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An isomorphic Banach-Stone theorem
“ by
EHRHARD BEHRENDS (Berlin) and MICHAEL CAMBERN (Santa Barbara, Cal)
Abstract. For a givén Banach space Y let Ao(Y) denote the infimum of the Banach-Mazur

distances between the two-dimensional subspaces of Y and the two-dimensional I!-space Ii.
It is shown that eévery Banach space X such that 1,(X’) is greater than one satisfies the

following isomorphic vérsion of the classical Banach-Stone theorem: there is-a 6 > 0 such that

two locally compact Hausdorff spaces K and L are necessarily homeomorphic provided that
there is an isomorphism: T' between Co (K, X) and Co(L, X) with. || T[T < 1+6.

. This result properly includes all isomorphic Banach-Stone theorems now existing in the
llteralurc It is obtained by means of the description of small- bound isomorphisms between
certain L!-direct sums of Banach spaces.

. 1. Introduction. For a locally compact Hausdorff space K- and a Banach
space X we denote by Co (K, X) the space of X-valued continuous functions
on K which vanish at infinity, providéd with the supremum norm. If X is the
scalar field K (where K= R or K = () this space is denoted by CoK

The classical Banach-Stone theorem states that if C,K and C,L are
isometrically isomorphic, then K and L are homeomorphic. Various authors,
beginning with M. Jerison [10], have considered the problem of determining
geometric properties of X which allow generalizations of this theorem to
spaces of continuous vector-valued functions,Co(K, X). A compil,ation of
results of this nature may be found in [3].

A second kind of generalization deals with scalar-valued functlons, but
replaces isometries by isomorphisms T with ||T||[|T Y| close to one [1],
(5] 6]

These two directions have been combined in [7] and [9] where it is
shown that a small-bound theorem is obtainable for spaces of vector-valued
functions Cy (K, X) for certain X.

Here we prove a theorem which strictly contains the results in [7] and
[9]. To state this theorem we need the following definition: for any Banach
space Y we denote by Ao(Y) the number ’

Ao(Y):=inf d(Y,, 13),

1980 Mathematics Subject Classification: 46E40, 46E15, 46B20.
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where Y, runs through all two-dimensional subspaces of Yand I} denotes the
two-dimensional [}-space (in the case dim Y=1 we set Ao(Y):=2); here
d(V, W) means, for Banach spaces V and W, the Banach-Mazur distance
between ¥ and W, ie.

d(V, Wy:=inf (| TIIT"Y|| T: V— W an isomorphism|.

We will prove that for every X such that Aq(X') > 1 there is a 6 >0
such that two locally compact Hausdorff spaces K and L are homeomorphic
if there exists an isomorphism T from Co(K, X) onto Co(L, X) with
NTINT™H < 1+6.

It is not hard to see that uniformly convex spaces X or spaces which
satisfy the condition in Jarosz’s paper [9] have the property that i,(X') > 1
so that the theorems in [7] and [9] are special cases of the present results,
We note that the condition 4o(X’) > 1 coincides in the real case with the fact
that X is uniformly nonsquare (see [2] for definitions). In the complex case,
however, Aq(X') > 1 does not imply that X is uniformly nonsquare as the
example of the complex 3 shows (this space provides also an example of a
space X with Ay(X’) > 1 to which the results of [7] and [9] do not apply).

In [4] related but distinct results involving small-bound isomorphisms
for spaces Co(K, X) are obtained by considering certain variants of M-
structure-theoretical notions. Here our results follow from the consideration
of the L-structure in dual spaces. In Section 2 we first prove a theorem
concerning small-bound isomorphisms between two Banach spaces which are
L'-direct sums in which all but possibly one of the summands U have A,(U)
uniformly bounded away from one. In Section 3 this is then applied to
obtain theorems concerning isomorphisms between spaces of continuous
vector-valued functions.

2. Small-bound isomorphisms between I'-direct sums. We begin this
section with the following easily verified

2.1. LEmMA. Given a Banach space X suppose that there exist Xy, X, X
and a ¢ with 0 € ¢ <1 such that for all scalars a, b with |a|+|b] =1 we have

1 <|laxy +bx,|| < 14c.

Then 4o(X) < 1+c.

Our principal tool in establishing the theorem of this section is the
following

2.2. LEMMA. Given Banach spaces U, V, and W, let S be a linear map
from W to U@, V (the Lt-direct sum of U and V) and let E be the canonical
projection of U@®, Vonto U. Let ey, e;e Wand let 1, ¢, and ¢, be nonnegative
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rumbers such that 1—t—g —e; >0 and (14+7)/(1~1—e,—e,) <2. Assume
that:

@) (L+o) 7wl < [1Swll <A+ fwll for all weW.
(i) |[EoSel| = 1—¢, fori=1,2.
(iii) (1—ez)(1+7) < [lae; +be,|| < 1 for all scalars a, b with la]+b|. = 1.

Then 2o(U) < (1+1)/(1 —71—¢&,—¢,).

Proof. We define u;:=EoSe; (i =1, 2), and we will show that
1—7—g—¢&, <|ayy +bu,|| < 147

for all a, b with |a/+|b] =1 so that our claim follows from Lemma 2.1.
Let such scalars a, b be given. Since E is norm-decreasing we have

llaw; +busl| = ||E(aSe; +bSe,)|| < [laSe; + bSe,||
< (I+7)l aey +beyf| < 1+7.
Next write, for i =1, 2, Se; = u; +v;, where u;e U, v, V. We have ||Se;||

= |lull+|lvill € 147, and, by (i), |lufl =||EoSe|l = 1—~¢,. We thus have
lv]l < &, +7, and it follows that

[lauy, +bu,|| = ||aSe, +bSe, —(avy + bv,)||

p-
141

llagy +besl| —[lavy + bl
21—g,—ey—7.
2.3. CoroLLARY. (a) If in the preceding lemma we replace (iii) by
llae, +be,|| =1 (all a, b with |a|+]b] 2 1), then we have
Ao (U) € (14+1%/(1 =1 +7) (e, +7))

provided that this number is less than two and the denominator is positive.
(b) If we assume that ||lae,+bes|| =1 for all a, b with |a|+|b| =1 and
replace (i) by the assumption that |EoS((ey+e,)/2)| = 1—¢ then

Ao (U) € (14+0*/(1—=(1+71) (264 20))
provided that this expression is less than two and the denominator is positive.

Proof. (a) is an immediate consequence of 2.2 by defining ¢, as ¢, :=
1—-1/(1+7), and for the proof of (b) one only has to note that the
assumptions imply the inequalities ||EoSe|l > 1—2¢—1 (i=1, 2).

We now turn to the main theorem of this section which will be crucial
for our Banach-Stone theorem: a description of small-bound isomorphisms
between L'-direct sums of spaces where all but possibly one summand are
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“bounded away from I3” and this one summand behaves as an I'-spaceover
a measure space without atoms.

Throughout the remainder of this section let (V)i and (W));e; be
families of nonzero Banach spaces with

Joi=inf Ao (W), Ao(Wplicl, jeJ} > 1.

Further, let V,,, W,, be Banach spaces such that for every x with ||x|| =1
there are xy, x, satisfying x = (x; +x,)/2 and |lax, +bx,|| = 1 for all scalars
a, b with |a|+|b| = 1. Set

Vi=V,®,(@B'V) (=the usual L'-direct sum),
iel
W= W8, (D'W),
Jjel

and let E;, E_ (resp. E;, E,) be the canonical projections of ¥ onto V, V,,
(resp. of W onto W, W,,). We assume that S: ¥ — Wis an isomorphism such
that for a fixed t with 0 <7< 1 we have

1
1—;”1}” < ISl < A +9)|joll  for every veV.

The operator S™! satisfies the same norm condition so that for each
property established for S there is an analogous property for §7*.

Clearly [IS][{IS™ Y| <(1+7)% and it will be convenient to introduce a
number & defined by

1+6 = (14772

24. TueorReM. Suppose that for a fixed n = 3 the number ¢ is sufficiently
small that 1—nd is positive and that (1+8)/(1—nd) < Ay. Then:
(1) For every jeJ there is precisely one iel with

1E; o Sly, |l 2 1/(1+7).
(ii) For every il there is precisely one jeJ with
IE; 08~ My I = 141 +1).

(iii) Let @: J—1I (resp. Y: I —J) be defined by means of assertion (i)
(resp. (ii)). Then poy =1d; and Yo = Id;.

(iv) With i:= @(j) we have |E;08v|| = (n—4)5/3 for every ve V; with ||v||
=1 provided that not only n=3 but n>17.

Proof. The proof of the theorem will be. established by means of a
sequence of propositions.

2.5. ProrosiTioN. There is an 1o >0 such that ||E;oS)y || < 1/1+7)
—1o for every jelJ.
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_ Proof. Define 7o :=((2n—4)t+(n—2)12)/(2+21). We will prove our
claim by showing that for every j, and every veV,, with [jo]] = 1 such that
IE;,0Sull 2 1/(1+1)~a for some « > 0 one necessarily has o > 7.

Let such j,, v, « be given. We define ¢ by 1 —g:=1/(1+1)—a, and we
apply Corollary 2.3(b) to the map

Sly i Veo = Wiy @1 (W @1 (D' W)
itio
and vectors e;, e, such that v = (e, +e,)/2 and |lae, +be,|| =1 for all a, b
g:;? lal+|b| =1 (such e,, e, exist by assumption). By the corollary it follows
Zo(W)<(1 +1)%/(1-(1+1)(2c+27)),
and hence
(14 8)/(1—nd) = (1+ /(1 —n(2+79) < Ao < 4o (Wj,)
< (14121 —(1+7) 28+ 20).
It follows that n(2t+12) < (1+7)(2e+27) which implies a > #,.
2.6. PROPOSITION. SupiE,HEjOSIViII = 1/1+7) for every jel.

Proof. If this were not true there would exist an 5 >0 such that
[lE; o8yl < 1/(1+7)—n for every ieTu {oo}. Then, for any we W; with ||w]|
=1 we would obtain

1=E;wl| =IE;oS08 'w| =||E;oS( Y EoS™'w)|
el u{o}

<(/A+D-n) Y NE oS wl

iel Ufco}
=(1/1+7)=n)lIS7 Wl < 1-n(1+1),
which is absurd.

2.7. PropoSITION. For every jeJ there is precisely one iel with
|E;oS|y]l = 1/(1+7) (which proves (i) — and by symmetry also (i) — of the
theorem).

Proof. Up to now we know that for every j, and every n > O there is
an icl such that ||E; oS/l = 1/(1+7)~1n.

Let 7 >0 be fixed but arbitrary and suppose that our condition is
satisfied for i = i, and i = i,, where i; # i,. Choose e.e ¥j, with g/l = 1 and
IIE;0Sell = 1/(1+1)—n (k = 1, 2). Let X be the linear span of e, and e, in ¥]
and consider

Slxt X 2 W@, (Wa® (O W)).

i#jo
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Part (a) of Corollary 2.3 (with ¢, :==n+1/(1+7)) implies that
Ao (W) € (1+0)*/(1—(1+0)(t+1+1/(1+7))
so that
A+ (1—=n(2r+72) <o < (L +1)*1—(1+7) (t+n+1/(1 +1))).

This is not possible for small 5 so that there is a uniquely determined i with
lE;08ly,ll 2 1/(1+7)—n for all n > 0 and consequently 1E;o Sy ll =2 1/(1+7).

2.8. ProPOSITION.. Y 0@ =1d; and .oy =1d,.

Proof. By symmetry it is only necessary to prove the first part of the
assertion. Let jeJ be given and set i:= ¢(j), j/:= W (). We assume that
J#J, and we will show that this assumption leads to a contradiction.

Given 7 >0 arbitrary but fixed take v;e ¥ with |ly)| = 1 such that
lE;oSv]l = 1{1+7)—n and take w;eW, with [w,|=1 such that
E; 08~ 'will = 1/(1+1)—n. Set e,:= w;y and &, := E;0Sy,. We are going to
apply Lemma 2.2 to

S—1|xi X - V1@1(Vw@1 SR V;)=
i AL
where X :=1lin{e;, e,} with e, :=&,/(1+7).

(i) of Lemma 2.2 is satisfied by assumption and (ii) is true with &y
defined by 1—e; =(1-8)/{1+1)~n (clearly ||E;08 'e,)| > 1—¢, by cons-
truction, and to prove the corresponding inequality for e, one first has to
note that Sv; =& +r for an r with ||| < 1+t —1/1+7)+5 = n+8/(1 +1) so
that

1=Ilofl = [IE; 08~ oSuill < |IE; 08~ &, +[|£, 08~ |
<|EoST &l +n(1+1)+6
which gives [|[E; 087 e,|| 2 1—¢,).
Finally, (i) is valid with ¢, defined by (I—-g)(14+7) = 1)(1+8)—
n/(1+1), and we conclude that
(1+0)/(1—nd) < Ao (V) < (1411 —1—¢; —&y).

But for 7 = 0 the right-hand side reduces to (1+3)%/(1 —26 —25%), an expres-
ston which is strictly less than (1+6)/(1 —nd). Therefore we would obtain a
contradiction for sufficiently small # > 0 which means that our assumption
J #J is not possible.

29. ProrosiTioN. Let jeJ, i:= ¢(j), and let veV; be any element with
[lv]| = 1. Let p >1 be any number such that

n8 2z oy i=pd(1/1+1)+ 1+17)+8/(1+6)+86.
Then ||E; oSy > pé.
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In particular, p = (n—4)/3 is admissible if n>7 which settles part (iv)
of our theorem.

Proof. Set M:=|E;oS| and choose v;e¥ with |logl =1 and
lEjoSvyll > 1/(1+7)—# (1 >0 fixed but arbitrary). '

We define &, :=*E; 080, &, := (Id—Ej) Sv, and we will apply Lemma 2.2
with e, :=¢g/(1+1) (k =1, 2) and

STy X — V1@1(Vm@1 Sk Vi')’

i #L

where X :=lin{e;, e,}. By using the same elementary techniques as before
one obtains:

L |EoS eyl = (L=0)/(1+17)—n,
lE; 08~ eyl > 1/(1+17)— M.

2. 12 el 2 1A+ 8)—n/1+7),
12> ley)l = 1/(1+6)— M/(1+7).

We have to show that M > ps. Suppose that M < pé. Since p > 1 and
po >0 we may suppose that > 0 is so small that “1.” and “2” yield:

1. IE;0S el > 1/(1+1)—ps.
2. 12 lell = YA +8)—psfl+1) for k=1, 2.

Thus (i) and (ii) of 2.2 are satisfied if we define 61,‘82 by
1—¢, =1/(1+71)—pd,

(1—e&)(1+1) = 1)1 +6)—pd/(1+7)

(to prove that “2'” implies (iii) one has to note that e,, e, lie in different I}- .

_summands so that |lae, + be,|| = |a| ||le,|| +|b||e,]))-

Lemma 2.2 provides us with the inequality
(1+0)/(1=nd) < 4o < Ao(W) <+ D/1—T~81~¢5)

which yields the contradiction né < a,.
Thus the first part of the proposition is proved. A very rough estimation
using J, T < 1 shows that p = (n—4)/3 is admissible.

Our comparatively abstract theorem allows some conclusions about the
behaviour of certain vector measures under small-bound isomorphisms, a fact
which will be crucial for our applications to isomorphic Banach-Stone
theorems:

2.10. CoroLLary. Let X and Y be Banach spaces, K and L locally
compact Hausdorff spaces, and

S: Co(L, Y)Y = Co(K, XY
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an isomorphism with
1
— |l < <
1+TII#II ISull < (1+7) ]l

for some t©>0 and every p Suppose further that Ay := min {1(X"),
do(Y) > 1 and that © is sufficiently small that (14 0)/(1—36) < 2o, where
d:=1+12

Then for every keK there is precisely one l€L such that

sup NES &' w1 (kDI = 1AL +7)

(4, = Dirac measure at ).
Proof. We write

Co(L, Y) = W, @ (@' YY),

leL

where Y :={y'iy|y' €Y'} = Y, and W, denotes the set of measures u for
which u({l}) =0 for every [ Similarly, Co(X, X)' is decomposed as
V@1 (@heg Xi). It is clear from well-known facts about vector measures
(see e.g. [8], p. 174, or [11] or [12], p. 192) that such a decomposition is
possible and that the W,,, V,, behave as is necessary to apply our theorem.

Note. A similar assertion can be proved for small-bound isomorphisms
between spaces of the form

1% Co(k,, X,),
where min, 4, (X,) > 1.

3. Applications to isomorphic Banach-Stone theorems. Now suppose that
we are given an isomorphism T mapping Cy(K, X) onto Co(L, Y). Then

S:= T maps Cy(L, Y) isomorphically onto C,(K, X)'. We decompose these
spaces as in the proof of Corollary 2.10, and we assume that '

1
T MI<ITAI<A+9IA G ),
and consequently
1
T Ml < USull < A+l (all ),

V\./here T is such that (1+7)* =||T|||7~"|| (this is no restriction of generality
since we only have to pass—if necessary—from T to a suitable multiple).

e _ ®
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We want to apply the results of the preceding section and therefore we
assume that Ao : = min {4(X"), 4,(Y")} > 1 and that 7 is sufficiently small (for
a precise statement see Theorem 3.4 below).

Theorem 2.4 provides us with mappings ¢: K — L, : L — K such that
poy =1d;, Yyop =Idg and:

L sap [LT'0/mIUDE> 11+9) - (e L k=¥ Q)

Y=
2. sup [I[T7H w)](IDI = 1/A+7)  (keK, L:= g (k).

IIxf=1

3. For leL and y'eY’ with ||y/|| =1 we have
LT )1 CGRDI = (n—4)6/3 (k2= (D).

4. For keK and x'e X’ with ||x|| =1 we have
N~ {2 (n—4)8/3 (L= Y (k).

Here, as usual, 14+6 = (1+7)% and n>7 is a fixed number (where n can be
chosen arbitrarily, but the range of admissible = will depend on n: we have to
assume that (1+498)/(1—nd) < A).

Having obtained mappings between topological spaces it is natural to
ask whether they are continuous. We will prove that our ¢ and § are in fact
continuous provided that n > 10. (The proof is surprisingly complicated, in
marked contrast to similar situations in connection with earlier Banach-
Stone theorems where continuity is usually obtained by routine arguments.)

It suffices to prove continuity for one of the maps, say ¢. First we show
that [|(Tf) (¢ (k)| is “not too small” if f(k) is large:

3.1. ProposiTioN. Let keK and feCo(K, X) be given such that ||f]|
=[f ()l = 1. Then
(TN (e )| = 1+7-3/(n—4).

" Proof. Let k and f be given. We choose an x' €X' with ||x'| =1 and
X(f(k)=1. With l:=¢(k) and y:= T~ x w)({)) we have [y =
(n—4)8/3 by “4.. Write T Ux ) =Y yl_-f—u‘where w({I}) = 0. Then ||u] <
14c—{ly’|l since | T~ (x' )l < 1+7 and ||y e+ pll =yl + Il 1t follows
that

=X (f () = (' w)(f) = (' @) (T~ o Tf) = [T (x" )1 (T)
= (' ) (T + (T < |y (THO) + 1l (1 +7)-
Hence
AYNIKTN Ol = Y (THO)| = 1=+ (@ + =111
, = (1+9)lyl-8,
and dividing by ||| we obtain the inequality claimed.
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3.2. ProrositioN. For keK, 19> 0, and feCy(K, X) such that ||f]| < 1
cand || f (kI > 1—n, we have

TN (@ )| = (1 +7)(L—10)~3/(n—4).

Proof. Choose feCy(K, X) such~that WA =1 f k) =1, 1 =F1l < no;
then || Tf—Tfll <no(1+7) and ”(Tf)((p(k))” > 1471—-3/(n—4) so that
TN (@ )| = (L+7) (1 —10) = 3/(n—4).

3.3. PROPOSITION. ¢ is continuous provided that n > 10.

Proof. Let koeK be given and N a neighbourhood of lo:= k).
Fix an arbitrary 5 > 0. By “1.” above there is a y'e¥’ with ||y = 1 such
that x':=[T'(y'i)1({ko}) has norm at least 1/(1+7)—#n. By writing
T'(y g as x'p +p with p(lky}) =0 it follows that

Ml < T+r=1(1+7)+n=5/1+7)+n.
Now choose a function ge Cy (L, Y) such that ||g|| = llg(o)ll = 1 and g ()
=0 for I¢ N. Similarly to the proof of Proposition 3.1 we -conclude that
(T g (ko) = 1—n—(1+7) (/1 +7) +1)

so that, since [|x| < 1+7,
(T~ g) (ko)ll = (1 =27~ 5 —n)/(1 +7).
Choose a neighbourhood N of k, such that

T~ g) (k) > (1=3n—8 —en/(1+7) =:(1+7)(1—1no)

on N. Then it follows from 3.2 by considering f:=(1+7)"* T 14 that

lla (@ ()| = A+ (TN (@) = (1 +7)> (1~ 16)—3 (1 +1)/(n—4)
=1-3n—w—56-3(1+1)/(n—4) =:a(n)
for these k. But n—a(n) is a continuous function which assumes the value
1-6—-3(1+1)/(n—4) at zero. This number is greater than zero since n 2 10

(as is shown by a rough estimation) so tha~t we have o (n) > 0 for some 7 > 0.
This implies that ¢(k)e N whenever ke N so that ¢ is continuous at k.

Summing up we have shown the following

34. THEoREM. Let X and Y be Banach spaces such that Ao
1= min {1, (X", Ao(Y)V} > 1. Further, let K and L be locally compact
Hausdorff spaces such that there is an isomorphism
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T: Co(K, X) = Cy(L, Y).
Then K and L are homeomorphic provided that

1+6
0<m1~105 <o,

where & is defined by 146 =||T)|(| T~ Y.

Note. Similarly it can be shown that the existence of small-bound
isomorphisms between spaces

[1" CoKpo X)) and  [° Co(L, ¥)
r S

o=1,...,

is possible only if K, ... UK, is homeomorphic to L, U... " L, when we
assume that

min (1o (X)| X = X,, X = ¥,} > 1.

As a corollary we can state the announced isomorphic Banach-Stone
theorem:

3.5. TueoReM. Let X be a Banach space such that Ao(X') > 1. Then there
is a 6 >0 such that two locally compact Hausdorff spaces K and L are
necessarily homeomorphic whenever there is an isomorphism T between
Co(K, X) and Co(L, X) with |TI||T" Y <1+6 (ie, in the terminology
of [4], X has the isomorphic Banach-Stone property).
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The translation invariant uniform approximation property
for compact groups
by
JAROSLAW KRAWCZYK (Wroclaw)

Abstract. The translation invariant analogue in commutative harmonic analysis of the
uniform approximation property of Banach spaces was introduced by M. Bozejko and A.
Pelezynski (1978). This paper contains noncommutative analogues of their results.

§0. Imtroduction. Recall (see [1], [5]) that a Banach space X is said to
have the uniform bounded approximation property, abbreviated ubap, if there
exist a k > 1 and a positive sequence ¢ (m) such that given a finite-dimensio-
nal subspace E < X, there exists an operator T: X — X satisfying the
following conditions: i

(i) T(x)=x for xeE.

(i) ||| < k.

(ifi) dim T'(X) < ¢(dim E).

It is known ([4], [5]) that If-spaces, C(K)-spaces and reflexive Orlicz spaces
have the ubap. The definition can be modified for function spaces on
compact groups by, roughly speaking, assuming that X, E and T are
translation invariant. In this way we obtain the translation invariant analo-
gue of the uniform bounded approximation property introduced in [1] where
the case of compact Abelian groups is considered.

§1. Preliminaries. In the sequel G is a compact group, X its dual object
called also the hypergroup, 4 the normalized Haar measure on G.

For geG the left translation operator is defined by (I, f)(x) = f (g *x)
and the right translation operator by (r, )(x) = f (xg) for f -measurable and
xeC. A vector space X of A-equivalence classes of A-measurable functions is
left translation invariant if I, X < X, right translation invariant if r, X = X and
conjugate translation invariant if Iy, X = X for all geG. We call X transla-
tion invariant if it is both left and right translation invariant.

By I7(G) (p=1) we denote as usual the Banach space of the A-
equivalence classes of A-measurable functions f with the norm N,

=([If ()P da(x))""". For f, geL}(G) we define the convolution fxge L (G)
by
(f*g)x) = [fO7 x)g(»)dA0)-
G
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