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Frgodic power functions for
" mean bounded, invertible, positive operators

by

F. J. MARTIN-REYES and P, ORTEGA SALVADOR (Milaga}

Abstract. Let (X, o/, 4) be a o-finite measure space and let T be an invertible positive
linear operator on LP(X, o/, g, 1 <p < oo, with positive inverse. For each r > 1, we consider

the ergodic power function
o h k
Po= (Y [Toser—Toul)", where Toof =tk+1)"' Y T
k=0 i=Q

We prove that if T is a mean bounded operator, ie, sup,;o{|7oul, < co, then P, is a bounded
operator on L7, This result generalizes one of R. L. Jones and allows us to get another one of R.

Sato as an easy consequence.

1. Introduction. Let (X, o, u) be a o-finite measure space and let T be
an invertible linear operator on LP(X, &/, u), 1 <p < oo, with positive
inverse. For each pair of nonnegative integets n and k, we define the

operators
k
TS =(n+tkt )7 3 Tf

i=—np

and for each r > 1 the ergodic power functions are defined by
ol

1ir

PHF =Y | Toser f- TorS 1),

k=0

Pof = (% Toprs S~ Toaf I+ Tos 0 S~ oo SV
e=10

The operator P7 was introduced by Jonmes [5] for the case where T is
induced by an erpodic, invertible, measure preserving transformation on a
nonatomic probability space. He proved that then the operator P is
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bounded in IP, 1 < p < oo, and satisfies a weak type inequality for p= 1.

The gbod weights for P, were studied in [6] under the assumption that
T is induced by an invertible measure preserving transformation (not neces-
sarily ergodic). Sato [9] has proved that if T is a positive invertible linear
operator on I, 1 < p < oo, with positive inverse then the unifortn bounded-
ness of the averages Ty, is sufficient for the boundedness of P, in L” (this
result generalizes one in [6]). Other results about ergodic power functions
can be seen in [11] and [12].

In this paper we will prove, for the case where T ds a positive, invertible,
linear operator on L? with positive inverse, that the uniform boundedness of
the averages Tp; is sufficient for the boundedness of Pl in L* This
generalizes the result in [5] and allows us to get the result in [9] as an easy
consequence. )

2. Notation and previous results. Throughout this paper, p and r will be
numbers greater than I, g will be the conjugate exponent of p and C will
denote a positive constant not necessarily the same at each occurrence.

From now on, T will be a positive, invertible, linear operator on LF (of a
o-finite measure space (X, ., x)) with positive inverse. Then, as is well
known [4], T is a Lamperti operator and there exist a positive, multiplica-
tive, linear operator § and two sequences of positive functions {g;} and {J;}
such that for every ieZ and any fin L7,

T'f =g S'f, [fdu=[JSfdu.
X o x
Therefore, if we set I (x} = g 2(x)J;(x) we have

(2.1) jfrlfl”d.u= JI(ET"fI”hadw

~ In order to prove our result, we will need a theorem about weights for
the one-sided Hardy-Littlewood maximal functions F and F, associated to
functions F on Z, defined by

n

F(j) =sup(n+1)” Z (j+k),

uz 0 k=0

J)—sup(n+1 ;ﬂ [F{j—k)|.

(2.2) Tusorem. Let w be a positive function on Z, The operator F ~F i
of strong type (p, p) with respect to wdv, where v is the counting measure on Z,
if and only if w satisfies A}, ie,

A,: There exists a constant. C > O such that for every j gnd any nz 0,

- n 2n
(kZ‘J J+k))(Zw 1+ kPt < Cn+1).
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Remarks. (1) For the proof of Theorem (2.2), just look at the poof in
[10] for the maximal function in R and write it in the integers.
(2) Condition A, can be expressed in the following equivalent way:

n

(2 W(J'+k))(fl Wi+ RP T < Clm+ 1)

k=0 k=n

for any m, n, j with 0<n<m
{3} The result of Theorem (2.2) holds for F —»F with A, instead of 4,
where A4, is the following condition:

Ay There exists C > 0 such that for every j and any n = 0,

n

(3 wi—B)(E wh a-hp

k=0 k=n

1< C2n+ 1.

(4) We will say that a positive function © on Z satisfies A7 {47) if
i < Cow (@ € Cw). Condition A7 (A7) characterizes the weights for which
the maximal operator F —F (F — F) is of weak type (1,1) with respect to wdy
(see [77).

Finaily, we will also need a result about the maximal function associated
to T:

M*f =sup T, f1.

nz0

(2.3 Tueorew (see [B]). With the above notation, the following are equiva-
lent:

(a8) M™ is bounded in L".

() supysoli Toull, < .

(c) For almost all x, the function defined on Z by i = h;(x) satisfies 4,
with a constant independent of x.

The operators P are related to M*. More precisely, there exists a
constant C > 0 (depending only on 7) such that

- (;i e+ )7 TR

This inequality will be basic in the proof of the boundedness of P .

(24) Pr<CM*T+Q;, - where

3. Boundedness of the ergedic power fumctions. Our main result is the
following:

(3.1) THEOREM. If supiz o | Toull, < o0 then QF and P} are bounded
in L.

It follows from (2.3) and (2.4) that it suffices to p_rové the. statement for
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Q,". In order to do this, we will study the operator S}, acting on functions on
Z, defined by

57 10 =(T, G+ 016"

We will also need some results about functions on Z satisfying A4, .

(3.2) Lemma. If o is a positive function on Z that satisfies A} then there
exists a constant C >0 such that for any j and every iy = 0,

o

o
(33) z o+ 1y (k+ D" 0(j—k)<C } o
ig k=0

Proof There exists s with 1 <s <r such that w €4, (see [107). This
implies that there exists a constant C > 0 such that if m > i, then

ig
“RH)(L o7 G-

m

(?.4) (S o

k=ig

€ C(m+1y.
On the other hand, if we apply Holder’s inequality to

o
i+l =} o (j-Ro " (j—-k),

§=0
we have

iy

as) o+ 17X 0(=H)" 1<(zw-”s LR

k=10

Then (3.4) together with (3.5) give
" ig

(3.6) S wi-kb<Cm+1yi,+D)7* Y o(j—k.

k=ig k=0

Multiplying (3.6) by (m+1)"""! and summing in m > i, we get
3.7 '

s ' ip
Z (m+1yr1 Z SClig+1)™ Y (m+1F"" 1 Y w(j—k).
m=ig k=ig m=ig k=0

Now, inequality (3.3) follows from (3.7) and the inequalities

a

S (et D) o(-0<C T et S w(i-k),

k=ig m=ig k=g
1 o ip ) . ig
Y (mA1yT Y w(j-k) K Clip+1F7" Y w(j—k).
m=ig k=0 T k=0

Note. Results similar to Lemma {3.2) appear in [1] and [3].
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(3.8) TuroreM. If w is a positive function on Z that satisfies Ay then 8}
is of weak type (1,1) with respect to wdv, where v is the counting measure on Z.

Proof of Theorem (3.8). Let f be a function on Z. For k > 0 fixed,
we define

Jel)) = fi+k),
@ =140 I LG <Alk+1),
g (@) =0 if L@ = Ak+1),
b (1) = | £ G) — g, ().

It is clear that if

G, = fieZ: 2 Z (k+1)7" g GN > 17},
o

B,={icZ: 2 Y (k+1)7"|b (W > '}

‘then it suffices to prove

69 T o0<s 3 110100,

610 T o0<7 3 1f0lel)

 Proof of inequaleitly (39). It is clear that
T o0<zir 3 e 3 onlaor

oa

= 2']._’?1'1‘"1 i k+1)7" 3 a)(i)xgm(i)cit_
o

k=0 i=—w
where G,, = {i€Z: g,(i) >t} and yg,, is its characteristic function.

Fix k and t > 0; then for ieG,, we have t <|f(i)] < A(k+1). This
implies k = [t/A]), where [t/A] is the integer part of t/d. Therefore

o o 2o

Y o@<2Ar it Y (k+)77 3 m(l)xgm(t)dt.

feG) a k=[t/4] f=~ao

Replacing i by j—k we gct

) w(r)<2'ﬂ~"jrt’ LS R @(/=Rte,, (R

ielry k={t}2] j==-m
XA jrt’ t Z xr, (1) E k+ 1) "o(j—k)dt
Jm—m k=[1/a]

where F, = {jeZ: |f()l >t}
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Now Lemma (3.2) and condition A7 give

PIIUES

feG)

{2/

< CLl™ ’?r LY (/AT Z w(j—k)dt
4 JjeF,

S CA /Ay YA+ )T 3 B(jdt

0 JeFy
SCTM [ Y o@d=Ct Y (f(Nel)
0 JeF; j=-o

Proof of inequality (3.10). Let

—fiez: Y (k+ D bl >0},

Dy={ieZ: b() >0}, B ={icZ: [£0 = Ale+D}.

It is clear that B, <D, D = U:;DDk and E, < E;_, for every k =
ieD, if and only if i =j—k with jeE,. Therefore,

1. Besides,

a0

Y o< S (Y o(-k)=

ieB k=0 jeEy

Observe that j belongs to E, if and only if |/ (j)/A = k+1. Then the last sum
with index k is finite and equal to

i i @ (j—k) xg, ().

Jj=-o k=0

1ruyAl

Y 0G0y ()

k=0

Therefore, we have

wm Ll LAl
25; o< ¥ ZO w(j=k) 1g, () < Z 2%, G Z @ (j— k)
teby j=mw k= j=— 0

X a1+ 1B ).

Now, condition A] gives

T 00<C T 1,0 (H+ Do)
ieB) j=—w

and by the definition of E,,

T o<t S 1Mol

ieB; j=—mw

In order to study the boundedness of S we will need a result which is
based -on an extrapolation theorem (see [2] and [6]).
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. (3.11) LemMa. Let o be a positive function that satisfies A7 and let g be

4 nonnegative function in L(wdv) where v is the counting measure on Z. Then

there exists G el (wdv) such that G = g, |G|, . < Cllgll,» and Go satisfies
M7 (the constant C is independent of g).

Proof. It is clear that o satisfies A7 if and only if ' ™% satisfies A4
and this is equivalent to the strong type (g, g) with respect to @'~ ?dv of the
operator f — f defined on functions on Z. Thus, the operator . P defined by
Pf = *(fw) is bounded on Li(wdv). The function G = Z (2C) 7 Pig
where ||P|] < C, satisfies the conditions required in the lemma

(3.12) TueoreM. If w is a positive function on Z that satisfies A then S
is of strong type (p, p} with respect to wdv where v is the counting measure on
Z. Furthermore, the constant of the strong type inequality depends only on p, r
and the constant of the A} condition.

Proof. First, we will prove that if ® €4, then S is of weak type (p, p).
Let A>0 and O, = {ieZ: S} (i) > A}. Then

2 )=

icO;

o 1w = ('_Z_ g xo, o @)

where g is a nonnegative function with ligl, ., = 1. By Lemma (3.11), there
exists G 2 g with ||G|l,., < Cllgll,. = C and Gw A7 . This fact and Theorem
(3.8) give

w

<CA( Y IfOIGH @Y.

iI=—wm

Y o) <() Gho®)

ie0) ie0)

if we apply Holder’s inequality, we obtain

oo o

Yo <™ Y 1fOPe®( Y IGOro®f"

ieQ) i=— o i=—a

o

<Ci7r Y If@reb).
i=—w
Therefore, 8,7 is of weak type (p, p).
On the other hand, there exists & > 0 with 1 < p—¢ such that weAd,_;
(see [10]). Then S, is of weak type (p—&, p—&) with respect to wdv and
since it is of infinite type, Marcinkiewicz's interpolation theorem ensures: that
S is of strong type (p, p). The statement about the constant follows easily

.fiom our proofs and the results in [10].

Now, we are already prepared to prove Theorem (3.1).

Proof of Theorem (3.1). As we said, it will suffice to prove the
boundedness of Q,'.
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By (2.3) we see¢ that for almost all x, the function i —#;(x) satisfies 4,
with a constant independent of x. Now, let f be a positive function on X and
let N> 0. We define 0y by
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N
Qv =(X e+ (T1y)".
k=0
Let L be a positive integer. By (2.1) we have

L

;‘[(Q:,'Nf)P(X) dp =L+ 1) 3 ((T(Q N NN hy(x)dp

i=0 X

L N
= (LA™ DAY k)7 (T PP () dp.

Xi=0 k=0

H 0 < i < L then the sum in brackets is bounded by (S;" (x0.x+1; /) () where
f*ds the function on Z defined by

) =T7f(x)

and ypo,w+z; 18 the characteristic function of the interval [0, N+ L] in Z.

Then this observation together with (2.1) and Theorem (3.12) applied to the
functions defined on Z by i —h(x) give

L
Jj;(Q:Nf(x))Pd,u <+ }J; _Z‘O(S:" (X[O,N+L1fx)(f))phi(x)d,u
N+L
<[ % (PO ks =L i cpan
X i=0 X

Letting L and then N go to infinity we get
f(Qr frdu<C ff”dﬂ

This finishes the proof of Theorem (3.1).

i

Now, the result in [9] follows easily from (3.1).

(3.13) Cororrary (see [9]). If SUPkzollTull, < oo then P, is bounded
in L?.

(3.14) Note. The converse of Theorem (3.1) is false even if T is induced
by a pointwise transformation on X, In fact, if the converse of (3.1) is true,

then the converse of Corollary (3.13) is true too. But this is false (see an
example in [67).
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