

STUDIA MATHEMATICA, T. XCI. (1988)

Ergodic power functions for mean bounded, invertible, positive operators

by

F. J. MARTÍN-REYES and P. ORTEGA SALVADOR (Málaga)

Abstract. Let (X, \mathcal{A}, μ) be a σ -finite measure space and let T be an invertible positive linear operator on $L^p(X, \mathcal{A}, \mu)$, 1 , with positive inverse. For each <math>r > 1, we consider the ergodic power function

$$P_r = \left(\sum_{k=0}^{\infty} |T_{0,k+1} - T_{0,k}|^r\right)^{1/r}, \quad \text{where} \quad T_{0,k} f = (k+1)^{-1} \sum_{l=0}^{k} T^l f.$$

We prove that if T is a mean bounded operator, i.e., $\sup_{k\geq 0}||T_{0,k}||_p<\infty$, then P_r is a bounded operator on L^p . This result generalizes one of R. L. Jones and allows us to get another one of R. Sato as an easy consequence.

1. Introduction. Let (X, \mathcal{A}, μ) be a σ -finite measure space and let T be an invertible linear operator on $L^p(X, \mathcal{A}, \mu)$, 1 , with positive inverse. For each pair of nonnegative integers <math>n and k, we define the operators

$$T_{n,k} f = (n+k+1)^{-1} \sum_{i=-n}^{k} T^{i} f$$

and for each r > 1 the ergodic power functions are defined by

$$P_r^+ f = \left(\sum_{k=0}^{\infty} |T_{0,k+1} f - T_{0,k} f|^r\right)^{1/r},$$

$$P_r f = \left(\sum_{k=0}^{\infty} |T_{0,k+1} f - T_{0,k} f|^r + |T_{k+1,0} f - T_{k,0} f|^r\right)^{1/r}.$$

The operator P_2^+ was introduced by Jones [5] for the case where T is induced by an ergodic, invertible, measure preserving transformation on a nonatomic probability space. He proved that then the operator P_2^+ is

Key words and phrases: ergodic power function, mean bounded operators, weights, maximal functions.

A.M.S. Subject Classification 1980 (1985 Revision): Primary 47A35, Secondary 46E30.

bounded in L^p , 1 , and satisfies a weak type inequality for <math>p = 1.

The good weights for P_r were studied in [6] under the assumption that T is induced by an invertible measure preserving transformation (not necessarily ergodic). Sato [9] has proved that if T is a positive invertible linear operator on L^p , $1 , with positive inverse then the uniform boundedness of the averages <math>T_{k,k}$ is sufficient for the boundedness of P_r in L^p (this result generalizes one in [6]). Other results about ergodic power functions can be seen in [11] and [12].

In this paper we will prove, for the case where T is a positive, invertible, linear operator on L^p with positive inverse, that the uniform boundedness of the averages $T_{0,k}$ is sufficient for the boundedness of P_r^+ in L^p . This generalizes the result in [5] and allows us to get the result in [9] as an easy consequence.

2. Notation and previous results. Throughout this paper, p and r will be numbers greater than 1, q will be the conjugate exponent of p and C will denote a positive constant not necessarily the same at each occurrence.

From now on, T will be a positive, invertible, linear operator on L^p (of a σ -finite measure space (X, \mathcal{A}, μ)) with positive inverse. Then, as is well known [4], T is a Lamperti operator and there exist a positive, multiplicative, linear operator S and two sequences of positive functions $\{g_i\}$ and $\{J_i\}$ such that for every $i \in \mathbb{Z}$ and any f in L^p ,

$$T^i f = g_i S^i f, \qquad \int_X f d\mu = \int_X J_i S^i f d\mu.$$

Therefore, if we set $h_i(x) = g_i^{-p}(x)\dot{J}_i(x)$ we have

(2.1)
$$\int_X |f|^p d\mu = \int_X |T^i f|^p h_i d\mu.$$

In order to prove our result, we will need a theorem about weights for the one-sided Hardy-Littlewood maximal functions \vec{F} and \vec{F} , associated to functions F on Z, defined by

$$\vec{F}(j) = \sup_{n \ge 0} (n+1)^{-1} \sum_{k=0}^{n} |F(j+k)|, \quad \vec{F}(j) = \sup_{n \ge 0} (n+1)^{-1} \sum_{k=0}^{n} |F(j-k)|.$$

(2.2) THEOREM. Let w be a positive function on \mathbb{Z} . The operator $F \to \vec{F}$ is of strong type (p, p) with respect to wdv, where v is the counting measure on \mathbb{Z} , if and only if w satisfies A_p^+ , i.e.,

 A_p^+ : There exists a constant C > 0 such that for every j and any $n \ge 0$,

$$\left(\sum_{k=0}^{n} w(j+k)\right) \left(\sum_{k=n}^{2n} w^{1-q}(j+k)\right)^{p-1} \leqslant C(2n+1)^{p}.$$

Remarks. (1) For the proof of Theorem (2.2), just look at the poof in [10] for the maximal function in R and write it in the integers.

(2) Condition A_p^+ can be expressed in the following equivalent way:

$$\left(\sum_{k=0}^{n} w(j+k)\right) \left(\sum_{k=n}^{m} w^{1-q}(j+k)\right)^{p-1} \leqslant C(m+1)^{p}$$

for any m, n, j with $0 \le n \le m$.

(3) The result of Theorem (2.2) holds for $F \to \overline{F}$ with A_p^- instead of A_p^+ , where A_p^- is the following condition:

 A_p^- : There exists C > 0 such that for every j and any $n \ge 0$,

$$\left(\sum_{k=0}^{n} w(j-k)\right) \left(\sum_{k=n}^{2n} w^{1-q}(j-k)\right)^{p-1} \leqslant C(2n+1)^{p}.$$

(4) We will say that a positive function ω on Z satisfies A_1^+ (A_1^-) if $\bar{\omega} \leq C\omega$ ($\bar{\omega} \leq C\omega$). Condition A_1^+ (A_1^-) characterizes the weights for which the maximal operator $F \to \bar{F}$ $(F \to \bar{F})$ is of weak type (1,1) with respect to ωdv (see [7]).

Finally, we will also need a result about the maximal function associated to T:

$$M^+f=\sup_{n\geq 0}T_{0,n}|f|.$$

- (2.3) Theorem (see [8]). With the above notation, the following are equivalent:
 - (a) M^+ is bounded in L^p .
 - (b) $\sup_{k \ge 0} ||T_{0,k}||_p < \infty$.
- (c) For almost all x, the function defined on \mathbb{Z} by $i \to h_i(x)$ satisfies A_p^+ with a constant independent of x.

The operators P_r^+ are related to M^+ . More precisely, there exists a constant C > 0 (depending only on r) such that

(2.4)
$$P_r^+ \leq CM^+ + Q_r^+, \text{ where } Q_r^+ f = \left(\sum_{k=0}^{\infty} (k+1)^{-r} |T^k f|^r\right)^{1/r}.$$

This inequality will be basic in the proof of the boundedness of P_r^+ .

- 3. Boundedness of the ergodic power functions. Our main result is the following:
- (3.1) Theorem. If $\sup_{k \ge 0} \|T_{0,k}\|_p < \infty$ then Q_r^+ and P_r^+ are bounded in L^p .

It follows from (2.3) and (2.4) that it suffices to prove the statement for

Ergodic power functions

 Q_r^+ . In order to do this, we will study the operator S_r^+ , acting on functions on Z, defined by

$$S_r^+ f(i) = \left(\sum_{k=0}^{\infty} (k+1)^{-r} |f(i+k)|^r\right)^{1/r}.$$

We will also need some results about functions on Z satisfying A_p^+ .

(3.2) Lemma. If ω is a positive function on Z that satisfies A_r^+ then there exists a constant C > 0 such that for any j and every $i_0 \ge 0$,

(3.3)
$$\sum_{k=i_0}^{\infty} (i_0+1)^r (k+1)^{-r} \omega(j-k) \leqslant C \sum_{k=0}^{i_0} \omega(j-k).$$

Proof. There exists s with 1 < s < r such that $\omega \in A_s^+$ (see [10]). This implies that there exists a constant C > 0 such that if $m \ge i_0$ then

(3.4)
$$\left(\sum_{k=i_0}^m \omega(j-k)\right) \left(\sum_{k=0}^{i_0} \omega^{-1/s-1}(j-k)\right)^{s-1} \leqslant C(m+1)^s.$$

On the other hand, if we apply Hölder's inequality to

$$i_0 + 1 = \sum_{k=0}^{i_0} \omega^{1/s} (j-k) \omega^{-1/s} (j-k),$$

we have

$$(3.5) (i_0+1)^s \left(\sum_{k=0}^{i_0} \omega(j-k)\right)^{-1} \leq \left(\sum_{k=0}^{i_0} \omega^{-1/s-1}(j-k)\right)^{s-1}.$$

Then (3.4) together with (3.5) give

(3.6)
$$\sum_{k=i_0}^m \omega(j-k) \leqslant C(m+1)^s (i_0+1)^{-s} \sum_{k=0}^{i_0} \omega(j-k).$$

Multiplying (3.6) by $(m+1)^{-r-1}$ and summing in $m \ge i_0$ we get

(3.7)
$$\sum_{m=i_0}^{\infty} (m+1)^{-r-1} \sum_{k=i_0}^{m} \omega(j-k) \leq C(i_0+1)^{-s} \sum_{m=i_0}^{\infty} (m+1)^{s-r-1} \sum_{k=0}^{i_0} \omega(j-k).$$

Now, inequality (3.3) follows from (3.7) and the inequalities

$$\sum_{k=i_0}^{\infty} (k+1)^{-r} \omega(j-k) \leqslant C \sum_{m=i_0}^{\infty} (m+1)^{-r-1} \sum_{k=i_0}^{m} \omega(j-k),$$

$$\sum_{m=i_0}^{\infty} (m+1)^{s-r-1} \sum_{k=0}^{i_0} \omega(j-k) \leqslant C(i_0+1)^{s-r} \sum_{k=0}^{i_0} \omega(j-k).$$

Note. Results similar to Lemma (3.2) appear in [1] and [3].

(3.8) THEOREM. If ω is a positive function on \mathbb{Z} that satisfies A_1^+ then S_r^+ is of weak type (1,1) with respect to ωdv , where v is the counting measure on \mathbb{Z} .

Proof of Theorem (3.8). Let f be a function on \mathbb{Z} . For k > 0 fixed, we define

$$\begin{split} f_k(i) &= f(i+k), \\ g_k(i) &= |f_k(i)| & \text{if } |f_k(i)| < \lambda(k+1), \\ g_k(i) &= 0 & \text{if } |f_k(i)| \geqslant \lambda(k+1), \\ b_k(i) &= |f_k(i)| - g_k(i). \end{split}$$

It is clear that if

$$G_{\lambda} = \{ i \in \mathbb{Z} : \ 2^{r} \sum_{k=0}^{\infty} (k+1)^{-r} |g_{k}(i)|^{r} > \lambda^{r} \},$$

$$B_{\lambda} = \{ i \in \mathbb{Z} : \ 2^{r} \sum_{k=0}^{\infty} (k+1)^{-r} |b_{k}(i)|^{r} > \lambda^{r} \}$$

then it suffices to prove

(3.9)
$$\sum_{i \in G_{\lambda}} \omega(i) \leqslant \frac{C}{\lambda} \sum_{i = -\infty}^{\infty} |f(i)| \omega(i),$$

(3.10)
$$\sum_{i \in B_2} \omega(i) \leqslant \frac{C}{\lambda} \sum_{i=-\infty}^{\infty} |f(i)| \, \omega(i).$$

Proof of inequality (3.9). It is clear that

$$\sum_{i \in G_{\lambda}} \omega(i) \leq 2^{r} \lambda^{-r} \sum_{k=0}^{\infty} (k+1)^{-r} \sum_{i=-\infty}^{\infty} \omega(i) |g_{k}(i)|^{r}$$

$$= 2^{r} \lambda^{-r} \int_{0}^{\infty} r t^{r-1} \sum_{k=0}^{\infty} (k+1)^{-r} \sum_{i=-\infty}^{\infty} \omega(i) \chi_{G_{k,t}}(i) dt$$

where $G_{k,t} = \{i \in \mathbb{Z}: g_k(i) > t\}$ and $\chi_{G_{k,t}}$ is its characteristic function.

Fix k and t > 0; then for $i \in G_{k,t}$ we have $t < |f_k(i)| < \lambda(k+1)$. This implies $k \ge \lfloor t/\lambda \rfloor$, where $\lfloor t/\lambda \rfloor$ is the integer part of t/λ . Therefore,

$$\sum_{i \in G_{\lambda}} \omega(i) \leqslant 2^{r} \lambda^{-r} \int_{0}^{\infty} rt^{r-1} \sum_{k=\lfloor t/\lambda \rfloor}^{\infty} (k+1)^{-r} \sum_{i=-\infty}^{\infty} \omega(i) \chi_{G_{k,t}}(i) dt.$$

Replacing i by j-k we get

where $F_t = \{ j \in \mathbb{Z} : |f(j)| > t \}$

$$\sum_{i \in G_{\lambda}} \omega(i) \leqslant 2^{r} \lambda^{-r} \int_{0}^{\infty} rt^{r-1} \sum_{k=\lfloor i/\lambda \rfloor}^{\infty} (k+1)^{-r} \sum_{j=-\infty}^{\infty} \omega(j-k) \chi_{G_{k,t}}(j-k) dt$$

$$\leqslant 2^{r} \lambda^{-r} \int_{0}^{\infty} rt^{r-1} \sum_{j=-\infty}^{\infty} \chi_{F_{i}}(j) \sum_{k=\lfloor i/\lambda \rfloor}^{\infty} (k+1)^{-r} \omega(j-k) dt$$

Ergodic power functions

137

Now Lemma (3.2) and condition A_1^+ give

$$\sum_{i \in G_{\lambda}} \omega(i) \leqslant C\lambda^{-r} \int_{0}^{\infty} t^{r-1} \sum_{j \in F_{t}} ([t/\lambda] + 1)^{-r} \sum_{k=0}^{[t/\lambda]} \omega(j-k) dt$$

$$\leqslant C\lambda^{-1} \int_{0}^{\infty} (t/\lambda)^{r-1} ([t/\lambda] + 1)^{1-r} \sum_{j \in F_{t}} \bar{\omega}(j) dt$$

$$\leqslant C\lambda^{-1} \int_{0}^{\infty} \sum_{j \in F_{t}} \omega(j) dt = C\lambda^{-1} \sum_{j=-\infty}^{\infty} |f(j)| \omega(j).$$

Proof of inequality (3.10). Let

$$D = \{i \in \mathbb{Z} : \sum_{k=0}^{\infty} (k+1)^{-r} |b_k(i)|^r > 0\},\$$

$$D_k = \{i \in \mathbb{Z}: b_k(i) > 0\}, \quad E_k = \{i \in \mathbb{Z}: |f(i)| \ge \lambda(k+1)\}.$$

It is clear that $B_{\lambda} \subset D$, $D = \bigcup_{k=0}^{\infty} D_k$ and $E_k \subset E_{k-1}$ for every $k \ge 1$. Besides, $i \in D_k$ if and only if i = j - k with $j \in E_k$. Therefore,

$$\sum_{i \in B_{\lambda}} \omega(i) \leqslant \sum_{k=0}^{\infty} \left(\sum_{j \in E_{k}} \omega(j-k) \right) = \sum_{j=-\infty}^{\infty} \sum_{k=0}^{\infty} \omega(j-k) \chi_{E_{k}}(j).$$

Observe that j belongs to E_k if and only if $|f(j)|/\lambda \ge k+1$. Then the last sum with index k is finite and equal to

$$\sum_{k=0}^{[f(j)/\lambda]} \omega(j-k) \chi_{E_k}(j).$$

Therefore, we have

$$\sum_{i \in B_{\lambda}} \omega(i) \leq \sum_{j=-\infty}^{\infty} \sum_{k=0}^{\lfloor f(j)/\lambda \rfloor} \omega(j-k) \chi_{E_{k}}(j) \leq \sum_{j=-\infty}^{\infty} \chi_{E_{0}}(j) \sum_{k=0}^{\lfloor f(j)/\lambda \rfloor} \omega(j-k)$$

$$\leq \sum_{j=-\infty}^{\infty} \chi_{E_{0}}(j) (\lfloor f(j)/\lambda \rfloor + 1) \tilde{\omega}(j).$$

Now, condition A_1^+ gives

$$\sum_{i \in B_{\lambda}} \omega(i) \leq C \sum_{j=-\infty}^{\infty} \chi_{E_0}(j) \left([f(j)/\lambda] + 1 \right) \omega(j)$$

and by the definition of E_0 ,

$$\sum_{i \in B_{\lambda}} \omega(i) \leqslant C\lambda^{-1} \sum_{j=-\infty}^{\infty} |f(j)| \omega(j).$$

In order to study the boundedness of S_r^+ we will need a result which is based on an extrapolation theorem (see [2] and [6]).

(3.11) Lemma. Let ω be a positive function that satisfies A_p^+ and let g be a nonnegative function in $L^q(\omega dv)$ where v is the counting measure on Z. Then there exists $G \in L^q(\omega dv)$ such that $G \geqslant g$, $||G||_{q,\omega} \leqslant C ||g||_{q,\omega}$ and $G\omega$ satisfies A_1^+ (the constant C is independent of g).

Proof. It is clear that ω satisfies A_p^+ if and only if ω^{1-q} satisfies A_q^- and this is equivalent to the strong type (q, q) with respect to $\omega^{1-q} dv$ of the operator $f \to \overline{f}$ defined on functions on Z. Thus, the operator P defined by $Pf = \omega^{-1}(f\omega)^-$ is bounded on $L^q(\omega dv)$. The function $G = \sum_{j=0}^{\infty} (2C)^{-j} P^j g$, where $||P|| \leq C$, satisfies the conditions required in the lemma.

(3.12) THEOREM. If ω is a positive function on Z that satisfies A_p^+ then S_r^+ is of strong type (p, p) with respect to ωdv where v is the counting measure on Z. Furthermore, the constant of the strong type inequality depends only on p, r and the constant of the A_p^+ condition.

Proof. First, we will prove that if $\omega \in A_p^+$ then S_r^+ is of weak type (p, p). Let $\lambda > 0$ and $O_{\lambda} = \{i \in \mathbb{Z}: S_r^+ f(i) > \lambda\}$. Then

$$\sum_{i \in O_{\lambda}} \omega(i) = \|\chi_{O_{\lambda}}\|_{p,\omega}^{p} = \left(\sum_{i=-\infty}^{\infty} g(i) \chi_{O_{\lambda}}(i) \omega(i)\right)^{p}$$

where g is a nonnegative function with $||g||_{q,\omega} = 1$. By Lemma (3.11), there exists $G \geqslant g$ with $||G||_{q,\omega} \leqslant C ||g||_{q,\omega} = C$ and $G\omega \in A_1^+$. This fact and Theorem (3.8) give

$$\sum_{i \in O_{\lambda}} \omega(i) \leqslant \left(\sum_{i \in O_{\lambda}} G(i) \omega(i)\right)^{p} \leqslant C \lambda^{-p} \left(\sum_{i = -\infty}^{\infty} |f(i)| G(i) \omega(i)\right)^{p}.$$

If we apply Hölder's inequality, we obtain

$$\sum_{i \in O_{\lambda}} \omega(i) \leqslant C\lambda^{-p} \sum_{i = -\infty}^{\infty} |f(i)|^{p} \omega(i) \left(\sum_{i = -\infty}^{\infty} |G(i)|^{q} \omega(i)\right)^{p/q}$$
$$\leqslant C\lambda^{-p} \sum_{i = -\infty}^{\infty} |f(i)|^{p} \omega(i).$$

Therefore, S_r^+ is of weak type (p, p).

On the other hand, there exists $\xi > 0$ with $1 such that <math>\omega \in A^+_{p-\xi}$ (see [10]). Then S^+_r is of weak type $(p-\xi, p-\xi)$ with respect to ωdv and since it is of infinite type, Marcinkiewicz's interpolation theorem ensures that S^+_r is of strong type (p, p). The statement about the constant follows easily from our proofs and the results in [10].

Now, we are already prepared to prove Theorem (3.1).

Proof of Theorem (3.1). As we said, it will suffice to prove the boundedness of Q_r^+ .

By (2.3) we see that for almost all x, the function $i \to h_i(x)$ satisfies A_p^+ with a constant independent of x. Now, let f be a positive function on X and let $N \ge 0$. We define $Q_{r,N}^+$ by

$$Q_{r,N}^+ f = \left(\sum_{k=0}^N (k+1)^{-r} (T^k f)^r\right)^{1/r}.$$

Let L be a positive integer. By (2.1) we have

138

$$\int_{X} (Q_{r,N}^{+} f)^{p}(x) d\mu = (L+1)^{-1} \sum_{i=0}^{L} \int_{X} (T^{i} (Q_{r,N}^{+} f)(x))^{p} h_{i}(x) d\mu$$

$$= (L+1)^{-1} \int_{X} \sum_{i=0}^{L} (\sum_{k=0}^{N} (k+1)^{-r} (T^{i+k} f(x))^{r})^{p/r} h_{i}(x) d\mu.$$

If $0 \le i \le L$ then the sum in brackets is bounded by $(S_r^+(\chi_{[0,N+L]}f^x)(i))^r$ where f^x is the function on Z defined by

$$f^{x}(s) = T^{s}f(x)$$

and $\chi_{[0,N+L]}$ is the characteristic function of the interval [0, N+L] in Z. Then this observation together with (2.1) and Theorem (3.12) applied to the functions defined on Z by $i \to h_i(x)$ give

$$\int_{X} (Q_{r,N}^{+} f(x))^{p} d\mu \leq (L+1)^{-1} \int_{X} \sum_{i=0}^{L} (S_{r}^{+} (\chi_{[0,N+L]} f^{x})(i))^{p} h_{i}(x) d\mu$$

$$\leq C (L+1)^{-1} \int_{X} \sum_{i=0}^{N+L} (f^{x}(i))^{p} h_{i}(x) d\mu = C \frac{N+L+1}{L+1} \int_{X} (f(x))^{p} d\mu.$$

Letting L and then N go to infinity we get

$$\int_{\mathbf{X}} (Q_r^+ f)^p d\mu \leqslant C \int_{\mathbf{X}} f^p d\mu.$$

This finishes the proof of Theorem (3.1).

Now, the result in [9] follows easily from (3.1).

- (3.13) COROLLARY (see [9]). If $\sup_{k\geq 0} ||T_{k,k}||_p < \infty$ then P_r is bounded in L^p .
- (3.14) Note. The converse of Theorem (3.1) is false even if T is induced by a pointwise transformation on X. In fact, if the converse of (3.1) is true, then the converse of Corollary (3.13) is true too. But this is false (see an example in $\lceil 6 \rceil$).

References

- [1] E. Atencia and F. J. Martín-Reyes, Weak type inequalities for the maximal ergodic function and the maximal ergodic Hilbert transform in weighted spaces, Studia Math. 78 (1984), 231-244.
- [2] J. Garcia Cuerva, An extrapolation theorem in the theory of A_p weights, Proc. Amer. Math. Soc. 87 (1983), 422-426.
- [3] R. Hunt, B. Muckenhoupt and R. Wheeden, Weighted norm inequalities for the conjugate function and Hilbert transform, Trans. Amer. Math. Soc. 176 (1973), 227-251.
- [4] C. H. Kan, Ergodic properties of Lamperti operators, Canad. J. Math. 30 (1978), 1206-1214.
- [5] R. L. Jones, Inequalities for the ergodic maximal function, Studia Math. 60 (1977), 101-129.
- [6] F. J. Martin-Reyes, Weights for ergodic square functions, Ann. Inst. H. Poincaré (Probab. Statist.) 22 (3) (1986), 333-345.
- [7] F. J. Martin-Reyes and A. de la Torre, Weighted weak type inequalities for the ergodic maximal function and the pointwise ergodic theorem, Studia Math. 87 (1987), 33-46.
- [8] -, -, The dominated ergodic estimate for mean bounded, invertible, positive operators, preprint.
- [9] R. Sato, On the ergodic power function for invertible positive operators, Studia Math. 90 (1988), 129-134.
- [10] E. Sawyer, Weighted inequalities for the one-sided Hardy-Littlewood maximal functions, Trans. Amer. Math. Soc. 297 (1986), 53-61.
- [11] A. de la Torre, The square function for L_1 - L_{∞} contractions, in: Proc. Sympos. Pure Math. 35, Part 2, 1979, 435-438.
- [12] T. Yoshimoto, Some inequalities for ergodic power functions, Acta Math. Hungar. 36 (1980), 19-24.

DEPARTAMENTO DE MATEMÁTICAS (ANÁLISIS MATEMÁTICO) FACULTAD DE CIENCIAS UNIVERSIDAD DE MÁLAGA 29071 Múlaga, Spain

Received April 28, 1987

(2305)