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Minimal gemerators for ergodic endomorphisms
by

ZBIGNIEW S. KOWALSKI (Wrockaw)

Abstiract. Every ergodic endomorphism f of 2 nonatomic Lebesgue space which possesses a
finite 1-sided generator has.a 1-sided generator « such that &, < carde < ky+ 1. This is the best
sstimate for the minimal cardinality of a l-sided generator. If f belongs to the class of
ransformations described in the second part of the paper then the generator of minimal
ardinality (equal to ky+1) is presented in an explicit form. -

Let f be an ergodic endomorphism of a nonatomic Lebesgue space
‘X, #, ). Let f 'z denote the wpartition [f~'(x): xeX! and let
" 1(x)}-,,5x be the canonical system of measures. Denote by h(f) the
mtropy of f. I h{e, f) = h(f) < oo, then the canonical measures are purely
itomic. In this-case we can define a number k,; in the following way:

k= min {k: card ! ly: yef~'(x) and mf_lm(y)>0}- <k a.e.}‘

The equality h(e, f) = h(f) < o implies that f admits a 1-sided generator of
finite entropy. Therefore f is measure-theoretically conjugate to a positive
nonsingular: endomorphism f (see {4], p. 107) and we obtain a simple
description of k. '

k, = min {k: card f1(x) < k ae.l.

The number k, is connected with the existence of a finite 1-sided generator.

Theorem A [2]. An ergodic endomorphism f has a finite 1-sided genera-
tor iff hig, f)=h{f) <o and k; < co.

Analysing the proof of Theorem A, it is not difficult to see that there
exists a 1-sided generator « such that

1) k< carda < (@0 + 1)k,

It is obvious by « v f ™'z = & that for every 1-sided generator o the left side
of the above inequality holds. By (1), the problem arises of finding the exact
estimate of the minimal cardinality of a 1-sided generator for f. This problem
is solved by the following theorem:
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TueoreM 1. If an ergodic endomorphism f admits a finite 1-sided genera-
tor, then there exists a l-sided gemerator o such that kg cardo < k,+1.

Before proving the theorem we shall prove two lemmas.

LemmMa 1. There exists a partition f§ = {By, ..., ka] such that B v f~ e

=¢ and h(B,f) =h(f).
Proof. Using the reasoning of Rokhlm (see [5], p. 41) we get the
partition B = |By, ..., B f} such that B, n f 7 1(x) consists of an atom of the

greatest m measure, next B, M f~!(x) consists of an atom of the

Sl
greatest m,_, =~ measure in f "1(x)—BL, gte. This partition satisfies the
following cond1t10ns Bv fle=e and f71B7<f” where B

=\ Zof" 1 8. According to Theorems 1 and 2 in [3], fis represented by the
skew product f{z,y) = (f,-(2), 0,(3)) where (z, yyeX _x¥ =X and f

denotes the factor endomorphism of f. We also have the equality J,(z, y)
= J’ - (2)J () where J denotes the Jacobian of an endomorphism. In fact,

J f(z y) = ~(z) because o, is an automorphism a.e,
Hence we get the following equalities:

h(f)=hie f)=H [ e) = [logJdm= [ logJ _dm,_
- X

-
= h(p™.f) =
which finishes the proof.

h(g. /),

Let [ denote the natural extension of f to an automorphism. The
transformation f is an automorphism of the measurable space (X, 4, m)

where # is an exhaustive c-algebra of . The following generalization of .

Proposition 28.2 in [1] holds:

1emma 2. Let B= 1B, ...
B,e#, i=1,...,5 Let

n = [AB) ™ [h(NH—hB, )]

If ne N, logn > 1, then there exists a partition Ay, ..., 4,} of By such that
A;ed, i=1,...,n and B, = {4y, ..., 4, By, ..., B,} i5 a generator for f.

Proof, Except for the symbol ¥, which we replace by 7 we will use the
same notation as in [1]. Propesition 28.2 is a consequence of the proof of
Theorem 28.1 [1} where a generator is constructed by adjoining different
blocks to certain subsets of a set H, for i = 1, 2, ... The set H; is the sum of
some levels of a suitable Rokhlin tower. We obtain the assertion of the
lemma if we use a Rokhlin tower such that the levels contained in H, are
elements of #. Therefore we take a sequence of partitions y;, i =1, 2, .
such that y, € # and \/iy o7 % = 4.

, B,) be a partition such that fi(By) >0,
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Assume that H,_, €. In the next step of the induction proof we find a
set F; ©8; " H;.., such that F;€% and F, is an (f. q;, &)-Rokhlin set and F,
= in_1( 2) 18 an ( fo_ 1> Mi» &)-Rokblin set. Analysing the proof of Theorem
264 [1] gives easily the existence of such an F;. By

20+ o)+ kg

H; = U le 1(ﬁ

J=21+I(a)

for j= ki—C+j, ceny By g

and by using the levels fH
of the partition \/FD

) for j=k—c+j,...,mn.; and some atoms

- (yl) in coding we get the assertion.

Proof of Theorem 1. Let 8= {By, ..., By, | be the partition given by
Lemma 1, By h(f) = h(f) =h(B,f) we get n = 0. Therefore by applying
Lemma 2 to J, where n =2, we get the generator o = {4,, A5, B,, ..., ka}
for f such that « € # and o« v f~'s =z We get the asserlion by using the
same reasoning as in the proof of Rokhlin’s theorem 10.11 in [6].

In the second part of the paper we describe a simple construction of a 1-
sided generator for a class of simple products of measure-preserving transfor-
mations. Let (X, f, ) and (Y, 1, p) be dynamical sysiems where X, ¥ are
compact metric spaces, f is a continuous transformation, 7 is a homeomor-
phism and g, p are Borel invariant measures. Let T(x, y) = (f(x), () for
(x,VeX xY Tis a continuous endomorphism of the space X x¥ with the
product measure pu xp. Assume that f has a ky-¢lement 1-sided generator fi
= {By, ..., By,} such that B, i=1, ..., ko, is an open set and t has a 2-
element 1-sided generator o = {4, 4°).

DerNmioN. A homeomorphism 1 is
d{z"(x), "(y)) > e for n=0, +1, ...
Here d denotes the metric in Y.

TueoreM 2. If for all k20, (¥.of "(B) =@, t is distal and the
diameter 8, of the partition o, = \/{~oT 'a tends to 0 and the orbit of p-a.e.
xeX is dense in X, then B = {B; xA, By xA°, By, ..., By} is a l-sided
generator for 1.

distal f Vx#y Je>0

Proof. Denote by X' (¥’) the subset of X (¥) coded by the generator p
{x). Let X" be the set of all points x €X' such that the positive orbit of x is
dense in X. Then we have u xp(X" x ¥) = 1. Now, we prove that the set X"’
x ¥’ is coded by f3;, ie. every atom of fT = \/°° T~!'B, has at most a 1-
point intersection with X" »x¥".

Let (x, ), (x;, ) €X”" xY" belong to the same atom of 7. Since .
B~ xY < B we get x =x;. If y#y, then by the distality of 7 there exists
e>0 such that d("(y),t"(y;) >& for n=0,1,... Since lim,.,8, =0
there is n such that 8, <s. Consider the following family of atoms

i=0
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@ N fHByx Vi
=0 i=0

of the partition \/;': o T~/ B,. The set ﬂ;; of ~I(B,) is nonempty and open.
Hence f*(x) eﬂ;; oJ {(By) for some k by the density of the orbit of x. The
points (f*(x), () and (f/*(x), 7°(y,)) belong to different atoms of the set (2)
because d{t*(y), T*(y;)) > & > §,. Hence (x, y) and (x, y;) belong to different

elements of the partition
ek

(\/ T™B) < _\/

gy < Br.
This is a contradiction and hence y == y,, which finishes the proof.

B={BxB BxB, B xS where B
= (2%, aw) of

CoroLLarY. The  partition
= le¥™e: 0 <o < 4! is a generator for the transformation T(z, w)
the torus S* where a is not a root of unity.

Remark. The inequalities in Theorem 1 establish the best estimate of
the minimal cardinality of a generator.

The example given in the corollary belongs to the following class of
transformations: Let T be the i-sided (1/k, ..., 1/k) Bernoulli shift and let ¢
be any distal autemorphism. Then the generator f, constructed for Txt has
k+1 elements and the other generators have at least k+1 elements.
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On the strong Cesdro summability of
double orthogonal series

by

1. SZALAY* (Szeged)

Abstract. Tn a recent paper [3], Méricz gave a coefficient test for the strong summability of
double orthogonal series in the case of the parameters x and ff greater than 1/2 and the index 2
equal to 2. Using the definition of convergence in Pringsheim’s sense with a bound, the present
author extends the definition of strong summability to the case of 1 positive and a and j
nonnegative. The case « = =0 is the so-called sirong convergence. This note contains
coefficient conditions for nine cases of parameters and indices.

1. Imtroduction. First of all we mention that for a double sequence
'{wm,n}mn—-o the “little o”

man = 0(1)

{or max(m, n) = o0, OF m —> 00, OF R —0)

w as min(m, n) oo

means that w,, ,—0 as min(m, n) = oo (or max(m, n} >0, or m =, Or

n —oc) and in addition there exists a constant K such that |, | < K for
m,n=20,1,... The case
Wy =0(1) as minim, n) = oo

may be called convergence in Pringsheim's sense with a bound Our next
definitions are understood in this sense.
We say that a series

{1 Y Cik

k=0 .
is Cesaro summable with parameters o, f > — 1 —or (C, (x, f)) summable—to s
if
ol —s = o(1)
and it is said to be strongly Cesdro summable with parameters a, p >0 and
index 1> 0—or [C, (a, B)], summable~ta s if :

as min(m, n) — 00,

* This work was done while the author was visiting the Stekloy Mathematical Institute 1
Moscow, UJ.SS.R.



