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Finally, Jet us remark that the algebras o ,(X,) given by (2) are maximal
subalgebras of B(X) with respect to the property of being of square zero, and
all such maximal subalgebras are of the form (2) (see [8]).
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L*-Angles between one-dimensional tubes
by
MACIEJ SKWARCZYNSKI (Warszawa)

Abstract. Let D, = C¥, i=1,2, be two domains with nonempty intersection, such that
D = D, u D, is contained neither in D, nor in D,. Denote by F;, i = 1, 2, the closed subspace in
L*(D) consisting of functions which are holomorphic in D, and otherwise arbitrary. As indicated in
[7], [8] the Bergman projection in D can be described in terms of the orthogonal projections
P; I}(D)—F,. In some cases, the relevent alternating projections procedure can be carried out by
explicit analytic calculations [7], [9]. In this context it is natural to study the angle y € [0, /2]
between the subspaces F; and F,. We call it (for brevity) the L>-angle between D, and D,. It was
shown in [5] that the L*-angle between two halfplanes (bounded by parallel lines) is 0. In the
present paper we are concerned with the more general situation when D,, i = 1, 2, are arbitrary
tubes in the complex plane. We determine the L>-angle a(r) between the strip {0 < Rez < 1} and a
halfplane {Rez >r} (0 <7< 1), as well as the L*-angle f(r,s) between two strips {—=
< Rez<sn}, {rm<Rez<n} (—1<r<s<1). It turns out that

1—s5 141

cos? B(r, §) = ——-——

cos?afr) =r and X
: 1+s5 1-r

We include a brief presentation of the Genchev transform [2], [4] since it plays an important role
in our considerations.

1. The abstract definition of an angle. Let F,, F, be closed subspaces in an
abstract Hilbert space . Assume that F = F; n F, is a proper subset in each
of F, i=1,2. (This implies that each F; contains a nonzero element
orthogonal to F.)

DerFiNiTION 1. The angle ye[0, n/2] between F, and F, is defined by
o cosy = sup [

FisF\{0} [BANRA '
JilF

We shall restate this definition in a way which is less symmetric, but more
convenient for our purpose.

LEMMA 1. Denote by P, the orthogonal projection of # onto F,. Then

P2 £l

2 Cosy = sup AR

S1eF1\{0}
SfiLlF
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Proof. When P,(F,) = F both (1) and (2) give the same value cosy = 0.
In the opposite case there is f; € F'; admissible for (2) such that P, f; # 0and in
both (1) and (2) the supremum can be computed with the additional condition
P, f; # 0. Assume that the pair f;, f, (with P, f, # 0) is admissible in (1).
By the Schwarz inequality

IKfu Sl _ KPafis Ml _ IPafil
AR AR A A
and (1) < (2) follows. It remains to show the converse inequality. Assume that

Ji (with P, f; # 0) is'admissible in (2). Then P, f, L F and the pair f,, f, where
Jo =P, f, is admissible in (1). Moreover,

Sl __IPfiI2 _ IPoA
FARTARNTARI AN AN

Hence (2) < (1). =

3. An angle in L*(D) related to alternating projections. We now consider the
case when # = L*(D), D =D, uD,. To avoid indices we introduce the
notation )

A=D,, B=D, T=DnD, f=f.

Let us recall that fe F, (see the abstract) means that fi:=1, is L*holo-
morphic and fy, ;- := flprisin L? (arbitrary). For fe F 1 the restriction fy: = f|,
is (in general) not holomorphic and its Bergman projection in B will be denoted
by f 1t is well known [7, Th. 3] that P,: F,>F, is given by

_Jflzay for zeA\T,
P.f(e) = {f(z) for zeB.

Note that F = L*H(D) is the space of all functions which are L?-holomorphic
in D. Formula (2) takes the form

@

©)]

2 2
cos?y = sup ||f|f;1\r+l|f;”13.
rerioy IFIA+HIS R
FLLZH (D)
From this follows easily
THEOREM 1. The L*-angle between two domains A, B = CV is n/2 if and
only if

(5) (B) = {0}.

In particular, the I?-angle between plane domains (if defined) is always smaller
than w/2.

L*H(4)= {0}, L2H

Proof. The condition is sufficient. Indeed, fe F, implies that f.eL?H(A)
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and fe L? H(B), hence it follows from (5) that (4) has vanishing numerator. We
conclude that cos?y = 0, or equivalently that y = /2.

Conversely, assume that (5) does not hold. In view of symmetry it is
enough to consider the case L? H(A) # {0}. Take an arbitrary ue I* H(A)\{Q}
and extend it by 0 to D. The extended function u e I?(D) is not holomorphic,
therefore its Bergman projection u®e L2H(D) satisfies

NP lLa < NPl < fullp = Jul,-

It follows that f'= u—u® does not vanish identically on 4, and is admissible
for (4). Hence cos’y > 0. =

For N # 1 the equality y = n/2 can occur, as in the following

ExampLE 1. Let 4 and B be the exteriors of two closed disjoint balls in C¥,
N # 1. Then condition (5) is satisfied.

For later use we shall need a slight modification of (4) given in the
following

THEOREM 2. Assume that (5) does not hold. Then

6 cos’y = sup {Ilf lar+ 1713,

IAIE+ 17T JeF\{0}, fLEH(D),

f holomorphic in int B\T}.

Proof. Let h be any function admissible in (4) for which the expression
under the supremum sign is positive. (Such functions exist in view of
Theorem 1.) Let fe I7(D) be the projection of k onto the subspace in I?(D) of all
functions which are I?*-holomorphic in int B\T and otherwise arbitrary. Then
f(z) = h(z) for z ¢ int B\T. The assumption f = 0 implies that |h|%,z+|A]3 = 0
in contradiction to the assumed property of h. Therefore f+# 0 and f is
admissible in (6). (This shows that there do exist functions admissible in (6).)
Since the numerator corresponding to h in (4) is equal to the one corresponding
to fin (6), and the denominator corresponding to h in (4) is not smaller than the
one corresponding to f'in (6) we conclude that (4) < (6). The inequality (6) < (4)
is obvious. m

A biholomorphic mapping ¢: D — D can be of help in computing y in view
of the following

THEOREM 3. Assume that ¢: D—D is biholomorphic. Then the -angle
between A and B is the same as the one between A = ¢(4) and B = o(B).

Proof. It suffices to apply the unitary mapping U,: I(D)—I2(D)
given by

(UN)E) = flo@) ' @).
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3. The Genchev tfansform. We shall recall briefly some I?-theorems of
Paley-Wiener type due to T. Genchev [4] and M. Dzhrbashyan [2]. The
following lemma should be compared with [4]:

* LemMA 2. Let D = {RezeJ} be the one-dimensional tube over an open
interval J < R (in particular, one can take for J a halfline). For every fe I* H(D)
and every xeJ the function y—>f(x+iy) belongs to I?(R).

Proof. Fix r > 0 such that (x—r, x+r) = J. For every y € R the function
5,(2) = flz+iy) is [*-holomorphic in the variable z = u+iv over the square
Q= (x—r,x+rx(—r, ). At the center of the square, f, takes the value
Jy(x) = fx+1y). Since Q contains the disc with center x and radius r, the
Bergman theory [1] yields the inequality

IAE N G N T A
which can be rewritten as
7 fe+iy? < m?)™t | [ |fu+iv+iy)? dudy.
ve(—r,r) ue(x —r,x+r)

We shall now integrate both sides with respect to ye(—oc, oo). Since the
Lebesgue measure is translation invariant we obtain

| ety s o5 | [ [ i) dyduds

y&(— o0, 00) ve(—r,r) ue(x —r,x+r) ye(— 0,0)

. 2
[ |futiy)?dydudo < /13-

=3
r ve(—r,r) ue(x—r,x+r) ye(—co,00)

The right side is finite by assumption, hence the left side is finite. m

The (inverse) Fourier transform of g(y) = f(x+iy) is given by (see G.
Folland [3], p. 20)

gy = [ e flx+iy)dy
-
and depends on xeJ in a verv explicit way. In fact, ™= j(t) does not
depend on x at all. The function
x+iE
(8) : Gy):=e*g() = i™' lim | e*™f(z)dz
E—~a x~IE
will be called the Genchev transform of fe I*H (D). Note that G 1 is completely
determined by the values of f on one line Rez = x. Therefore two functions
fie FH(Dy) and f,eI?H(D,) which agree on such a line have the same
Genchev transforms.
In view of the Plancherel theorem, the I*-norm of f over any tube
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T={a < Rez < f} (T« D) can be easily expressed in terms of G . Namely,

) 1£11F = jj? G WP wp®)dt,  wpl(t) = ?e*4ntx dx.

a
We can now state

THeoreM 4 (T, Genchev, M. Dzhrbashyan). The correspondence fr—G
defines a unitary mapping of ZH(D) onto I2(R, wy).

Proof. The mapping is linear and isometric in view of (9). It remains to
show that its image contains a dense subset of L?(R, wy). Indeed, it is easy to
verify that every he I?(R, wp) bounded and vanishing outside a compact set
can be written as G, with fe L*H(D) given by the (two-sided) Laplace
transform of h,

f@)= | e ™ h()dt.
Remark 1. An immediate calculation shows that:

—4nat _ e~ 4nbt

4nt

—4nat

1° For J ={(a, b), wy(t) = ¢ , te(—o0, o0).

2° For J = (a, ), wp(t) = ¢ , t>0, and WD(t) =00, t<0.

4rt

— 4zbt

3° For J = (=00, b), wplt) = ———, t <0, and wy(t) = oo, t > 0.

—4nt’

Note that L2(R, wp) in case 2° can be identified with L>(R", wy) and in
case 3° with L2(R™, wp). :

The following three corollaries of Theorem 4 will be needed later. We omit
the easy proofs (see also [9]).

COROLLARY 1. Let D be a tube over a bounded interval J = (a, b). Consider
the following subspaces in I* H(D):
L2 H(D) = {fe L>H(D);, G,(t) =0 for every t > 0},
L2H(D) = {fe L*H(D); G/(t) =0 for every t <0}.
There is an orthogonal decomposition
L?H(D) = L2 H(D) @ L% H(D).
COROLLARY 2 (D as above). The subspace L2 H(D) consists of all
L2(D)-limits f = limy_, ,, fy, where every f, is I2-holomorphic in the halfplane
{Rez < b}.
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The subspace L2 H(D) consists of all I2(D)-limits f= lim,_, f,, where
every f, is I?-holomorphic in the halfplane {Rez > a}.

COROLLARY 3 (D as above). Every fe L2 H(D) extends to a holomorphic

Sfunction in {Rez < b}, and for every ¢ >0

£ 13- < 113

Every fe Ll H (D) extends to a holomorphic function in {Rez > a}, and for
every ¢ >0

1f13+e < 1S3

4. Operators related to the Bergman projection in a halfplane. In order to
use formula (6) we need to know the Bergman projection in D for a class of
piecewise L2-holomorphic functions. Therefore first we address the following

ProsLEm 1. Let U be a subdomain in D. Describe explicitly the operator
Pyp: L2H(U ) L*H (D), where Py, fis the Bergman projection of the trivial
extension of f to D.

Note that Py, maps the Bergman function K,(, p), pe U, to Kp(, p).
Since the functions Ky(, p), pe U, are linearly dense in I? H(U), the above
property is characteristic’ of Py;,.

LeMMA 3. Assume that D = {Rez >0} and U= {Rez >r} (r > 0).
Then Py, f(z) = f(z+2r).

Proof. The operator defined by the above formula is linear and
continuous. It also maps Ky(, p) to Ky(, p) in view of the well-known
formulas

1
(10) Kn(z, p) = —

— K -
T R

Lemma 4. Assume that D = {Rez >0} and U= {0 < Rez <r}. Then
Pypflz) = f72)—f" Nz +2r), where f= f)+f") is the orthogonal decom-
position of fe IZH(U) from Corollary 1.

Proof. In view of Corollaries 1-3 the above formula defines a continuous
linear operator, and it suffices to show that it agrees with Pyp in two cases:
1° when fis I*-holomorphic in {Rez < r}, 2° when f is I*-holomorphic in
{Rez > 0}. (Indeed, the sum of classes 1° and 2° is linearly dense in I2H(U)).

In case 1° f*") = 0. Since K ,(, z) is L*-holomorphic in the halfplane D its
restriction to U is in L} H(U), hence orthogonal to f7). This yields

Pypf(e) = Pypf @) = [f WK p(w, 2)dm(w) = 0
U
according to the statement. In case 2°, f extends to D and

Pypfie) = II) J@OKy(w, 2)dmw)— | fw)Kp(w, z) dm(w).
D\U
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The first integral equals f(z) by the reproducing property of the Bergman
function, and the second equals f(z+2r) by Lemma 3. Since f=f(*) the
statement follows. m

5. L*-angle between a strip and a halfplane. In view of Theorem 3 it suffices
to determine the I>-angle o(r) between the strip A and the halfplane B given by

4A={0<Rez<1}, B={Rez>rl,

where 0 < r < 1. Both domains are illustrated in Fig. 1, where T= 4 n B.

Fig 1

First of all we shall determine all pairs f, € IZ H(A), f3r € 2 H(B\T) which
describe a function f, admissible in (6). The Bergman projection in D = A v B
of (the trivial extension of) f, is f§ () —f4"(z +2) according to Lemma 4. The
Bergman projection of (the trivial extension of) fpr i8 fpr(z+2) according to
Lemma 3. Therefore fL I? H(D) is equivalent to

11) Iar(z+2) =7+ 2)~f ().
It follows that fgr has to be defined by the formula
(12) Tar(@ = @) —fz-2)

and that (12) defines a function in ZH(B\T) if and only if /¢ is I?-holo-
morphic in the strip {|Re z| < 1}. We also see from (12) that f # 0 if and only if

fa #0. o
* Next we shall describe (for an admissible f) the Bergman projection
fe L*H(B) of the (nonholomorphic) function f;. The Bergman projection of
fr:=flg is (according to Lemma 4) f4(z)—f4"(z+2(1 7). The Bergman
projection of fy, is (according to Lemma 3 and (12)) f{7(z+2(1-7))
—fN(z—2r). Consequently,

(13) &) =@~ e—2).

Denote by &(t) the Genchev transform of ) and by P(t) the Genchev
transform of f. From (12) and (13) it follows that

(14) Grp o) = B(H)(1—e¥?™),  Gp(t) = D) (1—e>?™).

The expression under the supremum sign in (6) has the form

WO+ 1SN+ ”J?H)z;.
IFONE+ SN+

(15)


GUEST


220 M. Skwarczynski .

The first terms in the numerator and denominator depend on ¥ and do not
depend on @; the remaining terms depend on @, and do not depend on ¥. It
follows that

_ If4 )”A\T ||f£4+)||i\T+Hf|f§>
1) °°sz°‘(’)“ma"<s“ TR P PR T e/

In view of Remark 1 the corresponding weights are given by

= 4art

—e
W () = At te(—o0, o),
1 ~6—4m
w,(f) = v te(— 0, o),
w(t) = e™*™/(dnt), te(0, o),
Wwpr(t) = e *"/(dnt), te(0, ).
Using (9) we find that
—Aurt
k40 2] —dt
ﬂf& )”2 .fml ()| B
o O NPT S,
A b4 J‘ IIP lz Tct dt

Indeed, the ratio (1 —e™*")/(1 _3—47“) 1s not greater than r, and converges
to r as t 0. (Further details are left to the reader).
In a similar way we find that

—4nrt

l|j(+)||A\T = j |4r’(t)|2 ——dt,
0 —41:!
1 = l(lj(t)l2 dt,
° 4t
and in view of (14)
171 = J 10—~ S ar = 2O am g 1 oy g,
0

—dmt 2
“f“B\T — ] 'qj t)(l—e“"‘)lz ¢ Clt j' |¢( )! ( p— ATt +e4~nt) dt.
0

It follows that

T |¢(t)|2 4nrt
(18) cup L Vs + 1713 _ g“ﬁ( -l r
[§3) . -
o If5 ”A*i‘”f“B\T g {i(;)) D dr

From (16), {17), (18) follows immediately
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THEOREM 5. The L*-angle o(r) between the strip A =

{0 <Rez< 1} and
the haifplane B = {Rez > 1} is

a(r) = arccos (*'3), O<r<1.

Remark 2. It may be worth recalling that according to [5] the L2-angle
y(r) between the domains 4 = {|z] <1} and B = {|z| > r} is

y(r) = arccosr, O<r<l1.
5. Operators related to the Bergman projection in a strip. We begin with
further remarks about the Genchev transform.

Lemma 5. Avsume that the mapping ¢(z) = kz+c (k, ceR, k # 0) trans-
forms the tube = {RezeJ} onto the tube D = {Rewe.f} Let U,
L*H(D)—L*H (D) be the canonical isometry

(19) U, flz) =flo(2) ¢'(z) = = kflkz+c).
If he L*(R, wp) is the Genchev transform of U,feL*H(D), then
(20) 1,h(t) = (sgn k) e h(kr)

is the Genchev transform of fe L*H (D). In particular, one has the commutative
diagram

L*H{D) £ 2H(b)
El JE
Iy 2
L2(R,w,) 2(R,wz)

which shows that 1,; L*>(R, wp)—L*(R, wy) is a unitary mapping.

Proof. We shall compute the Genchev transform of f over the line
Rew = @(x) (which is the image under ¢ of the line Rez = x). The natural
orientation on these lines (with imaginary part as parameter) is preserved when
k >0 and reversed when k < 0. Formula (8) yields

@(x+iE) x+iE
sgnk lim [ ™ flwdw=i""sgnk lim [ 2™AU f(z)dz

E-reoa gp(x—iE) E—+o x—IiE

Gpty=1i"t

x+iE
=i"lsgnke®™ lim [ e"™=U_f(z)dz = (sgnk)e> h(kz).

E~w x—iE

The proof is' complete.

Remark 3. When k = 1 the mapping ¢(z) = z+c is a translation and U,
is the shift operator (S,f)(z) =f(z+c). In this case Lemma 5 says that

(21) G,(t) = ™Gy (1)
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The above formula was implicitly used in (14).

DEFINITION 2. Let P: L*H(D,)—L?H(D,) be a linear continuous opera-
tor. A measurable function g (— oo, o0)—~C will be called a multiplier for P if

Gp,(t) = p(BG,(t), te(—o0, o),
for every fe L*H(D,).
The following simple corollary of Lemma 5 will be needed later.

COROLLARY 4. Assume that ¢(z) = kz+c maps D, onto D, and D, onto D,.
Assume further that P: L*H (D,)—~ I?H(D,) is a linear continuous operator with
multiplier u(t). Consider the operator P: L*H (D,)— L*H (D)) uniquely defined

" by the following commutative diagram:

u, -
12H (Dy) ~——Fee— (*H (D)

P 3

U, -
2H(Dy) <~——2——12H (B))

Then [i(t) = p(kt) is a multiplier for P.

Proof. We want to find the Genchev transform of Pf for fe BH (D,).
Since P has multiplier 4 we have the equality

(22) Gpuq, ;= HGUWJ

and by Lemma 5

(23) Gp,(t)= (sgn k)eszUq,pf(kt) = (sgn k)ez'“”GPUq,f(kt)
= (sgn k)e*™ (ki) Gy, slkt) = pkt) G(t).

This shows that fi(f) = u(kt) is a multiplier for P. m

Let us now consider the standard strip D = {—n < Re z < =} divided by
the line Rez = sn (—1 < s < 1) (see Fig. 2).

Fig. 2

Along with the strips U = {—n < Rez <sn}, V={sn < Rez <n} we
shall study the operators Pyp: L2H (U)—L*H (D), Py, L*H (V)— L?>H (D)

icm®
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defined in Section 4 (Problem 1). We are going to show that these operators
have multipliers. This resvlt will extend to nonstandard strips in view of
Corollary 4.

The line Rez = sn determines two halfplanes H,_ and H,

H, ={Rez<sn}, H,, = {Rez> sn}.

snt*

The corresponding Bergman functions are

1 1

Ky W2)=—o o Ty
Hy (W5 2) Wt E—25m) Ky, (9 2) n(w+Z—2sm)*

The Bergman function for the standard strip D can be obtained in the usual
way, using the elementary mapping of D onto the umit disc. By the classical
secans formula [6, p. 507 it can be written as

_aWHZ
4
16n
2 1 o 1
- ,El n(w+Z— (2k—1)2m)>? * ,231 n(w+Z2+ (2k—1)2m)*’

cos
24 Kpw,z)=

For a fixed z € D the terms in both series are square integrable in the variable w
over D since

1
n(w+Z —(2k—1)2m)
with Re(z—(2k—2)2n) < Rez < =, and
1
= 7= Ky _
m{w+Z + (2k—1)2m) n+
with Re(z+ (2k—2)2r) = Rez > —m.
Moreover, the above formulas and Lemma 3 yield (for fixed ze D)
1 |~ ese | 1
n(w+zZ— (2k—1)2n)*| * o n(w+z+ 2k—1)2m)?
It follows that both series in (24) are L?(D)-convergent. Therefore (24) gives the
orthogonal decomposition of Corollary 1 for the Bergman function Kp(;, z) in
the standard strip D.
To study the operators Py, and Py, we shall rewrite slightly the terms
in (24). To study Py, we shall use the formula (with zeU)
(25) ‘
el @
Kpw,2) = Y, Ky _(w, z—(2k—1 —s2m)+ Y. Kg_., (w, 2+ (2k—2)2m).
k=1

k=1

= KH”_(W, z—(2k—2)2m)

(w, 2+ (2k—2)2n)

k—3/2

D

4 — Studia Math, 90.3
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(Note that 2k—1—s 2 0, hence Re(z— (2k—1—5)2n) < sn.) To study P, we
shall use the formula (with ze V)

(26) Kpw,2)= ¥, Ky _(w, z2—(2k—2)2n)
k=1
+ Y Ky _, (w, 2+ (2k—1+5)2n).
k=1

(Note that 2k—1+s > 0, hence Re(z+ (2k—1+s5)2m) > sm.)
Conmsider fe L>H (U) with f= )+, Using (25) we find (for ze U)

@)
Pusf e = [170) S Ko (> 2= = 1= 538 dm(w)
k=1

PUH SOz—(2k—1—5)2m)

=

It
“MS

k

- ki [ e— (k= 1—5)2m)—f (o — (2K) 21,

Oz~ @k—1—5)2m)—f Oz — (2k— 1 —s5)2n —2m (s + 1))]

Ms

it
-

28)  Pypf™iz) = [fH(w) i Ky__, (w, z+(2k~2)2n) dm(w)
k=1

Puy__ S (z+ (k—2)2m)

=

I
118 <

[f<+)(2+ (2k—2)2m)—f 2+ (2k—2)2m+ 27 (s + 1))]

Ii
u[\/]g

l[f‘“(z+(2k 92m)—f )z + (2k—1+s5)2m)].

Next let us consider ge L*H (V) with g = (7 +4™). Using (26) and
proceeding as before we find (for z e V)

Ms

k

o0

(29 Pypg @ =Jg9"m) Y Ky _(w, 2—(2k—2)2m) dm(w)

Pyp _g' 7z~ (2k—2)2n)
1

[0 (z— (2k—2)2m)— ¢! (z— (2k—2)2n — 21 (1 ~5))]

=

1 I
Ms ipgs T

=
1l
oy

[g‘ '(z—(2k—2)2m)— g7 (z— (2k— 1 —s)2m)],

uMa

bl
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(30)
Pypg(2) Ig‘“ i Hyy s W5 2+ (2k—1+5)2m) dm(w)

k

P,,Hs”g”)(z-l- (2k—1+5)2m)

i
8 JMS

= Y [¢7(z+ Qk—1+5)2m)— g (z+ 2k~1+s5)2n+2n(l—~s))]
k=1

T[4 (o 2k—145)2m) gz + (2K)27)].
k=1

We can now prove the main theorem of this section.

THEOREM 6. Assume that se(—1,1), D= {—n < Rez < n} and U, Vare
as in Fig. 2. Then:
1° The operator Py, L*H(U)—L?H (D) has multiplier of the form
lwa +s e »
= =e 4 t#£0.
MO =—=g> a=e L t#

2° The operator Py L*H(V)->L>H(D) has multiplier of the form

2

V() = qzq . g=e Lt 0.

Proof. We shall consider only Py; and statement 1°, since 2° can be
obtained analogously.
We need to show that
1— 1+s

(31) Gpypr = T_q—qz— G,()

for every fe I H (U ). Consider the orthogonal decomposition f'= f7) +£*) of
Corollary 1. It obviously suffices to prove (31) in the following two cases:

Case I: f =f'*). The function Py, [ is given on U by (28) (and this will
suffice to determine its Genchev transform). The terms in (28) are shifts of
f restricted to various strips contained in H_, . By Remark 3 the mth partial
sum of (28) has Genchev transform equal to

(32) Gf(t)(i o~ 2m(2k=2)2n_ i e—an(2k~1+s)zﬁ)
k=1 k=1 .
(0(% (@ t—q" i @F ) =G, (1 - q1+s)1 (q )'"'
k=1 k=1 q
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Note that (32) vanishes for ¢ < 0. For t > 0 we have g€ (0, 1) and it is easy
to see that
1—(gH™  1+s
(3 (-g i <2
Moreover, when m goes to infinity (32) converges pointwise to u(t)G,(t). It
follows from the Lebesgue dominated convergence theorem that (32) converges
in L*(R, wy) to u(f)G,(r). By Theorem 4 the series (28) is L?(U)-convergent,
the Genchev transform of its sum Ppy,f is u()G,(t), as claimed.

Case II f = (7). The function Py, fis given on U by (27) (and this will
suffice to determine its Genchev transform). The terms in (27) are shifts of f
restricted to various strips contained in H,,_. By Remark 3 the mth partial
sum of (27) has Genchev transform equal to

m m 1~ ql +s 1\m
(34) Gl-(t)( Z eznt(Zk—- 1=s)2n__ z eZm(Zk)Zn) = Gf(t) - 1— - .
k=1 k=1 1—q q
Note that (34) vanishes for ¢ > 0. For ¢ < 0 we have g&(1, co) and it is easy to
see that the function

1+s m
9 = (- ())
I—q q
is bounded by a constant independent of m (the first factor vanishes at
infinity). As m goes to infinity the sequence (34) converges pointwise to
u(t)G,(r). By the Lebesgue dominated convergence theorem, (34) converges in

L*(k, wy) to u(t)G,(r). By Theorem 4 the Genchev transform of P,,f is
H(B)G4(1), as claimed. m

qe(0, 1).

We shall now treat the standard strip D = {—n < Rez < =} as the union
of two strips A={—-m<Rez<sn} and B={m<Rez<n} (-1 <r
<'s < 1). The strips 4 and B intersect along the strip T= {rn < Rez < sn}.
This is shown in Fig. 3.

Fig. 3

It is easy to verify that the standard strip D is transformed onto the strip B
by the mapping w = ¢(z), where

I—r  14r
L

(36) ¢(Z)=TZ+ 2

icm
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and that the line Rez = gn (o = (2s—r—1)/(1—r)) is transformed by (36) onte
the line Rew = sr. From Theorem 6 and Corollary 4 (with D, = DN H o— OT
DnHy,,D,=D, and D, = T or ¥, D, = B) follows

COROLLARY 5. Assume ‘that —1l<r<s<1 and that A, B, T and
D =AU B are as in Fig. 3. Write V= int B\T. Then
1° The operator Ppy: L*H(T)—L>H(B) has multiplier

q=e % t£0.

2° The operator P,y L*H(V)—L*H(B) has multiplier

N qs—r_ 1-r
@) = —1’“_—(1?7,

Proof In view of Theorem 6 the operators Py p and Py p have
multipliers

q = 6—41:2:’ t# 0.

1_q1+n 1__(q2)(s—r)/(1——r)

u() =

1—¢* 1—¢2 ’
v(t) _ q1+p__q2 _ (q2)(s—r)/(1—r)__q2
1—¢? 1—¢?

We shall apply Corollary 4 with the mapping (36). Since k = (1—r)/2 we find
that ‘

qkt) = ™72 = g((17I2 1 g(kt) = g(r)! .

Therefore
1_(q1—r)(s—r)/(:l -r) l_qs—r
i(t) = p(kt) = = ,
() = plkr) =g =g~
. (ql—r)(s—r)/(l—r)__q1~r q.v—r___ql—r
V(t), = V(kt) = 1_q1—r = l_ql—r °

The proof is complete.

6. L-angle between two strips. We shall determine the I?-angle between
the strips 4 = {—n < Rez < sn} and B = {rn < Rez <}, where —1 <r
<5 < 1 (see Fig. 3). Since the boundary of T= A4 N B has plane measure zero
we can replace B\T by V=intB\T in formula (6). Our first task is to
characterize the functions f'e I?(D) which are admissible in (6), or equivalently
to characterize the admissible pairs f, e P H (4), f,,e FH(V). The Genchev
transform of the Bergman projection of f can be easily computed from
Theorem 6 (note that 4 = U). It is equal to

1—q
1—¢*

1+s 1+s 2
9 -9
Gf,1+ l_qz

(37 Gf. V'
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Therefore f.L L*H (D) implies that
ql +s__ 1
(38) Gy = r3= 3 6,0

We see that if fis admissible in (6) then f, # 0, and f;, is given by (38). Setting
h=G 7, We have the following

COROLLARY 6. The functions fe L*(D) admissible in (6) are in a one-to-one
correspondence with the functions he L*(R, w )\{0} which satisfy the condition

(39) hiﬁ;—ﬁeﬁm Wy).
This correspondence is given by

ql +s__ 1
(40) GfA = h, GfV = hm

The above result implies immediately

CoOROLLARY 7. Every bounded measurable function which vanishes outside a
compact subset of the real line corresponds to a unique function feI?(D)
admissible in (6).

We now assume that an element he L*(R, w,)\{0} corresponds to an
admissible function f, and proceed to determine the value of the expression
under the supremum sign in (6). We start with writing down the corresponding
weights:

4n2t —4n2rt -1

e —e 9 —q
w t) = =
"‘T(_ ) 4nt 4t
A4n2t ~4n2st -1 s
et —e —
wa) =—— -1 2L,
v174 4t
(41) e—4r:2rt_e—4n2t qr_q
wpl(t) = =
5(0) Tt 4ut’
—4n2st __ ,—4n2t S_
wy () =2 Y. . |
4t 4nt

The Genchev transform of f is found using (40) and Corollary 5 as follows:
Gi(t) = h(t)ji (t)+h(t) P V(t)

ST 1+s ~1l-r¢ s+1__ 2
=h<1, AN et Y i C )>

l_ql~r qs—l-l q2 1__
h 1+r_1
e — 1H s—r+ S—r__ 1= —_ h q
l_ql ( q q q r) q1+r(1_ql—r)a
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and Theorem 4 yields

© 1+r__1 2
(42) 1713 = § e (Tﬁ) Wy dt.
Using (40) we find in a similar way
+s_1 2
(43) 1713 = I [r* (T:s—jf) wy dt.

Since G, = h we also have
] @
(44) £ = f (2w g dt, I [h>w , dt.

Combining (42)-(44) with (4
sign in (6) is

TE Lt S S
L\ g —gr) 4070 )

o0 |hl2 -1 ) 1__ql+s 2 N s "
Sedma\T T\ T

1— 1+r

1f1% =

1) we see that the expression under the supremum

43)

Note that

2
@6 g -+ (;—(lq_—qﬁ)) 71—g)
1— 1+n2
g
=q-1(1__q1+r)(1_ —2 r(]_ 2)(1 q1+r)
1__ql—r f 1— q —-r

Denote by F,(g) the ratio of the (positive) integrands in (45). The
following result is obvious.

2-r

ql—r+(1_q1+r)q—1—r) _

LeMMA 6. Assume that —1 <r <s < 1. Then the function
l_ql+r 1 it (qs—l_l)(l__q1+r)

=g = ) Oa
(47) rs(q) q 1 q1 r 1 1+s (1‘q1+s)(qr-—l_1) q >
satisfies
= 1+r
@) fm .0 = 1777y
(49) lim Fr,s(q) = Oa lim Fr.s(q) =0

-0 g
It is now evident that F, (g) assumes its largest value at some point
g, = e~ ™", This yields
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THEOREM 7. The L*-angle B(r, s) between the strips A = {—n < Re z < sn}
and B = {rn <Rez < m} is given by

(50)

B(r, s) = arccos(max F, (q)* (—1<r<s<1),
q>0

where F, (q) is defined by (47).

Proof. From (6) and (45) it is clear that cos® B(r, s) is not greater than
F, (4o)- On the other hand, for every n = 1,2,... the characteristic function

(51) h,(t) = X[qo~1/n,q°+1/n](t):
corresponds (in view of Corollary 7) to an admissible function f, € L*(D).
Substituting s = h, in (45) for n = 1, 2,... we see that the limit of (45) as n goes
to infinity is F,(g,). Hence cos® B(r, s) is not smaller than F, (g,). This
completes the proof.

te(—o0, ),

7. Furither properties of F,(g), g > 0. From (47) it follows immediately

‘that
(52) F,(a) = G,(a)/G,(q)
where

_ 4—q
(53) G,(q) = T

The study of (52) will be reduced to that of (53). Note that G,(g) has interesting
symmetries:

g —q 1—g'"* -
(54 G (g ="—5==———=0G,(97},
) (9 —¢= "~ 7-4 @
1\ ¢*=q* g-¢
55 =4 ~9  _ — .
( ) Gs<q> l_q—i—s q1+s__1 Gs(q)

We would now like to study the graph of G,(q). The case G,(q)=1 is
obvious. In view of the symmetry (54) we may therefore assume that s e (0, 1).

LeMMA 7. Assume that se(0, 1). Then

. . 1~
lim G,() =0, lim G,(q) =, 1lim G(g) =0,
g0 g1 1+S g=w

lim Gi(g) = 0, lim Gig) =0, lim Gi(g) = 0.
g1 q—1 g

We omit the easy proof.

We would like to show that for s € (0, 1) the function G,(g) is increasing in
o, 1) and decreasing in (1, o). In view of the symmetry (55) it suffices to
consider the interval (0, 1). Also it suffices to consider the case when s = k/n is

icm
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rational. After the monotonic change of variable ¢ = p”, p(0, 1), the problem
is reduced to the monotonicity of the function

(56) wip) = L=

1__pn+k‘

Introduce m = n+k~1; then (56) can be rewritten as
k K+ 1 m—k
AP+

W(p) = m-—lp m’
T4p+ ... +p" t+p

LemMa 8. The function (57) is increasing for pe(0, 1),

Proof We shall show that W'(p) > 0. Note that Wp) = u/(u+v) with
u=p“+p** 4+ ... +p™ Therefore ‘

(57)

uv—u
W'(p) == =z,
(58) 0= G
The main idea is to introduce three variable indices
ie{0,....k—1), je{k,...m—k}, le{m—k+1,...,m}.

We observe that the differences j—i (with repetitions) are the same as the
differences I—j (in the sense that there is a one-to-one correspondence
(j, )= (J', }) such that j—i = [—j). Furthermore, the numerator in (58) is
equal to

(59) Num W'(p) = (; Py (E p’+Zl)p’)~ (;p’)(};p‘+ ;p‘)'
- ijj+l—1+ Y jpti = Y ipi it Y gt
e i il i
=T (-D P = X (=P,
i i

Consider a pair of indices j, i and a pair of indices ', I such that j—i = [—j'.
Note that

(60) (=P = (=)p T = (i) T = Y.
The factor j—i is positive; moreover,
(=1 (j+i—1) = (—j+i)+l—j—i=2(—j) > 0.

Since p & (0, 1) we see that (60) is positive. Therefore (59) is a sum of positive
terms, and W(p) is increasing. m
As noticed above Lemma 8 yields
CoroLLARY 8, For se(0, 1) the function
T—q
G,(q) = ="

is increasing in the variable q€(0, 1),
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We now pass to the function F, /(q). It has similar symmetries to those of
G,(q), namely

6. _ Gl _ 60

(61) F—s,—r(q) = G»s(q) - G_q(q)_l 'é;_(a = Fr,s(q)7
1\ G/ G _
© Fra (q) g Gl

THEOREM 8. For —1 < r < s < 1 the function F, (q) is increasing in (0, 1)
and decreasing in (1, o). In particular,
1—s 147

max Fr,s(q) = Fr,s(l) =TT .

(63) 4>0 14s1—r

Proof. With no loss of generality we may assume that s € (0, 1). Indeed, if
this is not the case then —r > 0 and in view of (61) we may study the function
F_, _(g). The casc when s€(0, 1) and re(—1, 0) is easy, since then

F, (@) = G(@G-,(9

and by Corollary 8 both factors on the right are increasing in (0, 1) and
decreasing in (1, 00). The case when s € (0, 1) and r = 0 reduces to Corollary 8.
It remains to consider the case when 0 <r <s < 1.

In view of the symmetry (62) it suffices to show that F, (q) is increasing for
g€(0, 1). We may also assume with no loss of generality that r = j/n, s = k/n
are rational numbers and k =j (mod2). After the monotonic change of
variable g = p*, pe(0, 1), we have to prove that U(p) is increasing, where

- p-p"
64 Ulp) = : -
( ) (p) l_pk+n 1___1)1+n
_ Pt +prt ) P+ ... +pt
T4p+ ... +p" T Vldp+ .. +prtiTt
_ P T +pt T T4p L
T4p+ ... +p" 77 L4p+ . 4pHE

By assumption k—j = 21 is a positive even integer. On the right side of (64) we
multiply the second factor, and divide the first, by p'. Hence

pk—j—l+ +pn-j—1—l pl+pl+1+ +pn+j—t+l

T4pt ... 40T 1d4p+ ... 4p 70
Note that m—j—1)—(n—j—1—D) = 1= k—j—I, and that (n+k—1)—(n+j
—1+1]) = L. Thus both factors in (65) are of the form (57), hence are increasing

for pe(0, 1). This shows that U(p) is increasing, as a product of two positive
increasing functions. =

) U=

icm®
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The above theorem and Theorem 7 yield our main result

TueOREM 9. The L*-angle B(r, s) between the strips A = {—n < Rez < sn}
and B = {rn < Rez < m} is given by

1—s 1+4r

(66) p(r, s) = arccos (——— )1/2 (—l<r<s<1).

1+S'1—r

Remark 4. The idea used in the proof of the monotonicity of F,,(g)
(0 < r < s < 1)in the interval (0, 1) leads to the following direct representation
of F,,(q) as a product of two increasing functions:

(67) F, ,(q) = Gc/(zwd)(‘llMdlz)Ge/(zw)(‘llw/z)

where ¢ = s—r, d = s+r. (Hint: consider rational parameters r = j/n, s = k/n
such that j = k (mod2)). As r—0 this yields another formula

(68) G,(q) = Gs/(z-q)(qlww)Gs/(z _”)(ql“ﬂﬂ) O<s<l)

which can be verified by immediate calculations.

O<r<s<l),
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