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The translation invariant uniform approximation property
for compact groups
by
JAROSLAW KRAWCZYK (Wroclaw)

Abstract. The translation invariant analogue in commutative harmonic analysis of the
uniform approximation property of Banach spaces was introduced by M. Bozejko and A.
Pelezynski (1978). This paper contains noncommutative analogues of their results.

§0. Imtroduction. Recall (see [1], [5]) that a Banach space X is said to
have the uniform bounded approximation property, abbreviated ubap, if there
exist a k > 1 and a positive sequence ¢ (m) such that given a finite-dimensio-
nal subspace E < X, there exists an operator T: X — X satisfying the
following conditions: i

(i) T(x)=x for xeE.

(i) ||| < k.

(ifi) dim T'(X) < ¢(dim E).

It is known ([4], [5]) that If-spaces, C(K)-spaces and reflexive Orlicz spaces
have the ubap. The definition can be modified for function spaces on
compact groups by, roughly speaking, assuming that X, E and T are
translation invariant. In this way we obtain the translation invariant analo-
gue of the uniform bounded approximation property introduced in [1] where
the case of compact Abelian groups is considered.

§1. Preliminaries. In the sequel G is a compact group, X its dual object
called also the hypergroup, 4 the normalized Haar measure on G.

For geG the left translation operator is defined by (I, f)(x) = f (g *x)
and the right translation operator by (r, )(x) = f (xg) for f -measurable and
xeC. A vector space X of A-equivalence classes of A-measurable functions is
left translation invariant if I, X < X, right translation invariant if r, X = X and
conjugate translation invariant if Iy, X = X for all geG. We call X transla-
tion invariant if it is both left and right translation invariant.

By I7(G) (p=1) we denote as usual the Banach space of the A-
equivalence classes of A-measurable functions f with the norm N,

=([If ()P da(x))""". For f, geL}(G) we define the convolution fxge L (G)
by
(f*g)x) = [fO7 x)g(»)dA0)-
G
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This section is written for the translation invariant Banach spaces but it
can be easily modified for the left, right or conjugate translation invariant
Banach spaces.

(1.1) DeFintTION. A translation invariant Banach space X is called regu-
lar if:

(h.0) X = I}(G) with continuous inclusion.

(h.1) The translations [, r,: X — X are isometries.

(h.2) For every feX the maps g—1,f, g—r,f (from G into X) are
continuous.

Remarks. 1° The spaces IF(G) (p
regular.

2° Every closed translation invariant subspace of a regular translation
invariant Banach space is regular,

3° Every finite-dimensional translation invariant subspace E of a regular
translation invariant Banach space is of the form

1) are translation invariant and

={f= ) d,tr(4,U°)|A, are d, xd, complex matrices,

geRp
Rg is a finite subset of X'}

where U” denotes the matrix of the representation ¢ in a (fixed) orthonormal
basis of the representation space H, with dim H, =d,.
Next we have

(1.2) ProrostrioN. Let X be a regular translation invariant Banach space.
For every central function g define the operator T, of convolution with g by
the (X-valued) integral

LN =[Lfgx)di(x) forfeX.

Then T;: X —X is a bounded translation invariant linear operator with
Tl <liglly and T,(f) = f+g for feX.

Recall that geI*(G) is central if fxg =gxf for all fel'(G).

Proof. It follows from (h.2) that the integral [l f-g(x)dA(x) exists,
and by (h.0) it is equal to f xg. Since g is central T, is translation invariant.
Finally,

1T (NI < [l A1l lg ()] dA.(x) = ligll 11.£1.

Following the ideas of Bozejko and Pelezynski ([1]) we shall prove
a generalization of their theorem on the translation invariant ubap for the
translation invariant Banach spaces on an arbitrary compact group. The
result of Travaglini ([6]) shows that there is no analogue of the translation
invariant ubap for the conjugate translation invariant Banach spaces on
a compact’ connected semisimple Lie group.
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§2. The main result. We recall ([1]) that a translation invariant Banach
space X is said to have the invariant uniform bounded approximation pro- -
perty if there exist a k> 1 and a positive sequence q(m) such that given
a finite-dimensional invariant subspace E — X, there exists a translation
invariant operator T: X — X satisfying the following conditions:

@) T(x) =x for xeE.

@) N7 <

(i) dim T(X) g(dim E).

Now we are ready to state the main result of this paper.

(2.1) TurorREM. Every regular tramslation invariant Banach space on a
compact group has the invariant ubap.

To prove Theorem 2.1 it is enough to establish it for the space L!(G)
which is in fact equivalent to a result in harmonic analysis (see below). Recall
that the Fourier transform of ge I*(G) is the matrix-valued function § on X
defined by

glo) = JQ(X) UZ-1dA(x)

where Ug is the matrix of ¢ evaluated at x. If R =X is finite then v(R)
= ZUER d? where d, is the degree of . If G is Abelian, ¥(R) is the cardinality
f R.

(2.2) Tueorem. For every k > 1 there éxists a positive sequence g (r) such
that for every finite set R = X there exists a central function ge I}G) such
that:

0 4 =1,

@) llglly < k.

(i) v(supp 9) < gi (v(R)).

To derive Theorem 2.1 from Theorem 2.2 fix k and a translation
invariant finite-dimensional subspace E of X.

By Remark 3° after Definition 1.1, E= {feI'(G)|suppf < Ry} and E
is spanned by all coordinate functions of matrices U? with oe Rg. Clearly
dim E = v(Rg). Now pick g satisfying (j}-(jjj) for Rz and T = T,. Then (j)
implies (i), (jj) via Proposition 1.2 implies (i), and (jjj) and (h.0) 1mp1y (11d).

for ceR.

Remark. Note that when X is a left (or right) regular translation
invariant Banach space, then we still have an analogue of Theorem 2.1. In
this case condition (iii) follows from (jjj) and the fact that a finite-dimensional
left (right) translation invariant subspace E is spanned by the coordinate
functions which fill the columns (rows) of the matrices U® with seRy.

For the proof of Theorem 2.2 we first introduce more notation.
A function F on X is said to be a matrix function if for every o eZX, F(o) is
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a d, xd, complex matrix. For R c £ we define the matrix characteristic function
¢p of R by &x(0) =1, if 0eR and &g(o) = 0,, otherwise. By EF(Z) (p 2 1)
we denote the Banach space of matrix functions F on X with the norm

IFll, = sup (. 4, IF ()l12)""

where the supremum is taken over all finite subsets of Z and ||F (o)||, is the
IP-norm of the sequence of the eigenvalues of the matrix |F(g)|.

For Fe E(Z) the inverse Fourier transform of F is the function F on G
defined by

CF(x) =Y d,tr(F (o) UY).
aeX
For ceZX let ¢ be the representation conjugate to ¢ and y, the character of
a. If 6,7€ X we write ¥, ¥, =Z"s sMaz (1) %, corresponding to the decomposi-
tion of the tensor product ¢ ®t. The (finite) support of n,, is denoted by ¢
xt, A set P < X such that ¢ xt < P and 6e P whenever g, 1€ P is called a
subhypergroup of Z. Finally, if R and S are subsets of 2 then R xS = | {&
xt|oeR, teS} and R = {G|oeR}.
The proof of Theorem 2.2 is based upon the following lemmas. The next
lemma is in fact due to Dooley ([2]).

(2.3) LemmA. Let ¢ > 0. Assume that for a finite set R — X there exists a
finite set S such that

1)) V(R x8) <
Let g=v(S)"*

(1+¢)v(S).
Eo Enxs. Then g is central and
glo)y=1,, for ceR, |l <(1+8"
v(sur)p g <d+gv(S1
Proof. We have

glo)=v(ES™* Zd[ Z d;"nc(‘f]d 'L,

neS

Since n,;(6) = n,;(¢) the sum in square brackets is equal to d, d for oeR.
Thus (o) = I, for geR. Clearly g is central. Now,

. & /2
llglly < v(S)™* Ieslla lién xsllz = [”(f(;‘)s)] <o,

Finally, note that supp §=U{nx{[neS, (eRx8} and v(nx{) < d2d}.
Hence

v(supp §) < v(S)v(R x8) < (1+¢)v(5)%.
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To complete the proof of Theorem 2.2 in view of Lemma 2.3 we have to
construct for a given set R =X a set S < X so that (1) is satisfied and v(S)
depends on v(R) only. Without loss of generality one may assume that R
contains the trivial representation 1 of Z. For seX we write ¢° =1 and
"t = g" xo.

(24) LemMa. Let R = {0, ..
x A,(7,) where A,(c) =) {c'|0<

v(R)*

., 0 with o, =1. Let S,=A,(G)x%...
i<n}. Then for n sufficiently large

(R x8,) < ( )v(S,,) v(S,) < n'®.

Lemma 2.4 is an easy consequence of the following one.

(2.5) Lemma. Let 1eT <X with v(T) < oo and let ce€X. Let T, =T,
T,=A,(6)x T Then for n sufficiently large

4

@) ' v(exTI\T) < s v(T,l)

Moreover, )
A) v(4,(0)) < (1 1/m)~ '3

Proof(!). Let d = d? and let uy, ..., u, be all coordinate functions of ¢.
Let I be the linear subspace of I*(G) spanned by all functions of the form

u’il ..‘u:" with k,+...+k; <n, where k; is a nonnegative integer for i
=1,...,d Thenlet No=1and for j=1, ..., d let N; be the number of the

products u;!...u;® such that k; =0 for i <j and k;# 0. It follows that
N;<n'™7** and thus 4

d
dmI's Y N;<(1-yn~'#%
j=0
Now, I’ is spanned by all coordinate functions of the tensor products
0®...®0 =0c® with j =0, 1, ..., n which can be written (via the Clebsch—

 Gordon formulas) in terms of the coordinate functions of all 4 e 4, (o). Hence

dmI'= Y dZ=v(4,(0)

nedp(o)

and by the above(?) we obtain (3).
Now, let M be the subspace of I?(G) spanned by the coordinate

functions of all te T. Let I’ M be the subspace of I?(G) spanned by all

(}) The idea of using linear subspaces of I?(G) is adapted from [2].
(3 In general no estimate from below can be given since the functions ul .
linearly dependent (take ¢ to be a torsion element of ).

k
..us" can be
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functions of the form f-y, felL' and YyeM. Then by the same argument

dim I'M = v(4,(06) x T) = v(T,).
Clearly I"'!M cI'M. Thus I"M can be decomposed into the' ortho-
gonal sum (in the sense of I*(G) "M = V,@I' ' M. Observe that V, is
spanned by the coordinate functions of all 7eT,\T,., and hence
dim V, = v(T,\ T,- ).

For every n let P, be the orthogonal projection of L"M onLo V. Tt
follows that V, is spanned by all functions of the form P, (u1 . u,, ), weM,
with k;+...+k; =n.

For i=1,...,d and 1 < k < n define linear mappings 60} from L'™* M

into I'M by 0;(f) =uf- f, feLl'"* M. It follows that 6} (Ker P,_,) = Ker P,.

Hence there exists a unique linear mapping ¢! such that the following
diagram commutes:

L L —— L Y]
Pk Pn

Vnk 7 Va

Now fix n and let m be the first natural number such that n/d*> < m. For
k=1,...,m consider the linear mappings m, from W, = @, V,_ —@—im—k

into V deﬁned by m = B Gl pmsr-
We shall show that for k =1, ..., m the mapping m, is an epimorphism.

Since V, is spanned by the functions of the form f = P,,(u’il...uZ“ Y), yeM,

with k;+...+k; = n it is enough to find for every such f a ge W, such that

T (g) = f.
Fix k and take fas above. There is a j, 1 <j < d, such that kizd-)m+k
since otherwise for n > (d+1)d*/(d—1) (and for n>1 if d = 1) we have

d

Yok <

i=1

m~(d—22+dk

HMa_

((d—l) m+k) =

contrary to the assumption on f. Choose a j with k

zq;=(d—jym+k
and put

.#w

ky ki ki—q; k;
- j~ 1 +1
g—-P"_qJ,(ul s ud Yught

Then geV”qj < W, and we get
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kj T4 ky kg
T . Py(uy'...u,

m(9) = @j,(9) = P, (0}, (3" ) =

Hence m;, maps W; onto ¥, as claimed.

Now, mnote that I"M can be decomposed into. the direct sum
V,®V,.1@..®V,@LM. In particular, we have

C-BWk=

W)= f.

C-D @ V;l—(d—i)mvk = Lnﬁl M.

k=1i=1

Since the mappings =, are eplmorphlsrns dim V, <dim W, for k=1,.,., m
Hence we get

m
mdim ¥, < Y dim W, <dim L™ ' M.
k=1
The last line implies that

dim V,,, sv—— dim ' M

n+
It follows from the remarks at the beginning of the proof that the latter is
equivalent to

2

'
YT\ T) < -+—V(T)

In order to obtain (2) it suffices to note that

(@xTIN\T, & T\ T,

Proof of Lemma 24. Fix »n and for j=1,...,r put
TV = 4,(81) X... X 4,(F;_ 1) X A, (5 Gie1) Xooo X A,(5,).
Then |
Sy =A,(G)xT forj=1,...1

Thus applying Lemma 2.5 for ¢ = g;and T= T we get

14

(fj \
n+11 (S,).

V(@ xSI\S,) <

Thus

3 -

V(R x8,) < v(S,)+v((RxT,) NS, <

(P2
(142 s

n+1
Studia Mathematica 90.1.

v(S,)+ Z v (G XSn) Szl)
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Since v is submultiplicative (cf. the proof of Lemma 2.3) and since ¢, =1 we
get ’ )
< [T v(4a (o)) < ™.
Jj=1
Proof of Theorem 22. Put ¢ =k?’—1. Let R cX with 1€R and
r=v(R) <o be given. Pick n'so that ;2/(n+l 8. say(3) n=_[rYe] =

|:r2/(k2 D]. If S, is that of Lemma 24, then v(S,) For R and S,
construct g as in Lemma 2.3. Then |lgll; < (1+&)"? = k and

< k? -—fi——lrz )
SPeor) T

§ 3. Final remarks. 1° A routine argument using the duality between
I}(G) and L*(G) (see [3]) yields that the assertion of Theorem 2.2 is
equivalent to the following.

For every k > 1 there exists a sequence g, (r) such that for every finite
subset R < X' there exists a set § with R =S <X and v(S) < q(v (R)) such
that if heL®(G) and’ k(o) = 0, for ¢ €S\R then
|3 d, trh(o)| < kIl

aeR

(S")Z < k2 nlr

v(supp §) S (1+8)v

2° If for some R < I with 1eR there exists a central function ge L' (G)
such that §(o) =1, for ceR, v(suppg) <o and |jgll; =1, then R is
contained in a finite subhypergroup X, of ¥ with v(Z,) < v(suppg).

Proof. Let H(p,,=z;'=0(n+1)_1jj. Then ¢, tends (in E!'(X)) to the
characteristic matrix function of a subset, say X, of X <Clearly
R 2y < suppg and [|Exlly = lim,||@,)[¢ < [lglly = 1. Thus [|5,]l; = 1. Now,
let

f=v(Ze) " &y =v(Zo)"

Z dera~

ae X
Then ||fllz = v(Zo)""* and ||f]|., = 1. In other words, we have

JIf (I dAtx) = [11 (01 dA ()
G G

and |f(x) <1 for xeG. Since fis continuous we see that |f| admits only
values 0 and 1. Since f = v( 0)‘12“20d Yo With 1e€X, we conclude that
f admits no values other than 0 and 1. Let Gy = {xeG|US = I, for ceXy}.
Then G, is a normal subgroup of G and fdA is the normalized Haar
measure on Gg. Since || f]|; =v(Z,)~ ' we see that H = G/G, is a finite group

(%) It is essential for the following estimates that n is sufficiently large and this leads to the
assumption ¢ < 1. Note also that if ¢ > 1 the theorem still holds.
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of order v(Z,). For every ceX,, U” is constant on cosets of G, and thus o
can be identified with a representation of H. Moreover, with this identifica-
tion, 550 =v(Zo) f is the character of the regular representation of H. Thus
2, is isomorphic to the dual object of H. Hence X, is a subhypergroup of X.

3° It follows from 2° that for some compact groups Theorem 2.2 ¢annot
be extended to the case k = 1. In fact, we have:

(3.1) ProprosiTiON. If a compact group G satisfies the assertion of
Theorem 2.2 with k=1 then G is O-dimensional.

4° Except for the Abelian case (see [1])

no characterization of such
groups seems to be known. :
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