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On the ergodic power function for
invertible positive operators
by
RYOTARO SATO (Okayama)

Abstract. Let T be an invertible positive linear operator on L, I <p<oo, of a g-finite
measure space, and suppose 77! is also positive. For 1 <r < oo, the ergodic r-th power function
P.f of feL, (with respect to T) is defined by

Pf= [,Eol'lllﬂ,of—7;;,0f|""|To,k+1f‘Tv,kﬂ']”r

where T, f = (n+k+1)"* 3k _, T'f with n, k> 0. In this paper it is proved that if Tx are
uniformly bounded operators on L, then IlP, f1l, < ClIfli, for all f L,. This generalizes a recent
result of F. J, Martin-Reyes. An application is also given.

1. Introduction and the theorem. Let (X, &, 4) be a o-finite measure
space and T an invertible linear operator on L, = L,(X, &, ), with 1 <p
< 0. If both T and T~ are positive, then, as is well known (see e.g. 3y, T
and T~! are Lamperti operators, and there exists an invertible positive linear
operator S acting on measurable functions such that § is multiplicative and
S1 =1, and a sequence {g;}i“;_ « Of positive measurable functions on X such
that for each integer i, T* has the form

(1) ' T f () = g:(x) S' f ().

It is immediately seen that

@ Girj(X) =g, (X)Sigj(X) ae. on X.

Further, by the Radon-Nikodym theorem there exists a sequence {J;}2 _ "
of positive measurable functions on X such that

3) [J:() 8" f(x)du = [f(x) du for each i and feL,.
Clearly,
“ Jirj (%) = Ji(x) 8 J;(x) ‘ae on X.
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On the other hand. we now consider functions f on the integers. The
maximal function f* of f is defined by

sup (n+k+1)"1 Z [f G+

Jj=-n

S =

For a positive real function u on the integers the following is known (see e.g.
[6] for a proof):

=)

S O(FFapPu<Cc S 1 0Fu)

i=—o i= -

for all f

if and only if u satisfies the condition
k

(X ul@+N(Y w@+)" VPt < Clk+1)y
j=0 j=0
for all i and k, with k= 0.

Here, and in the sequel, C will denote a constant that may be different
at each occurrence.

Using these properties, Martin-Reyes and de la Torre [5] proved a
dominated ergodic theorem. That is, they proved

-

(4,)

THEOREM A. If both Tand T™! are positive linear operators on L,, 1 <p
< o0, then the following are equivalent:
M NIMfll, < Cllfll, for all feL,, where Mf is the ergodic maximal
Sfunction defined by

Mf = sup |T,, f].
mkz0

(i) 11T Sl < CIISIl, for all k>0 and feL,.

(ili) For almost all xe X, the function u,(i) = g; ?(x)J;(x) defined on the
integers satisfies (A,) with a constant independent of x, where {g;}%2 _, and
{Ji}2 _  are the sequences of functions determined by (1) and (3), respectively.

On the other hand, Martin-Reyes [4] recently studied good weights for
the ergodic power function associated with an invertible measure preserving
transformation, and generalized the results of Jones [2]. In partmu]ar the
following lemma is due to Martin-Reyes [4].

Lemma A. Let u be a positive real function on the integers and suppose u
satisfies (A,) with a constant C. Then for each 1 <r < x there exists a
constant C, depending only on the constant C such that

©

2 IPESOIPu)

i=—o0

<G 5_2, 1 @) ()

i=-

icm
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for all functions [ on the integers, where

(L,

In this paper, using Theorem A and Lemma A, we shall generalize a
recent result of Martin-Reyes [4] to the operator-theoretic level. In the next
section we shall apply the result obtained in this section to give a unified
proof of the almost cvcrywhcre and L,-norm convergence of the ergodic
averages n 'YL T'f(x) and the ergodic series Y% k™U(T*f(x)

~ T~k f(x)}, when T is an invertible Lamperti operator on L, satisfying a
certain norm condition, The theorem we are going to prove in thls section is
as follows.

P} f (i) (k] + I)M’I‘f([.}_k)lr]l/r'

Turorem 1. If both Tand T~ are positive linear operators on L I1<p
< oo, and i supgzollTisllp < o0, then for any r with 1 <r < x there exists a
constant C, such that ||P, f|l, < C.IIfl, for all f €L,, where P,‘flS the ergodic
r-th power function of f" defined in the abstract.

Proof. From the relation Ty, f =Ty, [ =
it follows that

(k+2)7 [T f= Tox 11,

P f< [k}i (k| + 1)1 T ST+ C(Mf).

Hence Theorem A implies that for the proof of the theorem it suffices to
prove ||Qf ||, < C|Ifl, for all feL,, where

OF =[ 3 (K+1)7IT* 1]

To do this, we now fix an N > 1 and let

N
OnS = [k Z;_N(Ikl +D7IT ]

From (1), (2) and (3) we see that
L

[ 5 8Qu SN du

10

1 L "N (Silkal )r]p/r
.- : oA J.d
204+ 1 j,mz,,L[M?;N e+ 1 cap

1 L N ngS”klfl ol o
PR —— K ) d '
2H1!imz.k[k,§N( |k|+1 g vJ, ‘y

§IQN S17dyt =55
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On the other hand, since || T, fll, < C|Ifll, for all k>0 and feL, by
hypothesis, Theorem A shows that for almost all x in X the function u, (i)
= g; ?(x)J;(x) on the integers satisfies (4,) with a constant C independent of
x. Hence by Lemma A, for almost all x in X,

L N 3 i+k »rTp/r
) § SR

i=—Llk=—wn (k| +1
L+N
<C, Y (@S )P g Px) (%)
i=I-N
Ly
=C, Y S,
i=-L-N
and thus
» 1 L+N . » d
(1Qx 11 d”STL:F_lC'i:_ZL_N'fSVIﬂ () Ji(x)dp
2L+ N)+1
=W—Crf|flpdﬂ~

Letting L T oo and then N T oo, we have [|Qf|7du < C, {1f1Pdy, and the proof
is complete.

Remark. It seems interesting to note that the converse of Theorem 1 is
not true even if T is induced by a point transformation; an example can be
found in [4].

2. An application. In this section let T be an invertible Lamperti
operator on L, with 1 <p < o0. Thus, as is easily seen (cf. [3]), 7! is also a
Lamperti operator on L,, and there exists an invertible positive linear
operator § acting on measurable functions such that S is multiplicative and
§1=1, and a sequence {i}2_, of measurable functions on X such that for
each i, T" has the form T'f(x) = h;(x)§' f (x). Clearly, hy,;(x) = h;(x) S' hy(x)
ae. on X for any i and j. Let

Y = || Sf.

It then follows that ¢ is an invertible positive linear operator on L, and, for
each integer i, ¢’ has the form ©' f(x) = | (x)|S' f (x). We call 7 the linear
modulus of T. In this section we apply the result obtained in the preceding
section to prove the following theorem due to Martin-Reyes and de la Torre
[5] and the author [7]. '

Tueorem 2. If Tis an invertible Lamperti operator on L, 1<p<oo,and
if the linear modulus t of T satisfies sup,s It idl, < o0, then for any f e L, the

Ergodic power function 133
limits

im Y k(T =T f)

noou k=1

n—1
lima™' Y T'f and
=0

n-roo i
exist almost everywhere and in the norm topology of L,.
Proof. We first notice that for any felL,

(5) imn ' T"f=0

ner o

ae. on X and in the norm of L,

©) S (/T fl< o ae on X.
K= 1

In fact, letting r = p in the proof of Theorem 1, we see that

i [kl +1)~P | fl17 dp < o0,

k=~ o0

from which (5) follows. Further, since )2, k™ ?|T*f|? <o ae. on X,
Hélder’s inequality implies that

§ k=2|T* /] S[f k~”ka|u]1/p[§ k9] < oo
k=1 k=1 k=1

a.e. on X, where 1/p-+1/q = 1. Thus (6) follows.
Since L, is a reflexive Banach space and

n—1
suplp= Y. 7, < co,
nz1 i=0

a mean ergodic theorem (see e.g. Theorem VIIL5.1 in [1]) together with (5)

proves the norm convergence of the ergodic averages n™!'YIZ3 T' f. It
follows that the set {g+(f—Tf); Ty =g and f €L,} is a dense subset of L,.
Hence, by Theorem A and (5), we may apply Banach’s convergence theorem
(see e.g. Theorem IV.11.2 in [1]) to infer that the ergodic averages converge
ae on X for any feL,.

To prove the rest of the theorem, we need the following result due to the
author [7] (cf. Lemma in [7]: For all feL,

7 H* S, < Clifll,,  where H* f =Sg1@1>l ilk"l('f"f—« T f).
T

By (7) and Lebesgue’s convergence theorem, it suffices to prove the a.e.
convergence of the ergodic series Y &2, k™1 (T* f—T~* f). Since {g+(f— Tf):
Ty=g and fel,} is a dense subset of L, we again apply Banach’s con-
vergence theorem together with (7) and see that it suffices to prove the a.e.
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convergence of

S k[T =T~ T (= TN)]
k=1 .

n-1 /1 1 ) o
=T AT )= (T

as ntoc; by (5) and (6) we see that the limit

lim 3 k=t [T(f= Tf) = T~*(f—Tf)]

n-reo k=1

exists a.e. on X. This completes the proof.
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On the geometry of spaces of C, K-valued operators
by
EHRHARD BEHRENDS (Berlin)

Abstract. Let K be a locally compact Hausdorll space and X a Banach space. We consider
operator spaces W in L(X, C'qK) which contain the compact operators and have the property
that T'e W implies M, 0 T'e W for every bounded continuous scalar-valued function & on K (M,
denoles the multiplication operator f1-hf on Cy K).

Our main results center around the M-structure properties of such spaces W. We
characterize the centralizer of W if the centralizer of X’ is small, and for many classes of Banach
spaces X (including c.g. the L'-preduals) we are able to describe all M-ideals of W, at least in
the case of compact K. .

These characterizations generalize results of Flinn and Smith who discussed the case W
= L(CK, CK) if the scalars are complex.

With our methods we also can treat questions as “Is K determined by W?" or “When can
W be a dual space?”, We are able to derive answers which generalize recent results of Cambern
and Greim.

I. Introduction. Let X be a real or complex Banach space (the scalar
field, R or C, will be denoted by K in the sequel). The following basic
definitions from M-structure theory will be of importance:

1.1. Dermvmion. (i) Let J < X be a closed linear subspace, J is called an
M-summand (resp. L-summand) if there is a closed subspace J* < X such that
X=J@®J" algebraically and |lx+x%| = max {||x|, [|x*]} (resp. = |||
+[|xY]) whenever xeJ, x*eJ*. J is called an M-ideal if J*, the annihilator
of Jin X', is an L-summand.

(ii) Let ' X — X be an operator. T is called a multiplier if for every
extreme functional p (i.e. for every extreme point p of the dual unit ball)
there is a scalar ag(p) such that poT=ay(p)p. Mult(X) will denote the
collection of all multipliers.

A multiplier S is called the adjoint of a multiplier T (and we write §
= T* in this case) if ag(p) is the complex conjugate of ay(p) for every p.

Z(X), the centralizer of X, is the set of all multipliers which admit an
adjoint.

These definitions have been introduced by Cunningham ([8, 97) ‘and
Alfsen—Effros ([1]); for a systematic introduction the reader is referred to
Behrends ([2]).

Here we only note that Z(X) and Mult(X) are always commutative
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