma_{\mathsf{x}}$$

and $m_{\kappa}(\sigma) = 1$. On the other hand, by (4.26) and Theorem 1 in [17],

$$1 = m_{\varkappa}(\lambda) = m_{\varkappa}(\sigma) + m_{\varkappa}(e(M')),$$

which yields $m_{\kappa}(e(M')) = 0$. Consequently, $e(M') = \delta_0$ and $\lambda = \sigma$, which together with (4.30) completes the proof.

The following statement is an analogue of Maller's theorem ([11], p. 267) for the ordinary convolution.

THEOREM 4.5. Suppose that $m_{\varkappa}(\sigma_{\varkappa}) < \infty$. Let $\mu \in Q$ and $\{a_n\} \in N(\mu)$. Then the following conditions are equivalent:

- (i) $G(a_n, \mu)$ contains a measure λ with $m_{\kappa}(\lambda) < \infty$.
- (ii) $G(a_n, \mu)$ contains a measure with a \varkappa -component.
- (iii) $\{\sigma_{\varkappa}\} \subseteq G(a_{\varkappa}, \mu)$.

Proof. (i)=(iii). From Klosowska and Bingham's description of the domain of attraction of σ_{κ} in [1] and [8] it follows that each measure λ from $G(a_n, \mu)$ with $m_{\kappa}(\lambda) < \infty$ belongs to this domain. In other words, there exists a norming sequence $\{b_n\} \in N(\lambda)$ such that $G(b_n, \lambda) = \{\sigma_{\kappa}\}$. Condition (iii) is now an immediate consequence of Propositions 2.1 and 3.1.

(ii) \Rightarrow (iii). Suppose that $G(a_n, \mu)$ contains a measure with a \varkappa -component. Put

$$a = \sup \{N(\{0\}): N \in H(a_n, \mu)\}.$$

Evidently, a>0 and, by the compactness of $H(a_n, \mu)$, $a<\infty$ and there exists a measure $\lambda=e(M)\in G(a_n, \mu)$ with $M(\{0\})=a$. By Lemma 4 in [18] we can find a sequence $\{c_n\}$ of positive numbers and a sequence $\{M_n\}$ of measures from $H(a_n, \mu)$ such that $\lambda=T_{c_n}e(M_n)^{c_n}$ (n=1, 2, ...). Of course,

(4.31)
$$M_n(\{0\}) \leq M(\{0\}) \quad (n = 1, 2, ...)$$

and, by (4.3) and (4.4),

(4.32)
$$M(E) = n \int_{c_n^{-1}E} \frac{\omega(c_n x)}{\omega(x)} M_n(dx) \quad (n = 1, 2, ...).$$

Consequently, $M(\{0\}) = nc_n^x M_n(\{0\})$, which, by (4.31), yields

$$(4.33) nc_n^* \ge 1 (n = 1, 2, ...).$$

Setting $M'(E) = M(E \cap (0, \infty))$, $M'_n(E) = M_n(E \cap (0, \infty))$ and $v_n = e(M'_n)$ we have

(4.34)
$$e(M_n) = e(M_n(\{0\}) \delta_0) \circ v_n \quad (n = 1, 2, ...)$$

and, by (4.32),

(4.35)
$$e(M') = T_{c_n} v_n^{\circ n} \quad (n = 1, 2, ...).$$

Since $e(M_n) \in G(a_n, \mu)$ we conclude, by the compactness of $G(a_n, \mu)$, that the sequence $\{e(M_n)\}$ is conditionally compact and all its cluster points belong to $G(a_n, \mu)$. Moreover, by (4.34) and Corollary 2.3 in [20], the sequences $\{e(M_n(\{0\})\delta_0)\}$ and $\{v_n\}$ are also conditionally compact. Consequently, taking into account inequality (4.31) we can choose a subsequence $n_1 < n_2 < \dots$ such that $e(M_{n_k}) \to \sigma$, $e(M_{n_k}(\{0\})\delta_0) \to e(b\delta_0)$ and $v_{n_k} \to v$ where $v \in P$, $0 \le b \le M(\{0\})$,

$$(4.36) \sigma \in G(a_n, \mu),$$

$$(4.37) \sigma = e(b\delta_0) \circ v.$$

Suppose that $v \neq \delta_0$. Then, by (4.33), (4.35) and Lemma 4.5, the measure e(M') has a κ -component, which contradicts the equality $M'(\{0\}) = 0$. Thus $v = \delta_0$ and, by (4.37), $\sigma = e(b\delta_0)$, which, by (4.36), yields b > 0. Consequently, $\sigma \sim \sigma_{\kappa}$, which shows that condition (iii) is fulfilled.

The remaining implications (iii) =>(i) and (iii) =>(ii) are evident, which completes the proof.

References

- [1] N. H. Bingham, On a theorem of Klosowska about generalized convolutions, Colloq. Math. 48 (1984), 117-125.
- [2] W. Doeblin, Sur l'ensemble de puissances d'une loi de probabilité, Studia Math. 9 (1940), 71-96.
- [3] W. Feller, On regular variation and local limit theorems, in: Proc. Fifth Berkeley Sympos. Math. Statist. and Probab. II, 1 (1966), 373-388.
- [4] L. de Haan and S. J. Resnick, Asymptotically balanced functions and stochastic compactness of sample extremes, Ann. Probab. 12 (1984), 588-608.
- [5] L. de Haan and G. Ridder, Stochastic compactness of sample extremes, ibid. 7 (1979), 290-303.
- [6] R. Jajte, Quasi-stable measures in generalized convolution algebras, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 14 (1976), 503-511.
- [7] Z. J. Jurek, Limit distributions in generalized convolution algebras, Probab. Math. Statist. 5 (1985), 113-135.

178

- [8] M. Kłosowska, On the domain of attraction for generalized convolution algebras, Rev. Roumaine Math. Pures Appl. 22 (1977), 669-677.
- [9] V. M. Kruglov, On an extension of the class of stable distributions, Teor. Veroyatnost. i Primenen. 17 (1972), 723-732 (in Russian).
- [10] K. Kuratowski, Topology, Vol. II, Academic Press, New York, and PWN, Warszawa 1968.
- [11] R. A. Maller, Some properties of stochastic compactness, J. Austral. Math. Soc. Ser. A 30 (1981), 264-277.
- [12] W. E. Pruitt, The class of limit laws for stochastically compact normed sums, Ann. Probab. 11 (1983), 962-969.
- [13] E. Seneta, Regularly Varying Functions, Lecture Notes in Math. 508, Springer, 1976.
- [14] K. Urbanik, Generalized convolutions, Studia Math. 23 (1964), 217-245.
- [15] -, Generalized convolutions II, ibid. 45 (1973), 57-70.
- [16] -, Generalized convolutions IV, ibid. 83 (1986), 57-95.
- [17] -, Moments and generalized convolutions, Probab. Math. Statist. 6 (1985), 173-185.
- [18] -, Compactness, medians and moments, in: Probability Measures on Groups VIII, Lecture Notes in Math. 1210, Springer, 1986, 163-173.
- [19] -, Domains of attraction and moments, Probab. Math. Statist. 8 (1987), 89-101.
- [20] -, Quasi-regular generalized convolutions, Colloq. Math. 55 (1988), 153-168.

INSTYTUT MATEMATYCZNY UNIWERSYTETU WROCŁAWSKIEGO INSTITUTE OF MATHEMATICS, WROCŁAW UNIVERSITY Pl. Grunwaldzki 2/4, 50-384 Wrocław, Poland

Received June 15, 1987

(2325)