Contents of volume XCI, number 2

7	S. KOWALSKI, Minimal generators for ergodic endomorphisms	85-88
Z. 1	SZALAY, On the strong Cesàro summability of double orthogonal series	89-107
J.	COHEN, BMO estimates for biharmonic multiple layer potentials	109-123
R.	Lyons, Topologies on measure spaces and the Radon-Nikodym theorem	125-129
F.	J. MARTIN-REYES and P. ORTEGA SALVADOR, Ergodic power functions for mean	
	bounded, invertible, positive operators	131-139
М	, FABIAN and G. GODEFROY, The dual of every Asplund space admits a projectional	
	resolution of the identity	14115
K.	Urbanik, Generalized convolutions V	153178

STUDIA MATHEMATICA

Managing Editors: Z. Ciesielski, W. Orlicz (Editor-in-Chief), A. Pelczyński, W. Żelazko

The journal prints original papers in English, French, German and Russian, mainly on functional analysis, abstract methods of mathematical analysis and on the theory of probabilities. Usually 3 issues constitute a volume.

Manuscripts and the correspondence concerning editorial work should be addressed to

STUDIA MATHEMATICA

ul. Śniadeckich 8, 00-950 Warszawa, Poland

Correspondence concerning exchange should be addressed to

INSTITUTE OF MATHEMATICS POLISH ACADEMY OF SCIENCES

ul, Śniadeckich 8, 00-950 Warszawa, Poland

The journal is available at your bookseller or at

ARS POLONA

Krakowskie Przedmieście 7, 00-068 Warszawa, Poland

C) Copyright by Państwowe Wydawnictwo Naukowe, Warszawa 1988

ISBN 83-01-08728-5

ISSN 0039-3223

PRINTED IN POLAND

W R O C L A W S K A D R U K A R N I A N A U K O W A

TUDIA MATHEMATICA, T. XCI. (1988)

Minimal generators for ergodic endomorphisms

ŀ

ZBIGNIEW S. KOWALSKI (Wrocław)

Abstract. Every ergodic endomorphism f of a nonatomic Lebesgue space which possesses a finite 1-sided generator has a 1-sided generator α such that $k_f \leq \operatorname{card} \alpha \leq k_f + 1$. This is the best estimate for the minimal cardinality of a 1-sided generator. If f belongs to the class of transformations described in the second part of the paper then the generator of minimal cardinality (equal to $k_f + 1$) is presented in an explicit form.

Let f be an ergodic endomorphism of a nonatomic Lebesgue space (X, \mathcal{B}, μ) . Let $f^{-1}\varepsilon$ denote the partition $\{f^{-1}(x): x \in X\}$ and let $\{m_{f^{-1}(x)}\}_{x\in X}$ be the canonical system of measures. Denote by h(f) the intropy of f. If $h(\varepsilon, f) = h(f) < \infty$, then the canonical measures are purely itomic. In this case we can define a number k_f in the following way:

$$k_f = \min \{ k : \text{ card } \{ y : y \in f^{-1}(x) \text{ and } m_{f^{-1}(x)}(y) > 0 \} \le k \text{ a.e.} \}.$$

The equality $h(\varepsilon, f) = h(f) < \infty$ implies that f admits a 1-sided generator of finite entropy. Therefore f is measure-theoretically conjugate to a positive nonsingular endomorphism \tilde{f} (see [4], p. 107) and we obtain a simple description of k_f :

$$k_f = \min \{k: \operatorname{card} \widetilde{f}^{-1}(x) \leq k \text{ a.e.} \}.$$

The number k_f is connected with the existence of a finite 1-sided generator.

THEOREM A [2]. An ergodic endomorphism f has a finite 1-sided generator iff $h(\varepsilon, f) = h(f) < \infty$ and $k_f < \infty$.

Analysing the proof of Theorem A, it is not difficult to see that there exists a 1-sided generator α such that

(1)
$$k_f \leq \operatorname{card} \alpha \leq (e^{h(f)} + 1) k_f.$$

It is obvious by $\alpha \vee f^{-1} \varepsilon = \varepsilon$ that for every 1-sided generator α the left side of the above inequality holds. By (1), the problem arises of finding the exact estimate of the minimal cardinality of a 1-sided generator for f. This problem is solved by the following theorem:

Theorem 1. If an ergodic endomorphism f admits a finite 1-sided generator, then there exists a 1-sided generator α such that $k_f \leq \operatorname{card} \alpha \leq k_f + 1$.

Before proving the theorem we shall prove two lemmas.

LEMMA 1. There exists a partition $\beta = \{B_1, ..., B_{k_f}\}$ such that $\beta \vee f^{-1}\varepsilon = \varepsilon$ and $h(\beta, f) = h(f)$.

Proof. Using the reasoning of Rokhlin (see [5], p. 41) we get the partition $\beta=\{B_1,\ldots,B_{k_f}\}$ such that $B_1\cap f^{-1}(x)$ consists of an atom of the greatest $m_{f^{-1}(x)}$ measure, next $B_2\cap f^{-1}(x)$ consists of an atom of the greatest $m_{f^{-1}(x)}$ measure in $f^{-1}(x)-B_1$, etc. This partition satisfies the following conditions: $\beta\vee f^{-1}\varepsilon=\varepsilon$ and $f^{-1}\beta^-\leqslant\beta^-$ where $\beta^-=\sqrt{\sum_{i=0}^\infty f^{-1}\beta}$. According to Theorems 1 and 2 in [3], f is represented by the skew product $f(z,y)=(f_{\beta^-}(z),\sigma_z(y))$ where $(z,y)\in X_{\beta^-}\times Y\simeq X$ and f_{β^-} denotes the factor endomorphism of f. We also have the equality $J_f(z,y)=J_{\beta^-}(z)J_{\sigma_z}(y)$ where J denotes the Jacobian of an endomorphism. In fact, $J_f(z,y)=J_{\beta^-}(z)$ because σ_z is an automorphism a.e.

Hence we get the following equalities:

$$\begin{split} h(f) &= h(\varepsilon, f) = H(\varepsilon | f^{-1} \varepsilon) = \int \log J_f dm = \int _{X_{\beta^-}} \log J_{\beta^-} dm_{\beta^-} \\ &= h(\beta^-, f_{\beta^-}) = h(\beta, f), \end{split}$$

which finishes the proof.

Let \overline{f} denote the natural extension of f to an automorphism. The transformation \overline{f} is an automorphism of the measurable space $(\overline{X}, \overline{\mathscr{B}}, \overline{m})$ where \mathscr{B} is an exhaustive σ -algebra of $\overline{\mathscr{B}}$. The following generalization of Proposition 28.2 in [1] holds:

Lemma 2. Let $\beta = \{B_1, ..., B_s\}$ be a partition such that $\overline{m}(B_1) > 0$, $B_i \in \mathcal{B}, \ i = 1, ..., s$. Let

$$\eta = [\bar{m}(B_1)]^{-1} [h(\bar{f}) - h(\beta, \bar{f})].$$

If $n \in \mathbb{N}$, $\log n > \eta$, then there exists a partition $\{A_1, \ldots, A_n\}$ of B_1 such that $A_i \in \mathcal{B}$, $i = 1, \ldots, n$, and $\beta_1 = \{A_1, \ldots, A_n, B_2, \ldots, B_s\}$ is a generator for \overline{f} .

Proof. Except for the symbol Ψ , which we replace by \bar{f} , we will use the same notation as in [1]. Proposition 28.2 is a consequence of the proof of Theorem 28.1 [1] where a generator is constructed by adjoining different blocks to certain subsets of a set H_i for $i=1,2,\ldots$ The set H_i is the sum of some levels of a suitable Rokhlin tower. We obtain the assertion of the lemma if we use a Rokhlin tower such that the levels contained in H_i are elements of \mathcal{B} . Therefore we take a sequence of partitions γ_i , $i=1,2,\ldots$, such that $\gamma_i \subseteq \mathcal{B}$ and $\bigvee_{i \in N} \sum_f \gamma_i = \bar{\mathcal{B}}$.

Assume that $H_{i-1} \in \mathcal{B}$. In the next step of the induction proof we find a set $F_i \subseteq S_i \cap H_{i-1}$ such that $F_i \in \mathcal{B}$ and F_i is an (\bar{f}, q_i, ξ_i) -Rokhlin set and $\bar{F}_i = \bar{f}_{H_{i-1}}^{-n_i}(F_i)$ is an $(\bar{f}_{H_{i-1}}, n_i, \xi_i)$ -Rokhlin set. Analysing the proof of Theorem 26.4 [1] gives easily the existence of such an F_i . By

$$H_{i} = \bigcup_{j=2l+l(a)}^{2l+l(a)+k_{i}} f_{H_{i-1}}^{j}(\bar{F}_{i}) \quad \text{for } j=k_{i}-c+j, \ldots, n_{i-1}$$

and by using the levels $f_{H_{i-1}}^j(\vec{F}_j)$ for $j=k_i-c+j,\ldots,n_{i-1}$ and some atoms of the partition $\bigvee_{j=0}^{q_i-1} f^{-j}(\gamma_i)$ in coding we get the assertion.

Proof of Theorem 1. Let $\beta = \{B_1, \ldots, B_{k_f}\}$ be the partition given by Lemma 1. By $h(\bar{f}) = h(f) = h(\beta, f)$ we get $\eta = 0$. Therefore by applying Lemma 2 to β , where n = 2, we get the generator $\alpha = \{A_1, A_2, B_2, \ldots, B_{k_f}\}$ for \bar{f} such that $\alpha \subseteq \mathcal{B}$ and $\alpha \vee f^{-1}\varepsilon = \varepsilon$. We get the assertion by using the same reasoning as in the proof of Rokhlin's theorem 10.11 in [6].

In the second part of the paper we describe a simple construction of a 1-sided generator for a class of simple products of measure-preserving transformations. Let (X, f, μ) and (Y, τ, p) be dynamical systems where X, Y are compact metric spaces, f is a continuous transformation, τ is a homeomorphism and μ , p are Borel invariant measures. Let $T(x, y) = (f(x), \tau(y))$ for $(x, y) \in X \times Y$. T is a continuous endomorphism of the space $X \times Y$ with the product measure $\mu \times p$. Assume that f has a k_0 -element 1-sided generator $\beta = \{B_1, \ldots, B_{k_0}\}$ such that B_i , $i = 1, \ldots, k_0$, is an open set and τ has a 2-element 1-sided generator $\alpha = \{A, A^c\}$.

DEFINITION. A homeomorphism τ is distal if $\forall x \neq y \ \exists \varepsilon > 0$ $d(\tau^n(x), \tau^n(y)) > \varepsilon$ for $n = 0, \pm 1, \ldots$

Here d denotes the metric in Y.

THEOREM 2. If for all $k \ge 0$, $\bigcap_{n=0}^k f^{-n}(B_1) \ne \emptyset$, τ is distal and the diameter δ_n of the partition $\alpha_n = \bigvee_{i=0}^n \tau^{-i} \alpha$ tends to 0 and the orbit of μ -a.e. $x \in X$ is dense in X, then $\beta_1 = \{B_1 \times A, B_1 \times A^c, B_2, \ldots, B_{k_0}\}$ is a 1-sided generator for T.

Proof. Denote by X'(Y') the subset of X(Y) coded by the generator β (α). Let X'' be the set of all points $x \in X'$ such that the positive orbit of x is dense in X. Then we have $\mu \times p(X'' \times Y') = 1$. Now, we prove that the set $X'' \times Y'$ is coded by β_1 , i.e. every atom of $\beta_1^- = \bigvee_{i=0}^{\infty} T^{-i} \beta_1$ has at most a 1-point intersection with $X'' \times Y'$.

Let (x, y), $(x_1, y_1) \in X'' \times Y'$ belong to the same atom of β_1^- . Since $\beta^- \times Y \leq \beta_1^-$ we get $x = x_1$. If $y \neq y_1$ then by the distality of τ there exists $\varepsilon > 0$ such that $d(\tau^n(y), \tau^n(y_1)) > \varepsilon$ for $n = 0, 1, \ldots$ Since $\lim_{n \to \infty} \delta_n = 0$ there is n such that $\delta_n < \varepsilon$. Consider the following family of atoms

(2)
$$\bigcap_{j=0}^{n} f^{-j}(B_1) \times \bigvee_{j=0}^{n} \tau^{-j}(\alpha)$$

of the partition $\bigvee_{j=0}^n T^{-j}\beta_1$. The set $\bigcap_{j=0}^n f^{-j}(B_1)$ is nonempty and open. Hence $f^k(x) \in \bigcap_{j=0}^n f^{-j}(B_1)$ for some k by the density of the orbit of x. The points $(f^k(x), \tau^k(y))$ and $(f^k(x), \tau^k(y_1))$ belong to different atoms of the set (2) because $d(\tau^k(y), \tau^k(y_1)) > \varepsilon > \delta_n$. Hence (x, y) and (x, y_1) belong to different elements of the partition

$$T^{-k}(\bigvee_{j=0}^{n}T^{-j}\beta_{1})\leqslant\bigvee_{j=0}^{n+k}T^{-j}\beta_{1}<\beta_{1}^{-}.$$

This is a contradiction and hence $y = y_1$, which finishes the proof.

COROLLARY. The partition $\beta = \{B \times B, B \times B^c, B^c \times S\}$ where $B = \{e^{2\pi i\alpha}: 0 < \alpha < \frac{1}{2}\}$ is a generator for the transformation $T(z, w) = (z^2, aw)$ of the torus S^2 where a is not a root of unity.

Remark. The inequalities in Theorem 1 establish the best estimate of the minimal cardinality of a generator.

The example given in the corollary belongs to the following class of transformations: Let T be the 1-sided (1/k, ..., 1/k) Bernoulli shift and let τ be any distal automorphism. Then the generator β_1 constructed for $T \times \tau$ has k+1 elements and the other generators have at least k+1 elements.

References

- [1] M. Denker, Ch. Grillenberger and K. Sigmund, Ergodic Theory on Compact Spaces, Lecture Notes in Math. 527, Springer, 1976.
- [2] Z. S. Kowalski, Finite generators of ergodic endomorphisms, Colloq. Math. 49 (1984), 87-89.
- [3] -, A generalized skew product, Studia Math. 87 (1987), 215-222.
- [4] W. Parry, Entropy and Generators in Ergodic Theory, Benjamin, 1969.
- [5] V. A. Rokhlin, On the fundamental ideas of measure theory, Amer. Math. Soc. Transl. Ser. 1 10 (1962), 1-54; Mat. Sb. 25 (1949), 107-150.
- [6] -, On entropy and generators of measure-preserving transformations, Uspekhi Mat. Nauk 22 (5) (1967), 1-52 (in Russian).

INSTYTUT MATEMATYKI POLITECHNIKI WROCŁAWSKIEJ INSTITUTE OF MATHEMATICS, WROCŁAW TECHNICAL UNIVERSITY Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland

On the strong Cesàro summability of double orthogonal series

by

I. SZALAY* (Szeged)

Abstract. In a recent paper [3], Móricz gave a coefficient test for the strong summability of double orthogonal series in the case of the parameters α and β greater than 1/2 and the index λ equal to 2. Using the definition of convergence in Pringsheim's sense with a bound, the present author extends the definition of strong summability to the case of λ positive and α and β nonnegative. The case $\alpha = \beta = 0$ is the so-called strong convergence. This note contains coefficient conditions for nine cases of parameters and indices.

1. Introduction. First of all we mention that for a double sequence $\{\omega_{m,n}\}_{m,n=0}^{\infty}$ the "little o"

$$\omega_{m,n} = o(1)$$
 as $\min(m, n) \to \infty$
(or $\max(m, n) \to \infty$, or $m \to \infty$, or $n \to \infty$)

means that $\omega_{m,n} \to 0$ as $\min(m, n) \to \infty$ (or $\max(m, n) \to \infty$, or $m \to \infty$, or $n \to \infty$) and in addition there exists a constant K such that $|\omega_{m,n}| \leq K$ for $m, n = 0, 1, \ldots$ The case

$$\omega_{m,n} = o(1)$$
 as $\min(m, n) \to \infty$

may be called convergence in Pringsheim's sense with a bound. Our next definitions are understood in this sense.

We say that a series

$$\sum_{i,k=0} c_{i,k}$$

is Cesàro summable with parameters α , $\beta > -1 - \text{or} (C, (\alpha, \beta))$ summable — to s if

$$\sigma_{m,n}^{(\alpha,\beta)} - s = o(1)$$
 as $\min(m, n) \to \infty$,

and it is said to be strongly Cesàro summable with parameters α , $\beta > 0$ and index $\lambda > 0$ or $[C, (\alpha, \beta)]_{\lambda}$ summable—to s if

^{*} This work was done while the author was visiting the Steklov Mathematical Institute in Moscow, U.S.S.R.