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Inductive limit of operators and its applications
by
J. JANAS (Krakow)

Abstract. The paper deals mainly with spectral properties of inductive limits of operators
in Hilbert spaces. Applications to inductive limits of Riesz and hyponormal as well as to other
operators are also given. In particular, extensions of Marchenko theorems to normal operators
are shown.

Notation. All Hilbert spaces considered in the following are complex.
For a complex Hilbert space H with a scalar product (-, *), L(H) denotes the '
space of all linear and bounded operators on H. If T is a closed densely
defined operator in H, then o (T) (respectively ¢, (T)) stands for the spectrum
of T (respectively the approximate point spectrum of T) and D(T) for the
domain of T.

I Let us recall the notion of inductive limit of Hilbert spaces. Suppose
we are given a sequence of Hilbert spaces Hy, k=1,2,... We say that
a Hilbert space H is an inductive limit of the H, if there are isometries v H,
—H, (k<) and y,: H, —H such that the following conditions are satisfied:

(a) 7% is the identity on H,.
(b) v =yron if k<i<m.
© =m0 if k<L

@ H= \/kzﬁka-

By the above definition there is no loss of generality in denoting by [|-1} the
norm in every H, and also in H. We write H = lim, Hy.

The starting point of our work concerns a generalization of a result of
Marchenko [3]. Namely, for a given sequence of selfadjoint operators A, in
H, he has found a sufficient condition for the essential selfadjointness of the
operator

Ag o= Hm yp Ap¥5 @ns @ =VnPm
m-roo L
on Dy, = J,¥xD,, where D, = the domain of A4,. It turns out that a similar
condition imposed on general closed densely defined operators L, in H, also
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guarantees the existence of

1 Ly @ = lim y, Ly y% @us

m-w

P = YnPn,

on D, = U,y,D, where D,=the domain of L,. To be more precise,
suppose that the above sequence L, satisfies the following condition:

(M 7t Dy S Dyry,  VaTIDY = DXy,

where D¥ =the domain of L}.

TreoreM 1.1. Let L, be a sequence of densely defined closable operators
in Hy with domains Dy satisfying the above condition (i). Assume that for
any € >0 there exists ny(e) such that for every m>nz ny(e) and any
peD,, yeDy

() L 72— ¥ La) @l < (@l + L v @ll +[1Ls 1),
(*%) I —vn LI el + N L yw il + L7 ) -

Then equality (1) defines a closable densely defined operator L, on D,
Moreover, for any YyeD¥ =),y,D¥ the limit

Aoy £ By, LE YT

m- o

'p = y" !l/'l’
exists and Ay, = L%.

Proof. Let ¢ =y,¢,, ¥ =v,¥,. The existence of lim,, . VmLm ¥y @n
= Lo ¢ and lim, ., ¥, LE Y5y, = A, ¥ can be proved exactly in the same
way as for selfadjoint operators [3].

Now we will show that L, is closable on D . First note that D, = H
and so L¥% exists. Moreover, we have D¥ c D(L%).

Indeed, for ¢ =y,¢,eD, and Y = y,y,e D% we write (with m > s and
m > n)

(Yn s YmLin Vs ¥s) = Om¥n P> Y L 75 W) = (O @ L3

= (L ¥y @u> V3 = m Lon V5 @rs Y VS V5) = (Y L V' @ V5 W)

Hence
(@, A ¥p) = UM (7, @y Y L VT W) = HM (Y Ly Y7 @y 7, ¥ = (Lo @, ¥)

and so YyeD(LY). :
Now applying a result of von Neumann [4] we know that L, is

closable (and L, = L%¥). the inclusion 4, < L% is also evident by the above
equalities. =
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Remark 1.2. If L,e L(H,) and if ffhe norms ||L,|| are uniformly bounded
and satisfy condition (x) then L, can be extended to a bounded operator L
on H.

The operator L, £ L shares some properties of the approximating
sequence L,. For example: if the L, are symmetric (hyponormal) then L is
also symmetric (hyponormal). Here T is called hyponormal if T is densely
defined, closed, D(T) =« D(T*) and ||T*x|| <||Tx||, x€D(T). (We do not
assume that D(T) = D(T*), the condition required in [4]).

The proofs are straightforward and left to the reader.

Remark 1.3. Theorem 1.1 has an obvious extension to linear mappings
L,: H,— K, (closed, densely defined) between Hilbert spaces H,, K,. Condi-
tions (*) and (%) also have natural interpretation in this context. In
particular, (+) is trivially satisfied if L,.,y3"* =t"'L, where t;*': K,
— K,., denotes an isometric embedding.

Now we will give a few applications (examples) of Theorem 1.1.

ExampLE 14. Let A; be a sequence of closed densely defined operators
in H;, a Hilbert space with norm ||-|;. Suppose we are given a sequence
e eD(A4) N D(AY), |lell; =1, such that

@ Yldieli < +00,  TlAfell: < +co.

Then the expression

YIL®...®L., ®A4®Li+1®...,

where I, denotes the identity on H;, has a meaning and defines a closable
densely defined operator in the infinite tensor product H = @75, H; with the
stabilizing sequence (e;).

Here to apply Theorem 1.1 we put

L=Y1,®.. 0L 1048 ®..Ql,
1

n
H,= Q®H, 7:+1f=f®en+1'
1

Conditions () and (»*) of Theorem 1.1 can be verified, using (a), in the same
way as in [3] for selfadjoint operators.

ExampLE 1.5 (a problem). Let R;,: L*(R")—L*(R), 1 <j §.n, be the
Riesz transforms. Set du, = a,|x{~"dx, a, = '(n/2)/z"*. A stralghtforwa.r-d
reasoning shows that L, = R,, is a densely defined closable operator in
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L2(y,). By a result of [12] there exists a unique (up to a constant) measure p
on the Borel subsets of R® =R xR x ... such that:

() p(AE) = pu(E), A > 0.

(b) u(UE) = u(E) for every unitary U: [*—I*> which maps R —R§,
where RY denotes the real sequences with all but a finite number of
coordinates different from zero.

(¢ If p, R*—R" is the canonical projection,
= p; HEy), WE) = p,(E,).

We claim that the L, satisfy condition (x) of Theorem 1.1, where

WL = fy o oy [ fe ().

It is easy to check that both above mappings are isometric. In fact, for
fel*(u,) we have

then for any E

)

" dx, 44 dx
llya® S = 11 ditpsr = sy I{"|f|2 _wa

N (2) 2 B _
PE F—(;IE”—“dx = [IfPPdu, = 1 fII*.
2 ) T

It is clear that L?(u)= lim,L*(u,). A careful reasoning shows that

= [If?
e

Ln+1 ’y:*—lf: y:+1Lnf‘= fELl(#n)mLz(Mn)'
It follows that
Luyaf =vLnf
for any m > n, and so condition (x) of Theorem 1.1 is trivially satisfied. In

order to apply Th. 1.1 we should also verify condition (xx) for R%,.
Unfortunately, we were not able to prove or disprove this condition.

ExampLE 1.6. Suppose we are given a sequence T; of bounded operators
in H;. Theorem 1.1 can also be applied to obtain the well-known sufficient
condition for the existence of the countable tensor product of the T;. Assume
that there exists a sequence e of unit vectors, ||e®”]| = 1, such that

Y lle® ~ T e < +oo.

Let K = @ @ H: be the countable tensor product of the H; with the

stabilizing sequence (¢™). Let K,= @'"H;,, L,= ®!T, and define
’);:+1: Kn_"KrH»lv yn: Kn-ﬁK by

W= @Y,y f=fRMVRETI®...
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By a straightforward computation one can check that
L, yy—yn L, satisfies (x).

If there exists a constant C such that
[T <C, n=1,2,..,
1

then ||L,] < C and applying Theorem 1.1 we have

o0
610 L[ = lm p Ly fus [ =Vufu

Now we shall formulate a few simple facts concerning mostly unbound-
ed hyponormal (cohyponormal) operators. We shall use some of them in the
next section. Recall that a densely defined closed operator T is called
cohyponormal if T* is hyponormal.

ProrositioN 1.7. For a hyponormal (cohyponormal) operator T (W) the
following properties hold:

(2) T*per, = KT, 1Kl < 1.

(b) If T~ ! exists, then T™' is also hyponormal.

(©) o(W) =0, (W).

(d) For any isometry V the operator VTV* is hyponormal.

(e) If A and B are bounded hyponormal operators, then A ® B is also
hyponormal.

Proof. (a) The proof is similar to the one given for bounded hypo-
normal operators in [1].

(b) follows easily from (a).

(c) can be checked directly by the definitions.

(d) is a straightforward calculation by using the inclusion

D(VT*V*) = D(VTV*).

(e) We have A ® B=(4 ® I)(I ® B) = A, B,. Therefore it is enough to
show that d4,, B, are hyponormal (note that 4; and B; doubly commute).
Let us check the hyponormality of 4;. If f =Y, a, ®b, and b, = Ys Bus €55
where (¢,) is an orthonormal basis, then we compute:

A4t fI1? =||4% (}kj a, @b = ”,(Zﬁ"’A* a, ®es“? = g”; Bis A* af|?
= Z ||A*§/3ks ak”Z < Z ”A§ﬁks ak”2 A

=¥ Aa, @ Buse” = L Ak ®by* = 14, f1I*-
k,s k
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CoROLLARY 1.8. Let A; be a bounded hyponormal (cohyponormal) operator
in H;. Assume that there exist unit vectors e;e H; w1th Yille—Aefl < +oo.
Then

T= ®A ®Ha®H

1ep 1(e;)
is hyponormal (cohyponormal).

Proof. In fact, if we define T, = ®/-,; 4, ® I ® ..., then by Proposition
1.7(¢) we know that T, is hyponormal (the presence of infinitely many I
causes no problem). Since T,—T, is also hyponormal and T, — T strongly,
T* must tend strongly to T%* Thus T is hyponormal.

We end this section by giving a few examples of unbounded hyponormal
operators.

~ ExampLE 1.9. Let (q;) be a sequence of complex numbers such that [g is
increasing. Define T = weighted shift with weights a;. Then T is hyponormal.
Note that in general D(T) # D(T*). By a direct computation one can check
that D(T) = D(T*) if and only if there exists C > 0 such that

lad = Clagd], k=1,2,...

ExampLe 1.10. Let (Cf)}(x) =27 Y*(xf(x)~df/dx) be the creation
operator in L*(R). By direct use of the Bargmann model for C (or apply-
ing the results of [7, p. 252]) we know that C* f(x) = 27V (xf (x) +df /dx),
D(C) = D(C*) and [IC* f]| < ICf}.

ExampLE 1.11. A straightforward computation shows that CC* C is also
hyponormal (as a weighted shift with increasing weights).

IL In case the L, of Theorem 1.1 are selfadjoint Marchenko has found
(under condition (*)) the following nice formula:

2 o)= N U o(L,) (the closure).

n=1m=n

We shall prove an analogous formula for ¢,(L) in terms of o,(L,) under
certain assumptions on L,.

Tueorem 2.1, Let H = lim, H,. Suppose we are given a sequence L, of

closed densely defined operators satisfying conditions (*) and (xx) of Theorem
1.1. Assume that o(L,) = o,(L,) and
(3) AT~ L) <

Fm(dist(z, o(L), m=1,2,...,
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where the F,(t) are uniformly bounded for t = 6 > 0 (for any 6 > 0). Then

ﬂ U ou(La-

n=1m=n

o(l)=0,(D) =

Proof Write 0,(L,) = 6p, 0,(L) =0, N2 U n0m = 0,. We have to
show that ¢ = o,. We shall follow the ideas of [3].

a) 6 ©04. Since o(L,)=o,(L,), we can repeat step by step the
reasoning given in [3] for L, selfadjoint and obtain the desired inclusion.

b) 6 ©g,. We shall prove that C\o, = C\o. If A¢0c,, then there

exists n such that A¢J,s,0m ie

dist(4, U om) =6

m>n

for some 6 >0,

and so dist(4, 6,,) =6, m>n. Hence by (3)

@ A ~ L)~ Y| < Fp(dist(4, 6} < C, m2m.
- We want to check that A¢o,. It is enough to check that:

@  ym(A =Ly~ *yF ¢, is converging in H to S, ¢ for any
@ = y,¢,, where S, is a bounded operator in H.

(ﬂ) SZ(lI—Lw)w = o, (pEDm’ (AI-Lm)SZ.w:‘p: l/’EH

Ad (o). Write S,, =(AI—L,)"'. We claim that y,S,77 ¢, satisfies the
Cauchy condition. Indeed, for | > m > max(no(¢), n) we have

12 81— Y S 72 @ull = 11081V —Von Sd V5 @ll = 1181 (¥ Lin— Ly i) S 7 @l
< Fy(dist (4, ))& (1S ¥ @all 1L Sm V7 @4l

The last expression is majorized by ¢C(4, ¢,), as one checks dlrectly Hence
for every ¢ = y,¢, the limit

Hm Y S ¥y @0 = S1 0

m-=r oo

exists. Since [|YmSm ¥* @4l < Clloll, m = n (by (4)), we have S, eL(H).
Ad (B). Let @ =y, €eD,. Consider the sequence -

Oum =181 7m(A— L) ¥ @
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Note that ¢,,—@ as m—oo and I>m. In fact, for I>m

> max(ng (&), n) we have
l9ym— @l < Fi(dist (2, a))]|(p(A~ L) ~(2— L) 1) 2 9|
< CI(Ly Y=Y L) 77 0l
< Ce((|@ll+11L i @l + 1L v @l) < C(0) 6.

Thus the claim is true and letting first / — oo and next m — oo we obtain

n=lm S, (1= L) Vo
=8 Ym(A— L) yr ¢ — 8, (A-Lo)f as m— 0.
Hence
G =lm @y, =35;(A-Ly)p.
A similar reasoning proves that
Yim = NA—L) Y Spvph =¥  as m— o,

where = y,. Thus
¥ = lim y,,, = lim (A—

m— o m=ro0

Leo) YmSm¥i¥ =(AI—L,)S; V. =

CoroLLARY 2.2. Let H =lim,H,. Suppose we are given a sequence

T, (W,) of hyponormal (cohyponormal) operators in H, satisfying conditions (%)
and (xx) of Theorem 1.1. Then

(o(W) = ﬂl U o(W.).
n=1m=n
Proof. By Proposition 1.7(b), (c) we know that (1 —
normal and o(W,) =0, (W,). On the other hand,

© o= 0 U o)
W,)~! is cohypo-

ICAT = W) ™| = 1/dist (4, o (W),

and so F,(r) = 1/r in Theorem 2.1. Since W is also cohyponormal the second
equality in (5) holds by Theorem 2.1. The first equality of (5) is also obvious
because T,F, T* are cohyponormal and o(T*) =o(T). B

Later we shall give specific examples of applications of the above
corollary. The next corollary concerns inductive limits of certain finite-
dimensional operators.

Let H =lim, H, be the inductive limit of an increasing sequence of its

finite-dimensional subspaces Hy, ie. y2*! and y, are canonical embeddings.
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Suppose we are given operators 4, on H,. We shall identify 4, with A,
= A, @0, according to the decomposition H = H, @ H;t. Let P,: H— H,, be
the orthogonal projection. Fix a uniform cross norm || -||, on the set & (H) of
finite-dimensional operators in H. Assume that ||-l, is not equivalent on
#(H) to the operator norm |-||. Write r, = dist(4, 6(4,)). The following
estimate has been proved in [6]:

(6) (2= 4,7 < 3ry texp [391|1 Al ' 7 (ru/(611A,10))]

where 7 is a decreasing function in (0, c0) depending on |[P,|lo. Applying
Theorem 2.1 we have

CoroLLarY 2.3. Let H,H,, Ap |I'llo be as above. Suppose that the
sequence A, satisfies (x) of Theorem 1.1 and there exists C > 0 such that
Alo <C, n=1,2,... Then

o) = N U o4y,

on=1m=n

where A = lim, A4,.

Proof. Since ||4,/lo C,n=1, 2, ..., by (6) we can put in Theorem 2.1

Fy(r) = 3r~ " exp[39]|4,llor™ 7 (r/(6114l0)]- =

In the next section we shall give an example of application of Corollary
2.3 to trace class operators. Lo

III. This section contains a few applications of the results of the previous
one. :

o) Let L be a trace class operator in a separable Hilbert space H.
Suppose that there exists an orthonormal basis (e,) in which L can be written
as a tridiagonal matrix a; = (Le;, ¢;). Let H, = span(e,, ..., ¢,) and denote
by P, the orthogonal projection on H,,. Deﬁne L, to be the compression of L
to H,, ie. L,=P,LP,. Let y"*': H, = H,., v,: H, > H be the inclusion
embeddings. If ¢ = Zl @; ¢, then by a direct computation we find

@ (Lo v — v L) ooll =

Since L is of trace class, a,+1,—0 as n—oo.

Now choose the cross norm ||T]l =tr(TT*)*2. Since L, —L, there
exists M > 0 such that ||L,llo <M, m=1,2, ... On the other hand, (7) and
the convergence to zero of a,.,, imply condmon (*) of Theorem 1.1.
Applying Corollary 2.3 we obtain the (surely known)- : :

|an+1,n§0nl’ m>n.
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ProposiTioN 3.1. Let L be a tridiagonal trace class operator and let L,
be as above. Then

o= A U olL.

Remark 3.2. Note that for a tridiagonal operator L= (a;) the conve-
rgence of

Zlakkl: Zlak-i- b Zlak,k+l'
k x k

guarantees that L is of trace class.

B) The next application concerns cohyponormal operators. Suppose we
are given a sequence of cohyponormal operators 7; in H;. Assume that there
exist ¢, e H;, |le]l = 1, with

®) YIT*e—ell < +o0.
Then as we know Q7 T: ®F.) H; — ®ff, H; is also cohyponormal (by

Corollary 1.8 adapted for arbitrary cohyponormal operators). In order to
find o(®; T;) we apply Corollary 2.2. Namely, we define

Kn= ®Hh Ln = ’Ii" 'y:+l: Knaf—’f®en+1 EKn+ls
1

»®=

and we obtain

ProrosimioN 3.3. Let T, be a sequence of cohyponormal operators in H;. If
there exists a sequence e;e D(T*) of unit vectors such that (8) is satisfied, then

U o(L,

where L, = @7 T,.

Proof. By (8)‘a'nd direct computation one can check that for any ¢ > 0
there exists ny = ng(¢) such that for m > n>n, and ¢@,eD(L,)

(L v3 —n L) @ull < €l|Ly @all-
Thus condition (x) of Theorem 1.1 holds. The same computation gives an
analogous inequality for L} and so condition (%) also holds. Applying
Corollary 2.2 gives the desired result. &
- Remark 34. In case the 7; are bounded and []®||IT|| < + <o it is
- enough to assume that Zille,-—-Tie,-II < +co instead of (8).
Here are two immediate applications of Proposition 3.3.
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a) Suppose we are given cohyponormal operators S,e L(H,) such that
ISl < CPk=1,2,... Let ExpS, be the exponent of S, in ExpH, (see [2]
for the definitions). Since Exp(@®]S,) = ®]ExpS; we have

n n n n
) [TIExp Sl = ”CT)ExpSk” = ]|Exp((-lBSk)” < exp“(—lBSk“ < e
1

Let1=1®0®...eExpH,. Then ExpS,;1=1. Hence by (9) one can define
the (bounded) operator

o0 L) @
S = @ExpS,: ®ExpH,— ®ExpH,.
1 1(1) 1(1)
Note that S =Exp @S,.
Now we put T, = ExpS, and applying Proposition 3.3 we have

o® =N U o(sy)...0(5,),

n=1lm=n
where 6(Sy)...0(S,) = (4 A=1,... 4, Aea(S)}.
b) Let du = (2m)~Y?exp(—x?/2)dx be the Gaussian measure on R and
let 0 <o <1, aeR. Following Mlak we define the operator C, in L?(y)
by (C,/)(x)=f(xx). Tt turns out that C, is bounded and o(C,)
={z: |z < |a|‘1’2j (see [5]). Moreover, for any sequence (o), 0 <lag] <1,
such that ¢ =[], |oy| */? < + 0 Mlak defined the operator

®Cot @ L)~ ® I ().
1 1n U
It can be identified with the operator

C(ui): L - LB
given by (Cy,y f)(*) = f (21 %1, @3 %5, ...), where i = ®Pdy is the Gaussian
measure on the Borel subsets of R®. By a direct computation we check that
the C,, are cohyponormal. Hence applying Proposition 3.3 (see Remark 3.4)
we have : .

(10) o(Cap= N\ U (L.

e

where L, = ®} C,,. Since o(L,) = {z: z ﬁzl...z,,wlz_kl < | ™2}, by (10) we
have C

LB(Cop) = F < e}
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1V. Concluding comments and results. First note the following remarks.

Remark 4.1. Theorem 2.1 remains true for inductive limits of linear
mappings L,: E,— F, between Banach spaces under the same assumptions
on L, as before.

Remark 4.2. One can also consider inductive limits of C*-algebras 4,
with x-monomorphisms 7%*': 4, — 4,4, and continuous operators Ly: A,
— A, satisfying conditions analogous to the previous ones. In particular, by
applying this procedure to Calkin algebras 4, = A(H,) (over Hilbert spaces
H,) and L,a = b,a one obtains a result corresponding to Theorem 2.1 or its
corollaries. The details are left to the interested reader.

Now we shall extend Theorem 2.1 to commuting tuples of normal
operators. In order to do this we first modify slightly the form of conditions
(%) and (+*) using the notion of bounded vector. Recall that for a densely
defined operator A a vector f'is said to be a bounded vector for A if there are
¢y >0 and M, >0 such that
(B) 4% fll < Myc%, k=1,2,...

Denote by B(A) the set of all bounded vectors for A and by B, (A4) the set of
all those f e B(A) which satisfy (B) with ¢, = c. It s clear that
o0
B(A) = kk_jl B, (4).

Now let H = lim, H, and let L, be a sequence of closed densely defined

operators in Hy. The sequence L is said to satisfy (#); or (x#);, respectively,
if (%) or (=) hold for L, and vectors in B(L) or B(L¥), respectively. It turns
out that for normal operators, under certain natural assumptions on yy,
condition (), implies (xx),. Namely, we have

Lemma 4.3. Let N, be a sequence of normal operators in H,. Suppose that
Veso 3eyzc Such that

’y::nBc(Nn) < Bnl(Nm)a Vm?n-
If the sequence N, satisfies (x);, then it satisfies (%%);.

Proof. We shall suitably modify the method used by Rosenblum in his
proof of the Putnam-Fuglede theorem [8]. In fact, we shall use (and prove) a
slightly modified form of (x); (and (¥x);). Namely, suppose that

(N yn = v Na) I < (1 + IS
By the above assumptions and induction we have

(Nhyr =R NIl S keci A+ Nfll,  k=1,2,...,feB(Ny), m>n2no.

Veso 3,,0 Vm>n>no VfEBL'(NH)
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Hence by a direct computation we have for m > n = ng
ANy m m IANp ¢
Iy =y ™ fll < st ey (1+c) ™M lifl, A€, feB.(N,).
Similarly one can check that

an ”eilN’,"n(ei).Nmynm_'_Y;neiIN")é-iINne—ilN,‘;f"
| Ae
<ee™ 1+ e, MUNAN m>n>ng, feB.(N,).

. aNy, +bNj; i i iy i
imce ek 7‘=eaN"ebNi‘, a,beC, g Hmt AN 5 unitary and by (11) we
ave

(AN, g —iANE .
(12) lle™ ™5 e " fl < Lfll+eca (IADIAI,

where ¢, (|A]) = JHe (1+0) ¢, Atertaa
X Let F }""(/1} = ¢*inymo ™ £ he an entire vector-valued function, where
feB.(N,). Write C = {ze C: |z] =r}. Then by the Cauchy formula (we omit
the indices m, n)

0

=—[—
2nic u

F7(0)
Hence
1
IF7(O)I < 7 max [Fz(2)],
and so by (12) we have

lF7 (O} <

N | e

(L+eca NI
But Fy(0) = i(Nfyr—yw N¥) 1, so
(13) I(NEym— v N fIL < (Ur+eca (/) 111

Now for any n > 0 put r = 2/ and take ¢= ¢(#) so small that ec, (r)/r < 5/2.
It follows (by (13)) that

NA v —va NS < 7l Al
for m > n 2 ny(e) and f €B.(N,). Thus (x%); holds. =
CorOLLARY 44. Let H =1i_x}17H,‘ and let. Ny be a sequence of normal

operators satisfying (x);. If yy B.(N,) = B. (Ny), Vom>ns then the operator
N =N, is normal in H (N, is the same as in Theorem 1.1).

Proof By Lemma 4.3, (+x); holds for N, so it is obvious that
Ym NX¥y™m @, tends to N*¢ as m— o, where ¢ =9y,¢, @,€B(N,). Let
Ue e B(Ny) = X. As we know D(N,) = D(N%) (see the proof of Th. 1.1). It
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is also clear that ||N, fl| = |IN% f|| for feD(N,). Moreover, X is dense in

D(N,), N, XcX, NNXcX, so N,=N must be normal (see [11]).
Now we shall extend Theorem 2.1 to commuting normal operators.
Suppose we are given a sequence of normal commuting operators
Ny -o-» Ny in Hy, ie. N, = [A1dE,, and the spectral measures E,, pairwise
commute. By the joint spectrum a(Ny,, ..., Ny) we mean the joint approxi-
mate point spectrum of Ny, ..., Ng (see [10] for the definition). Let
H= li_rpy H,. Write B,(N;)=B.(N;yy)n...nB,(Ngy) and suppose that

v,

c

(14) 7 Bo(Ns) € By (N

>0 d¢y > such that

The system N, =(Nyy, ..., Ng) is said to satisfy condition (), if

Vz:>() 3nn(z:) Vm>n>n0(£) ”(Npm ]':"“7:‘ an)f” S 5(1 +C)“f“a

for any feB,(N), p=1,...,5s.

In what follows we shall restrict ourselves to commuting pairs (s = 2) of
normal operators, but the results hold for any s.

TueorEM 4.5. Let H =lim,H, and suppose we are given a sequence

A, B, of commuting normal operators in H,,. If y} satisfies (14) for anym=n
and (A, B,) satisfy (x);, then

(15) o4, B)= N U o(4, B,

m=1m=n
where A=A, B=B_.

Proof. Denote by o, the right-hand side of (15).

a) The inclusion (A4, B) > g, can be proved in the same way as the
corresponding inclusion in the proof of Theorem 2.1 (note that 4 and B are
normal by Corollary 4.4).

b) The opposite inclusion o, > o(A4, B) may be proved as follows.
If A=(4,, A;)¢04, then for some 6 >0 and n

(16) dist(4, ¢ (Am Bu) >0, Vimzn

Now writing A4,,, = A, I—A,,, B;, = 4,I—B, we see that A%, A,,+ B}, B,
is invertible, i.e. there exists R, eL(H,) such that

(17) Rim (A:m Aﬂ,m+Btm B).m)f =f

for fin the domain of A}, A,,+ B}, B;,. Since A4,,, B,, are commuting and

icm
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normal,
0 (Adm Asm+ Bin Bimd = {l21)> +122]*: (21, 22)€0(A3m, Bin)}-
It follows that
:'1’>1f inf {|2,]% +|2,1%: (21, 2,) €0 (A, B} = inf dist(4, 6 (4, B,,,)) 26

mZn

by (16). Thus
(+) [IRamll < 176, ¥,

mzn-

We claim that A¢a(A4, B). In fact, by (17) and (4) we have
(A% Ain+Blw Bi) £,1) = 81111

so letting m = oo we obtain the desired claim. =

Remark 4.6. The following reasoning shows that Theorem 4.5 cannot
be extended further (even to bounded commuting subnormal pairs). In fact,
by the result of [9] there exists a sequence of commuting bounded subnor-
mal pairs T, W, in certain H, such that

@ ' o(® T & W) # Qa(:rk, A

where o(7;, W;) stands for the Taylor joint spectrum. Obviously

@ H, = lim, ® H,,

1 -1
where

‘Y:+l: (xlh LERE] xn)_ﬁ(xh cees Xpy 0)’
Pai (Xg5 ooy X)) = (Xg,5 .00y X0, 0,0, ..)).

Let L,=@®%, M,=@iW. Then L, 9" '—yi*"'L, =0, M, yi**
—yi* M, =0. If we had for L= @y T, M = @ W, the equality

oL M= () U oL, M),

n=1ls=n

then we would have

st M= 1 0otaM)= A 0o = U ok W,

n=1s=n

and this contradicts (a).
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Groups of isometries on operator algebras
by
STEEN PEDERSEN (Aarhus)

Abstract. Let ¢ be a Cy-group of isometries on a unital C*-algebra 4. If u(t) = o(t) 1 and
aft)a = u(ty*o(r)a, then o(t)a =u(t)a(t)a, « is a Coy-group of *-automorphisms on A and u is
a unitary I-cocycle. We study this decomposition of g; as a consequence we obtain
a classification of the generators of Cy-groups of isometries on A.

Introduction. In [18] Kadison proved that an isometry of a unital
C*-algebra A4 onto itself can be decomposed into a C*-homomorphism
followed by multiplication by a unitary. We study the consequences of
applying this decomposition to a strongly continuous isometric representa-
tion ¢ of 4 topological group on 4. We prove that the C*-homomorphic
part of ¢ is a strongly continuous group of *-automorphisms and that ¢ is
norm-continuous if 4 is a von Neumann algebra. We establish conditions,
global as well as local, which are satisfied by ¢ if and only if it is a group
of #-automorphisms. :

Using perturbation theory for s-automorphism groups we prove that
if ¢ is a one-parameter group of isometries on A with generator 6, then
there exist (y, v, h), where y is the generator of a one-parameter group of
*-automorphisms on 4, v is a unitary in 4 and & is a selfadjoint element of
A, such that 2(8) = v* 2(y) and

6 (a) = v* y(va)+iv* hva

for a in & (8). Using this we give local and global conditions equivalent to
the fact that the unitary part of ¢ is a group.

In the next part of the paper we specialize to the case where o is
a one-parameter group. We observe that in some representations of 4, ¢(t)a
=u(tyav(t), where u and v are strongly continuous unitary groups.
We study the generators of (semi-) groups of this form.

This study was motivated by applications to quantum mechanics (e.g.
[15], [22], [25]) and partially inspired by the corresponding problems for
a one-parameter semigroup on a Hilbert space if each element of the
semigroup is polar decomposed [11], [12].
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