Finally, let us remark that the algebras $\mathcal{A}_0(X_0)$ given by (2) are maximal subalgebras of B(X) with respect to the property of being of square zero, and all such maximal subalgebras are of the form (2) (see [8]).

References

- [1] N. Bourbaki, Espaces vectoriels topologiques, Hermann, Paris 1966.
- [2] Ch. Davis, Generators of the ring of bounded operators, Proc. Amer. Math. Soc. 6 (1955), 970-972.
- [3] R. C. James, A non-reflexive Banach space isomorphic with its second conjugate space, Proc. Nat. Acad. Sci. U.S.A. 37 (1951), 174-177.
- [4] B. S. Mityagin and I. S. Edelshtein, Homotopy type of linear groups for two classes of Banach spaces, Funktsional. Anal. i Prilozhen. 4 (3) (1970), 61-72 (in Russian).
- [5] E. A. Nordgren, M. Radjabalipour, H. Radjavi, and P. Rosenthal, Quadratic operators and invariant subspaces, Studia Math. 88 (1988), 263-268.
- [6] Z. Semadeni, Banach spaces non-isomorphic to their Cartesian squares. II, Bull. Acad. [Polon. Sci. 8 (1960), 81-84.
- [7] A. Wilansky, Subalgebras of B(X), Proc. Amer. Math. Soc. 29 (1971), 355-360.
- [8] W. Żelazko, Concerning trivial maximal abelian subalgebras of B(X), PLISKA Stud. Math. Bulgar., in print.
- [9] —, B(H) is generated by two of its abelian subalgebras, in: Proc. Internat. Conf. on Invariant Subspaces and Allied Topics (Delhi, December 15-19, 1986), in print.
- [10] -, B(X) is generated in strong operator topology by two subalgebras with square zero, Proc. Roy. Irish Acad. Sect. A 88 (1) (1988), in print.

INSTYTUT MATEMATYCZNY POLSKIEJ AKADEMII NAUK INSTITUTE OF MATHEMATICS, POLISH ACADEMY OF SCIENCES Śniadeckich 8, 00-950 Warszawa, Poland

Received March 24, 1987 (2291)

L^2 -Angles between one-dimensional tubes

by

MACIEJ SKWARCZYŃSKI (Warszawa)

Abstract. Let $D_i \subset C^N$, i=1,2, be two domains with nonempty intersection, such that $D=D_1\cup D_2$ is contained neither in \overline{D}_1 nor in \overline{D}_2 . Denote by F_i , i=1,2, the closed subspace in $L^2(D)$ consisting of functions which are holomorphic in D_i and otherwise arbitrary. As indicated in [7], [8] the Bergman projection in D can be described in terms of the orthogonal projections F_i . In some cases, the relevent alternating projections procedure can be carried out by explicit analytic calculations [7], [9]. In this context it is natural to study the angle $\gamma \in [0, \pi/2]$ between the subspaces F_1 and F_2 . We call it (for brevity) the L^2 -angle between D_1 and D_2 . It was shown in [5] that the L^2 -angle between two halfplanes (bounded by parallel lines) is 0. In the present paper we are concerned with the more general situation when D_i , i=1,2, are arbitrary tubes in the complex plane. We determine the L^2 -angle $\alpha(r)$ between the strip $\{0 < \text{Re} z < 1\}$ and halfplane $\{\text{Re} z > r\}$ $\{0 < r < 1\}$, as well as the L^2 -angle $\beta(r,s)$ between two strips $\{-\pi < \text{Re} z < s\pi\}$, $\{r\pi < \text{Re} z < \pi\}$ $\{-1 < r < s < 1\}$. It turns out that

$$\cos^2 \alpha(r) = r$$
 and $\cos^2 \beta(r, s) = \frac{1-s}{1+s} \cdot \frac{1+r}{1-r}$.

We include a brief presentation of the Genchev transform [2], [4] since it plays an important role in our considerations.

1. The abstract definition of an angle. Let F_1 , F_2 be closed subspaces in an abstract Hilbert space \mathscr{H} . Assume that $F=F_1\cap F_2$ is a proper subset in each of F_i , i=1,2. (This implies that each F_i contains a nonzero element orthogonal to F_i)

DEFINITION 1. The angle $\gamma \in [0, \pi/2]$ between F_1 and F_2 is defined by

(1)
$$\cos \gamma = \sup_{\substack{f_1 \in F_1 \setminus \{0\} \\ f_1 \mid F}} \frac{|\langle f_1, f_2 \rangle|}{\|f_1\| \cdot \|f_2\|}.$$

We shall restate this definition in a way which is less symmetric, but more convenient for our purpose.

LEMMA 1. Denote by P_2 the orthogonal projection of \mathcal{H} onto F_2 . Then

(2)
$$\cos \gamma = \sup_{\substack{f_1 \in F_1 \setminus \{0\}\\ f_1, f_2}} \frac{\|P_2 f_1\|}{\|f_1\|}.$$

Proof. When $P_2(F_1)=F$ both (1) and (2) give the same value $\cos\gamma=0$. In the opposite case there is $f_1\in F_1$ admissible for (2) such that $P_2f_1\neq 0$ and in both (1) and (2) the supremum can be computed with the additional condition $P_2f_1\neq 0$. Assume that the pair f_1,f_2 (with $P_2f_1\neq 0$) is admissible in (1). By the Schwarz inequality

$$\frac{|\langle f_1, f_2 \rangle|}{\|f_1\| \cdot \|f_2\|} = \frac{|\langle P_2 f_1, f_2 \rangle|}{\|f_1\| \cdot \|f_2\|} \leqslant \frac{\|P_2 f_1\|}{\|f_1\|}$$

and (1) \leq (2) follows. It remains to show the converse inequality. Assume that f_1 (with $P_2 f_1 \neq 0$) is admissible in (2). Then $P_2 f_1 \perp F$ and the pair f_1, f_2 where $f_2 = P_2 f_1$ is admissible in (1). Moreover,

$$\frac{|\langle f_1, f_2 \rangle|}{\|f_1\| \cdot \|f_2\|} = \frac{\|P_2 f_1\|^2}{\|f_1\| \cdot \|P_2 f_1\|} = \frac{\|P_2 f_1\|}{\|f_1\|}.$$

Hence $(2) \leq (1)$.

3. An angle in $L^2(D)$ related to alternating projections. We now consider the case when $\mathcal{H}=L^2(D),\ D=D_1\cup D_2$. To avoid indices we introduce the notation

$$A = D_1, \quad B = D_2, \quad T = D_1 \cap D_2, \quad f = f_1.$$

Let us recall that $f \in F_1$ (see the abstract) means that $f_A := f|_A$ is L^2 -holomorphic and $f_{B \setminus T} := f|_{B \setminus T}$ is in L^2 (arbitrary). For $f \in F_1$ the restriction $f_B := f|_B$ is (in general) not holomorphic and its Bergman projection in B will be denoted by \hat{f} . It is well known [7, Th. 3] that $P_2 : F_1 \to F_2$ is given by

(3)
$$P_2 f(z) = \begin{cases} f(z) & \text{for } z \in A \setminus T, \\ \hat{f}(z) & \text{for } z \in B. \end{cases}$$

Note that $F = L^2H(D)$ is the space of all functions which are L^2 -holomorphic in D. Formula (2) takes the form

(4)
$$\cos^2 \gamma = \sup_{\substack{f \in F_1 \setminus \{0\}\\ f \neq LL^2 H(D)}} \frac{\|f\|_{A/T}^2 + \|\hat{f}\|_B^2}{\|f\|_A^2 + \|f\|_{B/T}^2}.$$

From this follows easily

Theorem 1. The L^2 -angle between two domains $A,B\subset \mathbb{C}^N$ is $\pi/2$ if and only if

(5)
$$L^2H(A) = \{0\}, \quad L^2H(B) = \{0\}.$$

In particular, the 1^2 -angle between plane domains (if defined) is always smaller than $\pi/2$.

Proof. The condition is sufficient. Indeed, $f \in F_1$ implies that $f_A \in L^2H(A)$

and $\hat{f} \in L^2 H(B)$, hence it follows from (5) that (4) has vanishing numerator. We conclude that $\cos^2 \gamma = 0$, or equivalently that $\gamma = \pi/2$.

Conversely, assume that (5) does not hold. In view of symmetry it is enough to consider the case $L^2H(A) \neq \{0\}$. Take an arbitrary $u \in L^2H(A) \setminus \{0\}$ and extend it by 0 to D. The extended function $u \in L^2(D)$ is not holomorphic, therefore its Bergman projection $u^B \in L^2H(D)$ satisfies

$$||u^{\mathbf{B}}||_{A} \leq ||u^{\mathbf{B}}||_{D} < ||u||_{D} = ||u||_{A}.$$

It follows that $f=u-u^B$ does not vanish identically on A, and is admissible for (4). Hence $\cos^2\gamma>0$.

For $N \neq 1$ the equality $\gamma = \pi/2$ can occur, as in the following

EXAMPLE 1. Let A and B be the exteriors of two closed disjoint balls in \mathbb{C}^N , $N \neq 1$. Then condition (5) is satisfied.

For later use we shall need a slight modification of (4) given in the following

THEOREM 2. Assume that (5) does not hold. Then

(6)
$$\cos^2 \gamma = \sup \left\{ \frac{\|f\|_{A\backslash T}^2 + \|\hat{f}\|_B^2}{\|f\|_A^2 + \|f\|_{B\backslash T}^2} : f \in F_1 \setminus \{0\}, \ f \perp L^2 H(D), \right.$$

f holomorphic in int $B \setminus T$.

Proof. Let h be any function admissible in (4) for which the expression under the supremum sign is positive. (Such functions exist in view of Theorem 1.) Let $f \in L^2(D)$ be the projection of h onto the subspace in $L^2(D)$ of all functions which are L^2 -holomorphic in int $B \setminus T$ and otherwise arbitrary. Then f(z) = h(z) for $z \notin \text{int } B \setminus T$. The assumption f = 0 implies that $\|h\|_{A \setminus T}^2 + \|\hat{h}\|_B^2 = 0$ in contradiction to the assumed property of h. Therefore $f \neq 0$ and f is admissible in (6). (This shows that there do exist functions admissible in (6).) Since the numerator corresponding to h in (4) is equal to the one corresponding to f in (6), and the denominator corresponding to h in (4) is not smaller than the one corresponding to f in (6) we conclude that (4) \leq (6). The inequality (6) \leq (4) is obvious.

A biholomorphic mapping φ : $D \to \tilde{D}$ can be of help in computing γ in view of the following

THEOREM 3. Assume that $\varphi: D \to \widetilde{D}$ is biholomorphic. Then the L^2 -angle between A and B is the same as the one between $\widetilde{A} = \varphi(A)$ and $\widetilde{B} = \varphi(B)$.

Proof. It suffices to apply the unitary mapping U_{φ} : $L^2(\tilde{D}) \to L^2(D)$ given by

$$(U_{\varphi}f)(z) = f(\varphi(z))\varphi'(z).$$

3. The Genchev transform. We shall recall briefly some L^2 -theorems of Paley-Wiener type due to T. Genchev [4] and M. Dzhrbashyan [2]. The following lemma should be compared with [4]:

LEMMA 2. Let $D = \{\text{Re } z \in J\}$ be the one-dimensional tube over an open interval $J \subset \mathbb{R}$ (in particular, one can take for J a halfline). For every $f \in L^2H(D)$ and every $x \in J$ the function $y \mapsto f(x+iy)$ belongs to $L^2(\mathbb{R})$.

Proof. Fix r>0 such that $(x-r,x+r)\subset J$. For every $y\in R$ the function $f_y(z)=f(z+iy)$ is L^2 -holomorphic in the variable z=u+iv over the square $Q=(x-r,x+r)\times (-r,r)$. At the center of the square, f_y takes the value $f_y(x)=f(x+iy)$. Since Q contains the disc with center x and radius r, the Bergman theory [1] yields the inequality

$$|f_{y}(x)|^{2} \leq (\pi r^{2})^{-1} ||f_{y}||_{Q}^{2}$$

which can be rewritten as

(7)
$$|f(x+iy)|^2 \leq (\pi r^2)^{-1} \int_{v \in (-r,r)} \int_{u \in (x-r,x+r)} |f(u+iv+iy)|^2 du dv.$$

We shall now integrate both sides with respect to $y \in (-\infty, \infty)$. Since the Lebesgue measure is translation invariant we obtain

$$\int\limits_{y\in (-\infty,\infty)} |f(x+iy)|^2\,dy \leqslant \frac{1}{\pi r^2} \int\limits_{v\in (-r,r)} \int\limits_{u\in (x-r,x+r)} \int\limits_{y\in (-\infty,\infty)} |f(u+iv+iy)|^2\,dy\,du\,dv$$

$$= \frac{1}{\pi r^2} \int_{v \in (-r,r)} \int_{u \in (x-r,x+r)} \int_{y \in (-\infty,\infty)} |f(u+iy)|^2 \, dy \, du \, dv \leqslant \frac{2}{\pi r} \|f\|_D^2.$$

The right side is finite by assumption, hence the left side is finite.

The (inverse) Fourier transform of g(y) = f(x+iy) is given by (see G. Folland [3], p. 20)

$$\check{g}(t) = \int_{-\infty}^{\infty} e^{2\pi i t y} f(x + i y) \, dy$$

and depends on $x \in J$ in a very explicit way. In fact, $e^{2\pi ix} \phi(t)$ does not depend on x at all. The function

(8)
$$G_{f}(t) := e^{2\pi i x} \check{g}(t) = i^{-1} \lim_{E \to \infty} \int_{x-iE}^{x+iE} e^{2\pi i z} f(z) dz$$

will be called the *Genchev transform* of $f \in L^2H(D)$. Note that G_f is completely determined by the values of f on one line Re z = x. Therefore two functions $f_1 \in L^2H(D_1)$ and $f_2 \in L^2H(D_2)$ which agree on such a line have the same Genchev transforms.

In view of the Plancherel theorem, the L^2 -norm of f over any tube

 $T = \{ \alpha < \text{Re } z < \beta \}$ $(T \subset D)$ can be easily expressed in terms of G_f . Namely,

(9)
$$||f||_T^2 = \int_{-\infty}^{\infty} |G_f(t)|^2 w_T(t) dt, \quad w_T(t) = \int_{\alpha}^{\beta} e^{-4\pi t x} dx.$$

We can now state

THEOREM 4 (T. Genchev, M. Dzhrbashyan). The correspondence $f \mapsto G_f$ defines a unitary mapping of $L^2H(D)$ onto $L^2(\mathbb{R}, w_D)$.

Proof. The mapping is linear and isometric in view of (9). It remains to show that its image contains a dense subset of $L^2(R, w_D)$. Indeed, it is easy to verify that every $h \in L^2(R, w_D)$ bounded and vanishing outside a compact set can be written as G_f with $f \in L^2H(D)$ given by the (two-sided) Laplace transform of h,

$$f(z) = \int_{-\infty}^{\infty} e^{-2\pi zt} h(t) dt.$$

Remark 1. An immediate calculation shows that:

1° For
$$J = (a, b), \ w_D(t) = \frac{e^{-4\pi at} - e^{-4\pi bt}}{4\pi t}, \ t \in (-\infty, \infty).$$

2° For
$$J = (a, \infty)$$
, $w_D(t) = \frac{e^{-4\pi at}}{4\pi t}$, $t > 0$, and $w_D(t) \equiv \infty$, $t < 0$.

3° For
$$J = (-\infty, b)$$
, $w_D(t) = \frac{e^{-4\pi bt}}{-4\pi t}$, $t < 0$, and $w_D(t) \equiv \infty$, $t > 0$.

Note that $L^2(\mathbf{R}, w_D)$ in case 2° can be identified with $L^2(\mathbf{R}^+, w_D)$ and in case 3° with $L^2(\mathbf{R}^-, w_D)$.

The following three corollaries of Theorem 4 will be needed later. We omit the easy proofs (see also [9]).

COROLLARY 1. Let D be a tube over a bounded interval J = (a, b). Consider the following subspaces in $L^2H(D)$:

$$L^2_-H(D)=\big\{f\!\in\!L^2H(D);\ G_f(t)=0\ for\ every\ t>0\big\},$$

$$L^2_+H(D) = \{ f \in L^2H(D); G_f(t) = 0 \text{ for every } t < 0 \}.$$

There is an orthogonal decomposition

$$L^{2}H(D) = L_{-}^{2}H(D) \oplus L_{+}^{2}H(D).$$

COROLLARY 2 (D as above). The subspace L^2 -H(D) consists of all $L^2(D)$ -limits $f = \lim_{k \to \infty} f_k$, where every f_k is L^2 -holomorphic in the halfplane $\{\text{Re } z < b\}$.

The subspace $L^2_+H(D)$ consists of all $L^2(D)$ -limits $f=\lim_{k\to\infty}f_k$, where every f_k is L^2 -holomorphic in the halfplane $\{\operatorname{Re} z>a\}$.

COROLLARY 3 (D as above). Every $f \in L^2_-H(D)$ extends to a holomorphic function in $\{\text{Re } z < b\}$, and for every c > 0

$$||f||_{D-c}^2 \le ||f||_D^2.$$

Every $f \in L^2_+H(D)$ extends to a holomorphic function in $\{\operatorname{Re} z > a\}$, and for every c > 0

$$||f||_{D+c}^2 \le ||f||_D^2$$

4. Operators related to the Bergman projection in a halfplane. In order to use formula (6) we need to know the Bergman projection in D for a class of piecewise L^2 -holomorphic functions. Therefore first we address the following

PROBLEM 1. Let U be a subdomain in D. Describe explicitly the operator P_{UD} : $L^2H(U) \rightarrow L^2H(D)$, where $P_{UD}f$ is the Bergman projection of the trivial extension of f to D.

Note that P_{UD} maps the Bergman function $K_U(\cdot,p)$, $p\in U$, to $K_D(\cdot,p)$. Since the functions $K_U(\cdot,p)$, $p\in U$, are linearly dense in $L^2H(U)$, the above property is characteristic of P_{UD} .

LEMMA 3. Assume that $D = \{\text{Re } z > 0\}$ and $U = \{\text{Re } z > r\}$ (r > 0). Then $P_{UD}f(z) = f(z+2r)$.

Proof. The operator defined by the above formula is linear and continuous. It also maps $K_U(\cdot,p)$ to $K_D(\cdot,p)$ in view of the well-known formulas

(10)
$$K_D(z, p) = \frac{1}{\pi(z + \bar{p})^2}, \quad K_U(z, p) = \frac{1}{\pi(z + \bar{p} - 2r)^2}.$$

LEMMA 4. Assume that $D = \{\text{Re } z > 0\}$ and $U = \{0 < \text{Re } z < r\}$. Then $P_{UD}f(z) = f^{(+)}(z) - f^{(+)}(z+2r)$, where $f = f^{(-)} + f^{(+)}$ is the orthogonal decomposition of $f \in L^2H(U)$ from Corollary 1.

Proof. In view of Corollaries 1-3 the above formula defines a continuous linear operator, and it suffices to show that it agrees with P_{UD} in two cases: 1° when f is L^2 -holomorphic in $\{\text{Re } z < r\}$, 2° when f is L^2 -holomorphic in $\{\text{Re } z > 0\}$. (Indeed, the sum of classes 1° and 2° is linearly dense in $L^2H(U)$).

In case 1° , $f^{(+)} = 0$. Since $K_D(\cdot, z)$ is L^2 -holomorphic in the halfplane D its restriction to U is in $L^2_+H(U)$, hence orthogonal to $f^{(-)}$. This yields

$$P_{UD}f(z) = P_{UD}f^{(-)}(z) = \int_{U} f^{(-)}(w)\overline{K_{D}(w, z)} dm(w) = 0$$

according to the statement. In case 2°, f extends to D and

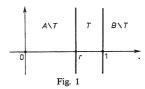
$$P_{UD}f(z) = \int_{D} f(z)\overline{K_{D}(w, z)} dm(w) - \int_{D/U} f(w)\overline{K_{D}(w, z)} dm(w).$$

The first integral equals f(z) by the reproducing property of the Bergman function, and the second equals f(z+2r) by Lemma 3. Since $f=f^{(+)}$ the statement follows.

5. L^2 -angle between a strip and a halfplane. In view of Theorem 3 it suffices to determine the L^2 -angle $\alpha(r)$ between the strip A and the halfplane B given by

$$A = \{0 < \text{Re } z < 1\}, \quad B = \{\text{Re } z > r\},$$

where 0 < r < 1. Both domains are illustrated in Fig. 1, where $T = A \cap B$.



First of all we shall determine all pairs $f_A \in L^2H(A)$, $f_{B\setminus T} \in L^2H(B\setminus T)$ which describe a function f, admissible in (6). The Bergman projection in $D=A\cup B$ of (the trivial extension of) f_A is $f_A^{(+)}(z)-f_A^{(+)}(z+2)$ according to Lemma 4. The Bergman projection of (the trivial extension of) $f_{B\setminus T}$ is $f_{B\setminus T}(z+2)$ according to Lemma 3. Therefore $f\perp L^2H(D)$ is equivalent to

(11)
$$f_{B\setminus T}(z+2) = f_A^{(+)}(z+2) - f_A^{(+)}(z).$$

It follows that $f_{B \setminus T}$ has to be defined by the formula

(12)
$$f_{B\setminus T}(z) = f_A^{(+)}(z) - f_A^{(+)}(z-2)$$

and that (12) defines a function in $L^2H(B\backslash T)$ if and only if $f_A^{(+)}$ is L^2 -holomorphic in the strip {|Re z| < 1}. We also see from (12) that $f \neq 0$ if and only if $f_A \neq 0$.

Next we shall describe (for an admissible f) the Bergman projection $f \in L^2H(B)$ of the (nonholomorphic) function f_B . The Bergman projection of $f_T := f|_T$ is (according to Lemma 4) $f_A^{(+)}(z) - f_A^{(+)}(z+2(1-r))$. The Bergman projection of $f_{B\setminus T}$ is (according to Lemma 3 and (12)) $f_A^{(+)}(z+2(1-r)) - f_A^{(+)}(z-2r)$. Consequently,

(13)
$$\hat{f}(z) = f_A^{(+)}(z) - f_A^{(+)}(z - 2r).$$

Denote by $\Phi(t)$ the Genchev transform of $f_A^{(+)}$ and by $\Psi(t)$ the Genchev transform of $f_A^{(-)}$. From (12) and (13) it follows that

(14)
$$G_{f_{R}\setminus T}(t) = \Phi(t)(1-e^{2\cdot 2\pi t}), \quad G_{\hat{f}}(t) = \Phi(t)(1-e^{2r\cdot 2\pi t}).$$

The expression under the supremum sign in (6) has the form

(15)
$$\frac{\|f_{A}^{(-)}\|_{A\backslash T}^{2} + \|f_{A}^{(+)}\|_{A\backslash T}^{2} + \|\hat{f}\|_{B}^{2}}{\|f_{A}^{(-)}\|_{A}^{2} + \|f_{A}^{(+)}\|_{A}^{2} + \|f\|_{B\backslash T}^{2}}.$$

The first terms in the numerator and denominator depend on Ψ and do not depend on Φ ; the remaining terms depend on Φ , and do not depend on Ψ . It follows that

(16)
$$\cos^2 \alpha(r) = \max \left(\sup_{\Psi} \frac{\|f_A^{(-)}\|_{A\backslash T}^2}{\|f_A^{(-)}\|_A^2}, \sup_{\Phi} \frac{\|f_A^{(+)}\|_{A\backslash T}^2 + \|\hat{f}\|_{B}^2}{\|f_A^{(+)}\|_A^2 + \|f\|_{B\backslash T}^2} \right).$$

In view of Remark 1 the corresponding weights are given by

$$w_{A \setminus T}(t) = \frac{1 - e^{-4\pi r t}}{4\pi t}, \qquad t \in (-\infty, \infty),$$

$$w_{A}(t) = \frac{1 - e^{-4\pi t}}{4\pi t}, \qquad t \in (-\infty, \infty),$$

$$w_{B}(t) = e^{-4\pi r t} / (4\pi t), \quad t \in (0, \infty),$$

$$w_{B \setminus T}(t) = e^{-4\pi t} / (4\pi t), \quad t \in (0, \infty).$$

Using (9) we find that

(17)
$$\sup_{\Psi} \frac{\|f_{A}^{(-)}\|_{A\backslash T}^{2}}{\|f_{A}^{(-)}\|_{A}^{2}} = \sup_{\Psi} \frac{\int_{-\infty}^{0} |\Psi(t)|^{2} \frac{1 - e^{-4\pi rt}}{4\pi t} dt}{\int_{-\infty}^{0} |\Psi(t)|^{2} \frac{1 - e^{-4\pi t}}{4\pi t} dt} = r.$$

Indeed, the ratio $(1-e^{-4\pi r})/(1-e^{-4\pi t})$ is not greater than r, and converges to r as t > 0. (Further details are left to the reader).

In a similar way we find that

$$||f_A^{(+)}||_{A\backslash T}^2 = \int_0^\infty |\Phi(t)|^2 \frac{1 - e^{-4\pi rt}}{4\pi t} dt,$$
$$||f_A^{(+)}||_A^2 = \int_0^\infty |\Phi(t)|^2 \frac{1 - e^{-4\pi t}}{4\pi t} dt,$$

and in view of (14)

$$\begin{split} \|\hat{f}\|_{B}^{2} &= \int_{0}^{\infty} |\Phi(t)(1 - e^{4\pi r t})|^{2} \frac{e^{-4\pi t r}}{4\pi t} dt = \int_{0}^{\infty} \frac{|\Phi(t)|^{2}}{4\pi t} (e^{-4\pi r t} - 2 + e^{4\pi r t}) dt, \\ \|f\|_{B\backslash T}^{2} &= \int_{0}^{\infty} |\Phi(t)(1 - e^{4\pi t})|^{2} \frac{e^{-4\pi t}}{4\pi t} dt = \int_{0}^{\infty} \frac{|\Phi(t)|^{2}}{4\pi t} (e^{-4\pi t} - 2 + e^{4\pi t}) dt. \end{split}$$

It follows that

(18)
$$\sup_{\Phi} \frac{\|f_{A}^{(+)}\|_{A\backslash T}^{2} + \|\hat{f}\|_{B\backslash T}^{2}}{\|f_{A}^{(+)}\|_{A}^{2} + \|f\|_{B\backslash T}^{2}} = \sup_{\Phi} \int_{0}^{\infty} \frac{|\Phi(t)|^{2}}{4\pi t} (e^{4\pi t} - 1) dt}{\int_{0}^{\infty} \frac{|\Phi(t)|^{2}}{4\pi t} (e^{4\pi t} - 1) dt} = r.$$

From (16), (17), (18) follows immediately

THEOREM 5. The L^2 -angle $\alpha(r)$ between the strip $A=\{0<{\rm Re}\,z<1\}$ and the halfplane $B=\{{\rm Re}\,z>r\}$ is

$$\alpha(r) = \arccos(r^{1/2}), \quad 0 < r < 1.$$

Remark 2. It may be worth recalling that according to [5] the L^2 -angle $\gamma(r)$ between the domains $A = \{|z| < 1\}$ and $B = \{|z| > r\}$ is

$$\gamma(r) = \arccos r, \quad 0 < r < 1.$$

5. Operators related to the Bergman projection in a strip. We begin with further remarks about the Genchev transform.

LEMMA 5. Assume that the mapping $\varphi(z)=kz+c$ $(k,\,c\in R,\,k\neq 0)$ transforms the tube $D=\{\operatorname{Re} z\in J\}$ onto the tube $\widetilde{D}=\{\operatorname{Re} w\in \widetilde{J}\}$. Let $U_{\varphi}\colon L^2H(\widetilde{D})\to L^2H(D)$ be the canonical isometry

(19)
$$U_{\varphi}f(z) = f(\varphi(z))\varphi'(z) = kf(kz+c).$$

If $h \in L^2(\mathbb{R}, w_D)$ is the Genchev transform of $U_{\omega} f \in L^2H(D)$, then

(20)
$$I_{\omega}h(t) = (\operatorname{sgn} k) e^{2\pi t c} h(kt)$$

is the Genchev transform of $f \in L^2H(\widetilde{D})$. In particular, one has the commutative diagram

$$L^{2}H(D) \xrightarrow{U_{\varphi}} L^{2}H(\widetilde{D})$$

$$\downarrow G \qquad \qquad \downarrow G$$

$$\downarrow G \qquad \qquad \downarrow G$$

$$\downarrow L^{2}(\mathbf{R}, w_{0}) \xrightarrow{I_{\varphi}} L^{2}(\mathbf{R}, w_{\overline{0}})$$

which shows that I_{φ} : $L^{2}(\mathbf{R}, w_{D}) \rightarrow L^{2}(\mathbf{R}, w_{D})$ is a unitary mapping.

Proof. We shall compute the Genchev transform of f over the line $\text{Re } w = \varphi(x)$ (which is the image under φ of the line Re z = x). The natural orientation on these lines (with imaginary part as parameter) is preserved when k > 0 and reversed when k < 0. Formula (8) yields

$$G_{f}(t) = i^{-1} \operatorname{sgn} k \lim_{E \to \infty} \int_{\varphi(x-iE)}^{\varphi(x+iE)} e^{2\pi t w} f(w) dw = i^{-1} \operatorname{sgn} k \lim_{E \to \infty} \int_{x-iE}^{x+iE} e^{2\pi t \varphi(x)} U_{\varphi} f(z) dz$$

 $= i^{-1}\operatorname{sgn} k e^{2\pi i c} \lim_{E \to \infty} \int_{x-iE}^{x+iE} e^{2\pi (ik)z} U_{\varphi} f(z) dz = (\operatorname{sgn} k) e^{2\pi i c} h(kt).$

The proof is complete.

Remark 3. When k=1 the mapping $\varphi(z)=z+c$ is a translation and U_{φ} is the shift operator $(S_c f)(z)=f(z+c)$. In this case Lemma 5 says that

$$G_f(t) = e^{2\pi t c} G_{S_c f}(t).$$

The above formula was implicitly used in (14).

DEFINITION 2. Let $P: L^2H(D_1) \to L^2H(D_2)$ be a linear continuous operator. A measurable function $\mu: (-\infty, \infty) \to C$ will be called a *multiplier* for P if

$$G_{Pf}(t) = \mu(t)G_f(t), \quad t \in (-\infty, \infty),$$

for every $f \in L^2H(D_1)$.

The following simple corollary of Lemma 5 will be needed later.

COROLLARY 4. Assume that $\varphi(z) = kz + c$ maps D_1 onto \widetilde{D}_1 and D_2 onto \widetilde{D}_2 . Assume further that $P: L^2H(D_1) \to L^2H(D_2)$ is a linear continuous operator with multiplier $\mu(t)$. Consider the operator $\widetilde{P}: L^2H(\widetilde{D}_1) \to L^2H(\widetilde{D}_2)$ uniquely defined by the following commutative diagram:

$$L^{2}H(D_{1}) \stackrel{U_{\varphi}}{\longleftarrow} L^{2}H(\tilde{D}_{1})$$

$$\downarrow^{\tilde{p}}$$

$$\downarrow^{2}H(D_{2}) \stackrel{U_{\varphi}}{\longleftarrow} L^{2}H(\tilde{D}_{2})$$

Then $\tilde{\mu}(t) = \mu(kt)$ is a multiplier for \tilde{P} .

Proof. We want to find the Genchev transform of $\widetilde{P}f$ for $f \in L^2H(\widetilde{D}_1)$. Since P has multiplier μ we have the equality

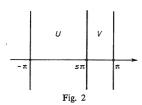
$$G_{PU_{n}f} = \mu G_{U_{n}f}$$

and by Lemma 5

(23)
$$G_{Pf}(t) := (\operatorname{sgn} k) e^{2\pi t c} G_{U_{\varphi}Pf}(kt) = (\operatorname{sgn} k) e^{2\pi t c} G_{PU_{\varphi}f}(kt)$$
$$= (\operatorname{sgn} k) e^{2\pi t c} \mu(kt) G_{U_{\varphi}f}(kt) = \mu(kt) G_{f}(t).$$

This shows that $\tilde{\mu}(t) = \mu(kt)$ is a multiplier for \tilde{P} .

Let us now consider the standard strip $D = \{-\pi < \text{Re } z < \pi\}$ divided by the line $\text{Re } z = s\pi \ (-1 < s < 1)$ (see Fig. 2).



Along with the strips $U = \{-\pi < \text{Re } z < s\pi\}$, $V = \{s\pi < \text{Re } z < \pi\}$ we shall study the operators P_{UD} : $L^2H(U) \rightarrow L^2H(D)$, P_{VD} : $L^2H(V) \rightarrow L^2H(D)$

defined in Section 4 (Problem 1). We are going to show that these operators have multipliers. This result will extend to nonstandard strips in view of Corollary 4.

The line Re $z = s\pi$ determines two halfplanes $H_{s\pi-}$ and $H_{s\pi+}$:

$$H_{s\pi^{-}} = \{ \operatorname{Re} z < s\pi \}, \quad H_{s\pi^{+}} = \{ \operatorname{Re} z > s\pi \}.$$

The corresponding Bergman functions are

$$K_{H_{s\pi^{-}}}(w, z) = \frac{1}{\pi(w + \bar{z} - 2s\pi)^2}, \quad K_{H_{s\pi^{+}}}(w, z) = \frac{1}{\pi(w + \bar{z} - 2s\pi)^2}.$$

The Bergman function for the standard strip D can be obtained in the usual way, using the elementary mapping of D onto the unit disc. By the classical secans formula [6, p. 50] it can be written as

(24)
$$K_{D}(w, z) = \frac{\cos^{-2} \frac{w + \bar{z}}{4}}{16\pi}$$

$$= \sum_{k=1}^{\infty} \frac{1}{\pi (w + \bar{z} - (2k-1)2\pi)^{2}} + \sum_{k=1}^{\infty} \frac{1}{\pi (w + \bar{z} + (2k-1)2\pi)^{2}}.$$

For a fixed $z \in D$ the terms in both series are square integrable in the variable w over D since

$$\frac{1}{\pi(w+\bar{z}-(2k-1)2\pi)^2}=K_{H_{\pi^-}}(w,z-(2k-2)2\pi)$$

with $\text{Re}(z-(2k-2)2\pi) \leq \text{Re } z < \pi$, and

$$\frac{1}{\pi(w+\bar{z}+(2k-1)2\pi)^2} = K_{H_{-\pi+}}(w, z+(2k-2)2\pi)$$

with $\operatorname{Re}(z+(2k-2)2\pi) \geqslant \operatorname{Re} z > -\pi$.

Moreover, the above formulas and Lemma 3 yield (for fixed $z \in D$)

$$\left\| \frac{1}{\pi (w + \bar{z} - (2k - 1)2\pi)^2} \right\|_{D} \sim k^{-3/2}, \quad \left\| \frac{1}{\pi (w + \bar{z} + (2k - 1)2\pi)^2} \right\|_{D} \sim k^{-3/2}.$$

It follows that both series in (24) are $L^2(D)$ -convergent. Therefore (24) gives the orthogonal decomposition of Corollary 1 for the Bergman function $K_D(\cdot, z)$ in the standard strip D.

To study the operators P_{UD} and P_{UV} we shall rewrite slightly the terms in (24). To study P_{UD} we shall use the formula (with $z \in U$)

(25)
$$K_D(w, z) = \sum_{k=1}^{\infty} K_{H_{s\pi^-}}(w, z - (2k - 1 - s)2\pi) + \sum_{k=1}^{\infty} K_{H_{s\pi^+}}(w, z + (2k - 2)2\pi).$$

(Note that $2k-1-s\geqslant 0$, hence $\text{Re}(z-(2k-1-s)2\pi)< s\pi$.) To study P_{VD} we shall use the formula (with $z\in V$)

(26)
$$K_{D}(w, z) = \sum_{k=1}^{\infty} K_{H_{\pi-}}(w, z - (2k-2)2\pi) + \sum_{k=1}^{\infty} K_{H_{S\pi+}}(w, z + (2k-1+s)2\pi).$$

(Note that $2k-1+s \ge 0$, hence $\text{Re}(z+(2k-1+s)2\pi) > s\pi$.)

 $P_{UD}f^{(-)}(z) = \int_{U} f^{(-)}(w) \sum_{k=1}^{\infty} \overline{K_{H_{S\pi^{-}}}(w, z - (2k - 1 - s)2\pi)} dm(w)$

Consider $f \in L^2H(U)$ with $f = f^{(-)} + f^{(+)}$. Using (25) we find (for $z \in U$)

(27)

$$= \sum_{k=1}^{\infty} P_{UH_{s\pi}} f^{(-)} (z - (2k - 1 - s)2\pi)$$

$$= \sum_{k=1}^{\infty} \left[f^{(-)} (z - (2k - 1 - s)2\pi) - f^{(-)} (z - (2k - 1 - s)2\pi - 2\pi(s + 1)) \right]$$

$$= \sum_{k=1}^{\infty} \left[f^{(-)} (z - (2k - 1 - s)2\pi) - f^{(-)} (z - (2k)2\pi) \right],$$

$$P_{UD} f^{(+)} (z) = \int_{U} f^{(+)} (w) \sum_{k=1}^{\infty} \overline{K_{H_{-\pi}}} (w, z + (2k - 2)2\pi) dm(w)$$

$$= \sum_{k=1}^{\infty} P_{UH_{-\pi}} f^{(+)} (z + (2k - 2)2\pi)$$

$$= \sum_{k=1}^{\infty} \left[f^{(+)} (z + (2k - 2)2\pi) - f^{(+)} (z + (2k - 2)2\pi + 2\pi(s + 1)) \right]$$

$$= \sum_{k=1}^{\infty} \left[f^{(+)} (z + (2k - 2)2\pi) - f^{(+)} (z + (2k - 1 + s)2\pi) \right].$$

Next let us consider $g \in L^2H(V)$ with $g = g^{(-)} + g^{(+)}$. Using (26) and proceeding as before we find (for $z \in V$)

$$(29) P_{VD}g^{(-)}(z) = \int_{V} g^{(-)}(w) \sum_{k=1}^{\infty} \overline{K_{H_{\pi^{-}}}(w, z - (2k-2)2\pi)} dm(w)$$

$$= \sum_{k=1}^{\infty} P_{VH_{\pi^{-}}}g^{(-)}(z - (2k-2)2\pi)$$

$$= \sum_{k=1}^{\infty} \left[g^{(-)}(z - (2k-2)2\pi) - g^{(-)}(z - (2k-2)2\pi - 2\pi(1-s)) \right]$$

$$= \sum_{k=1}^{\infty} \left[g^{(-)}(z - (2k-2)2\pi) - g^{(-)}(z - (2k-1-s)2\pi) \right],$$

(30)

$$\begin{split} P_{VD}g^{(+)}(z) &= \int_{V} g^{(+)}(w) \sum_{k=1}^{\infty} \overline{K_{H_{S\pi+}}(w, z + (2k-1+s)2\pi)} \, dm(w) \\ &= \sum_{k=1}^{\infty} P_{VH_{S\pi+}}g^{(+)}(z + (2k-1+s)2\pi) \\ &= \sum_{k=1}^{\infty} \left[g^{(+)} \big(z + (2k-1+s)2\pi \big) - g^{(+)} \big(z + (2k-1+s)2\pi + 2\pi(1-s) \big) \right] \\ &= \sum_{k=1}^{\infty} \left[g^{(+)} \big(z + (2k-1+s)2\pi \big) - g^{(+)} \big(z + (2k)2\pi \big) \right]. \end{split}$$

We can now prove the main theorem of this section.

THEOREM 6. Assume that $s \in (-1, 1)$, $D = \{-\pi < \text{Re } z < \pi\}$ and U, V are as in Fig. 2. Then:

1° The operator P_{UD} : $L^2H(U) \rightarrow L^2H(D)$ has multiplier of the form

$$\mu(t) = \frac{1 - q^{1+s}}{1 - q^2}, \quad q = e^{-4\pi^2 t}, \ t \neq 0.$$

2° The operator P_{VD} : $L^2H(V) \rightarrow L^2H(D)$ has multiplier of the form

$$v(t) = \frac{q^{1+s} - q^2}{1 - q^2}, \quad q = e^{-4\pi^2 t}, \ t \neq 0.$$

Proof. We shall consider only P_{UD} and statement 1°, since 2° can be obtained analogously.

We need to show that

(31)
$$G_{P_{UD}f}(t) = \frac{1 - q^{1+s}}{1 - q^2} G_f(t)$$

for every $f \in L^2H(U)$. Consider the orthogonal decomposition $f = f^{(-)} + f^{(+)}$ of Corollary 1. It obviously suffices to prove (31) in the following two cases:

Case I: $f = f^{(+)}$. The function $P_{UD}f$ is given on U by (28) (and this will suffice to determine its Genchev transform). The terms in (28) are shifts of f restricted to various strips contained in $H_{-\pi+}$. By Remark 3 the mth partial sum of (28) has Genchev transform equal to

(32)
$$G_{f}(t) \left(\sum_{k=1}^{m} e^{-2\pi t (2k-2)2\pi} - \sum_{k=1}^{m} e^{-2\pi t (2k-1+s)2\pi} \right)$$

$$= G_{f}(t) \left(\sum_{k=1}^{m} (q^{2})^{k-1} - q^{1+s} \sum_{k=1}^{m} (q^{2})^{k-1} \right) = G_{f}(t) (1 - q^{1+s}) \frac{1 - (q^{2})^{m}}{1 - q^{2}}.$$

Note that (32) vanishes for t < 0. For t > 0 we have $q \in (0, 1)$ and it is easy to see that

(33)
$$(1-q^{1+s})\frac{1-(q^2)^m}{1-q^2} \leqslant \frac{1+s}{2}, \quad q \in (0, 1).$$

Moreover, when m goes to infinity (32) converges pointwise to $\mu(t)G_f(t)$. It follows from the Lebesgue dominated convergence theorem that (32) converges in $L^2(R, w_U)$ to $\mu(t)G_f(t)$. By Theorem 4 the series (28) is $L^2(U)$ -convergent, the Genchev transform of its sum $P_{UD}f$ is $\mu(t)G_f(t)$, as claimed.

Case II: $f = f^{(-)}$. The function $P_{UD}f$ is given on U by (27) (and this will suffice to determine its Genchev transform). The terms in (27) are shifts of f restricted to various strips contained in $H_{s\pi}$. By Remark 3 the mth partial sum of (27) has Genchev transform equal to

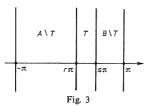
(34)
$$G_f(t) \left(\sum_{k=1}^m e^{2\pi i (2k-1-s)2\pi} - \sum_{k=1}^m e^{2\pi i (2k)2\pi} \right) = G_f(t) \frac{1-q^{1+s}}{1-q^2} \left(1 - \left(\frac{1}{q^2} \right)^m \right).$$

Note that (34) vanishes for t > 0. For t < 0 we have $q \in (1, \infty)$ and it is easy to see that the function

(35)
$$\frac{1-q^{1+s}}{1-q^2} \left(1 - \left(\frac{1}{q^2}\right)^m\right)$$

is bounded by a constant independent of m (the first factor vanishes at infinity). As m goes to infinity the sequence (34) converges pointwise to $\mu(t)G_f(t)$. By the Lebesgue dominated convergence theorem, (34) converges in $L^2(\mathbf{k}, w_U)$ to $\mu(t)G_f(t)$. By Theorem 4 the Genchev transform of $P_{UD}f$ is $\mu(t)G_f(t)$, as claimed.

We shall now treat the standard strip $D=\{-\pi<\operatorname{Re} z<\pi\}$ as the union of two strips $A=\{-\pi<\operatorname{Re} z<s\pi\}$ and $B=\{r\pi<\operatorname{Re} z<\pi\}$ (-1< r< s<1). The strips A and B intersect along the strip $T=\{r\pi<\operatorname{Re} z<s\pi\}$. This is shown in Fig. 3.



It is easy to verify that the standard strip D is transformed onto the strip B by the mapping $w = \varphi(z)$, where

(36)
$$\varphi(z) = \frac{1-r}{2}z + \frac{1+r}{2}\pi,$$

and that the line $\operatorname{Re} z = \varrho \pi$ ($\varrho = (2s-r-1)/(1-r)$) is transformed by (36) onto the line $\operatorname{Re} w = s\pi$. From Theorem 6 and Corollary 4 (with $D_1 = D \cap H_{\varrho}$ or $D \cap H_{\varrho+}$, $D_2 = D$, and $\tilde{D}_1 = T$ or V, $\tilde{D}_2 = B$) follows

COROLLARY 5. Assume that -1 < r < s < 1 and that A, B, T and $D = A \cup B$ are as in Fig. 3. Write $V = \operatorname{int} B \setminus T$. Then

1° The operator P_{TB} : $L^2H(T) \rightarrow L^2H(B)$ has multiplier

$$\tilde{\mu}(t) = \frac{1 - q^{s-r}}{1 - q^{1-r}}, \quad q = e^{-4\pi^2 t}, \ t \neq 0.$$

2° The operator P_{VB} : $L^2H(V) \rightarrow L^2H(B)$ has multiplier

$$\tilde{v}(t) = \frac{q^{s-r} - q^{1-r}}{1 - q^{1-r}}, \quad q = e^{-4\pi^2 t}, \ t \neq 0.$$

Proof. In view of Theorem 6 the operators P_{D_1D} and P_{D_2D} have multipliers

$$\mu(t) = \frac{1 - q^{1+\varrho}}{1 - q^2} = \frac{1 - (q^2)^{(s-r)/(1-r)}}{1 - q^2},$$

$$v(t) = \frac{q^{1+e} - q^2}{1 - q^2} = \frac{(q^2)^{(s-r)/(1-r)} - q^2}{1 - q^2}.$$

We shall apply Corollary 4 with the mapping (36). Since k = (1-r)/2 we find that

$$q(kt) = e^{-4\pi^2(1-r)t/2} = q(t)^{(1-r)/2}, \quad q(kt)^2 = q(t)^{1-r}.$$

Therefore

$$\tilde{\mu}(t) = \mu(kt) = \frac{1 - (q^{1-r})^{(s-r)/(1-r)}}{1 - q^{1-r}} = \frac{1 - q^{s-r}}{1 - q^{1-r}},$$

$$\tilde{v}(t) = v(kt) = \frac{(q^{1-r})^{(s-r)/(1-r)} - q^{1-r}}{1 - q^{1-r}} = \frac{q^{s-r} - q^{1-r}}{1 - q^{1-r}}.$$

The proof is complete.

6. L^2 -angle between two strips. We shall determine the L^2 -angle between the strips $A = \{-\pi < \text{Re } z < s\pi\}$ and $B = \{r\pi < \text{Re } z < \pi\}$, where -1 < r < s < 1 (see Fig. 3). Since the boundary of $T = A \cap B$ has plane measure zero we can replace $B \setminus T$ by $V = \text{int } B \setminus T$ in formula (6). Our first task is to characterize the functions $f \in L^2(D)$ which are admissible in (6), or equivalently to characterize the admissible pairs $f_A \in L^2H(A)$, $f_V \in L^2H(V)$. The Genchev transform of the Bergman projection of f can be easily computed from Theorem 6 (note that A = U). It is equal to

(37)
$$\frac{1-q^{1+s}}{1-q^2}G_{f_A} + \frac{q^{1+s}-q^2}{1-q^2}G_{f_V}.$$

Therefore $f \perp L^2 H(D)$ implies that

(38)
$$G_{f_{\mathcal{V}}}(t) = \frac{q^{1+s} - 1}{q^{1+s} - q^2} G_{f_{\mathcal{A}}}(t).$$

We see that if f is admissible in (6) then $f_A \neq 0$, and f_V is given by (38). Setting $h = G_{f_A}$ we have the following

COROLLARY 6. The functions $f \in L^2(D)$ admissible in (6) are in a one-to-one correspondence with the functions $h \in L^2(\mathbb{R}, w_A) \setminus \{0\}$ which satisfy the condition

(39)
$$h \frac{q^{1+s}-1}{q^{1+s}-q^2} \in L^2(\mathbf{R}, w_{\nu}).$$

This correspondence is given by

(40)
$$G_{f_A} = h, \quad G_{f_V} = h \frac{q^{1+s} - 1}{q^{1+s} - q^2}.$$

The above result implies immediately

COROLLARY 7. Every bounded measurable function which vanishes outside a compact subset of the real line corresponds to a unique function $f \in L^2(D)$ admissible in (6).

We now assume that an element $h \in L^2(R, w_A) \setminus \{0\}$ corresponds to an admissible function f, and proceed to determine the value of the expression under the supremum sign in (6). We start with writing down the corresponding weights:

$$w_{A\setminus T}(t) = \frac{e^{4\pi^2 t} - e^{-4\pi^2 r t}}{4\pi t} = \frac{q^{-1} - q^r}{4\pi t},$$

$$w_A(t) = \frac{e^{4\pi^2 t} - e^{-4\pi^2 s t}}{4\pi t} = \frac{q^{-1} - q^s}{4\pi t},$$

$$w_B(t) = \frac{e^{-4\pi^2 r t} - e^{-4\pi^2 t}}{\dot{\tau} \pi t} = \frac{q^r - q}{4\pi t},$$

$$w_V(t) = \frac{e^{-4\pi^2 s t} - e^{-4\pi^2 t}}{4\pi t} = \frac{q^s - q}{4\pi t}.$$

The Genchev transform of \hat{f} is found using (40) and Corollary 5 as follows:

$$G_{f}(t) = h(t)\tilde{\mu}(t) + h(t)\frac{q^{1+s} - 1}{q^{1+s} - q^{2}}\tilde{v}(t)$$

$$= h\left(\frac{1 - q^{s-r}}{1 - q^{1-r}} + \frac{q^{1+s} - 1}{q^{s+1} - q^{2}} \cdot \frac{q^{-1-r}(q^{s+1} - q^{2})}{1 - q^{1-r}}\right)$$

$$= \frac{h}{1 - q^{1-r}}(1 - q^{s-r} + q^{s-r} - q^{-1-r}) = h\frac{q^{1+r} - 1}{q^{1+r}(1 - q^{1-r})}$$

and Theorem 4 yields

(42)
$$\|\hat{f}\|_{B}^{2} = \int_{-\infty}^{\infty} |h|^{2} \left(\frac{q^{1+r}-1}{q^{1+r}(1-q^{1-r})}\right)^{2} w_{B} dt.$$

Using (40) we find in a similar way

(43)
$$||f||_V^2 = \int_{-\infty}^{\infty} |h|^2 \left(\frac{q^{1+s}-1}{q^{1+s}-q^2}\right)^2 w_V dt.$$

Since $G_f = h$ we also have

(44)
$$||f||_{A\backslash T}^2 = \int_{-\infty}^{\infty} |h|^2 w_{A\backslash T} dt, \quad ||f||_A^2 = \int_{-\infty}^{\infty} |h|^2 w_A dt.$$

Combining (42)–(44) with (41) we see that the expression under the supremum sign in (6) is

(45)
$$\int_{-\infty}^{\infty} \frac{|h|^2}{4\pi t} \left(q^{-1} - q^r + \left(\frac{1 - q^{1+r}}{q^{1+r}(1 - q^{1-r})} \right)^2 q^r (1 - q^{1-r}) \right) dt \\ \int_{-\infty}^{\infty} \frac{|h|^2}{4\pi t} \left(q^{-1} - q^s + \left(\frac{1 - q^{1+s}}{q^{1+s}(1 - q^{1-s})} \right)^2 q^s (1 - q^{1-s}) \right) dt .$$

Note that

$$(46) q^{-1} - q^{r} + \left(\frac{1 - q^{1+r}}{q^{1+r}(1 - q^{1-r})}\right)^{2} q^{r}(1 - q^{1-r})$$

$$= q^{-1}(1 - q^{1+r}) + \frac{(1 - q^{1+r})^{2}}{1 - q^{1-r}} q^{-2-r}$$

$$= \frac{q^{-1}(1 - q^{1+r})}{1 - q^{1-r}} \left(1 - q^{1-r} + (1 - q^{1+r})q^{-1-r}\right) = \frac{q^{-2-r}(1 - q^{2})(1 - q^{1+r})}{1 - q^{1-r}}.$$

Denote by $F_{r,s}(q)$ the ratio of the (positive) integrands in (45). The following result is obvious.

LEMMA 6. Assume that -1 < r < s < 1. Then the function

$$(47) F_{r,s}(q) = q^{s-r} \frac{1 - q^{1+r}}{1 - q^{1-r}} \cdot \frac{1 - q^{1-s}}{1 - q^{1+s}} = \frac{(q^{s-1} - 1)(1 - q^{1+r})}{(1 - q^{1+s})(q^{r-1} - 1)}, q > 0,$$

satisfies

(48)
$$\lim_{q \to 1} F_{r,s}(q) = \frac{1-s}{1+s} \frac{1+r}{1-r},$$

(49)
$$\lim_{q \to 0} F_{r,s}(q) = 0, \quad \lim_{q \to \infty} F_{r,s}(q) = 0.$$

It is now evident that $F_{r,s}(q)$ assumes its largest value at some point $q_0=e^{-4\pi^2t_0}.$ This yields

THEOREM 7. The L^2 -angle $\beta(r, s)$ between the strips $A = \{-\pi < \text{Re } z < s\pi\}$ and $B = \{r\pi < \text{Re } z < \pi\}$ is given by

(50)
$$\beta(r, s) = \arccos(\max_{q>0} F_{r,s}(q))^{1/2} \quad (-1 < r < s < 1),$$

where $F_{r,s}(q)$ is defined by (47).

Proof. From (6) and (45) it is clear that $\cos^2 \beta(r, s)$ is not greater than $F_{r,s}(q_0)$. On the other hand, for every $n = 1, 2, \ldots$ the characteristic function

(51)
$$h_n(t) = \chi_{[a_0 - 1/n, a_0 + 1/n]}(t), \quad t \in (-\infty, \infty),$$

corresponds (in view of Corollary 7) to an admissible function $f_n \in L^2(D)$. Substituting $h = h_n$ in (45) for $n = 1, 2, \ldots$ we see that the limit of (45) as n goes to infinity is $F_{r,s}(q_0)$. Hence $\cos^2 \beta(r,s)$ is not smaller than $F_{r,s}(q_0)$. This completes the proof.

7. Further properties of $F_{r,s}(q)$, q>0. From (47) it follows immediately that

(52)
$$F_{r,s}(q) = G_s(q)/G_r(q)$$

where

(53)
$$G_s(q) = \frac{q^s - q}{1 - q^{1+s}}.$$

The study of (52) will be reduced to that of (53). Note that $G_s(q)$ has interesting symmetries:

(54)
$$G_{-s}(q) = \frac{q^{-s} - q}{1 - q^{1-s}} = \frac{1 - q^{1+s}}{q^s - q} = G_s(q)^{-1},$$

(55)
$$G_s\left(\frac{1}{q}\right) = \frac{q^{-s} - q^{-1}}{1 - q^{-1-s}} = \frac{q - q^s}{q^{1+s} - 1} = G_s(q).$$

We would now like to study the graph of $G_s(q)$. The case $G_0(q) \equiv 1$ is obvious. In view of the symmetry (54) we may therefore assume that $s \in (0, 1)$.

LEMMA 7. Assume that $s \in (0, 1)$. Then

$$\lim_{q \to 0} G_s(q) = 0, \quad \lim_{q \to 1} G_s(q) = \frac{1 - s}{1 + s}, \quad \lim_{q \to \infty} G_s(q) = 0,$$

$$\lim_{q \to 1} G'_s(q) = \infty, \quad \lim_{q \to 1} G'_s(q) = 0, \quad \lim_{q \to \infty} G'_s(q) = 0.$$

We omit the easy proof.

We would like to show that for $s \in (0, 1)$ the function $G_s(q)$ is increasing in (0, 1) and decreasing in $(1, \infty)$. In view of the symmetry (55) it suffices to consider the interval (0, 1). Also it suffices to consider the case when s = k/n is

rational. After the monotonic change of variable $q = p^n$, $p \in (0, 1)$, the problem is reduced to the monotonicity of the function

(56)
$$W(p) = \frac{p^k - p^n}{1 - p^{n+k}}.$$

Introduce m = n + k - 1; then (56) can be rewritten as

(57)
$$W(p) = \frac{p^k + p^{k+1} + \dots + p^{m-k}}{1 + p + \dots + p^{m-1} + p^m}.$$

LEMMA 8. The function (57) is increasing for $p \in (0, 1)$.

Proof. We shall show that $W'(p) \ge 0$. Note that W(p) = u/(u+v) with $u = p^k + p^{k+1} + \ldots + p^m$. Therefore

(58)
$$W'(p) = \frac{u'v - uv'}{(u+v)^2}.$$

The main idea is to introduce three variable indices

$$i \in \{0, ..., k-1\}, \quad j \in \{k, ..., m-k\}, \quad l \in \{m-k+1, ..., m\}.$$

We observe that the differences j-i (with repetitions) are the same as the differences l-j (in the sense that there is a one-to-one correspondence $(j, i) \rightarrow (j', l)$ such that j-i=l-j'). Furthermore, the numerator in (58) is equal to

(59) Num
$$W'(p) = (\sum_{j} p^{j})' (\sum_{l} p^{l} + \sum_{l} p^{l}) - (\sum_{j} p^{j}) (\sum_{l} p^{i} + \sum_{l} p^{l})'$$

$$= \sum_{j,l} j p^{j+l-1} + \sum_{j,l} j p^{j+l-1} - \sum_{j,l} i p^{j+l-1} - \sum_{j,l} l p^{j+l-1}$$

$$= \sum_{l,l} (j-l) p^{j+l-1} - \sum_{l,l} (l-j) p^{j+l-1}.$$

Consider a pair of indices j, i and a pair of indices j', l such that j-i=l-j'. Note that

(60)
$$(j-i)p^{j+i-1} - (l-j')p^{l+j'-1} = (j-i)(p^{j+i-1} - p^{j'+l-1}).$$

The factor i-i is positive; moreover,

$$(i'+l-1)-(i+i-1)=(l-i+i)+l-i-i=2(l-i)>0.$$

Since $p \in (0, 1)$ we see that (60) is positive. Therefore (59) is a sum of positive terms, and W(p) is increasing.

As noticed above Lemma 8 yields

COROLLARY 8. For $s \in (0, 1)$ the function

$$G_s(q) = \frac{q^3 - q}{1 - q^{1+s}}$$

is increasing in the variable $q \in (0, 1)$.

We now pass to the function $F_{r,s}(q)$. It has similar symmetries to those of $G_s(q)$, namely

(61)
$$F_{-s,-r}(q) = \frac{G_{-r}(q)}{G_{-r}(q)} = \frac{G_{r}(q)^{-1}}{G_{-r}(q)^{-1}} = \frac{G_{s}(q)}{G_{s}(q)} = F_{r,s}(q),$$

(62)
$$F_{r,s}\left(\frac{1}{q}\right) = \frac{G_s(1/q)}{G_r(1/q)} = \frac{G_s(q)}{G_r(q)} = F_{r,s}(q).$$

THEOREM 8. For -1 < r < s < 1 the function $F_{r,s}(q)$ is increasing in (0, 1) and decreasing in $(1, \infty)$. In particular,

(63)
$$\max_{q>0} F_{r,s}(q) = F_{r,s}(1) = \frac{1-s}{1+s} \cdot \frac{1+r}{1-r}.$$

Proof. With no loss of generality we may assume that $s \in (0, 1)$. Indeed, if this is not the case then -r > 0 and in view of (61) we may study the function $F_{-s,-r}(q)$. The case when $s \in (0, 1)$ and $r \in (-1, 0)$ is easy, since then

$$F_{r,s}(q) = G_s(q)G_{-r}(q)$$

and by Corollary 8 both factors on the right are increasing in (0, 1) and decreasing in $(1, \infty)$. The case when $s \in (0, 1)$ and r = 0 reduces to Corollary 8. It remains to consider the case when 0 < r < s < 1.

In view of the symmetry (62) it suffices to show that $F_{r,s}(q)$ is increasing for $q \in (0, 1)$. We may also assume with no loss of generality that r = j/n, s = k/n are rational numbers and $k \equiv j \pmod{2}$. After the monotonic change of variable $q = p^n$, $p \in (0, 1)$, we have to prove that U(p) is increasing, where

(64)
$$U(p) = \frac{p^{k} - p^{n}}{1 - p^{k+n}} \cdot \frac{p^{j} - p^{n}}{1 - p^{j+n}}$$

$$= \frac{p^{k} + \dots + p^{n-1}}{1 + p + \dots + p^{n+k-1}} \cdot \frac{p^{j} + \dots + p^{n-1}}{1 + p + \dots + p^{n+j-1}}$$

$$= \frac{p^{k-j} + \dots + p^{n-j-1}}{1 + p + \dots + p^{n-j-1}} \cdot \frac{1 + p + \dots + p^{n+j-1}}{1 + p + \dots + p^{n+k-1}}.$$

By assumption k-j=2l is a positive even integer. On the right side of (64) we multiply the second factor, and divide the first, by p^l . Hence

(65)
$$U(p) = \frac{p^{k-j-l} + \dots + p^{n-j-1-l}}{1+p+\dots+p^{n-j-1}} \cdot \frac{p^l + p^{l+1} + \dots + p^{n+j-1+l}}{1+p+\dots+p^{n+k-1}}.$$

Note that (n-j-1)-(n-j-1-l)=l=k-j-l, and that (n+k-1)-(n+j-1+l)=l. Thus both factors in (65) are of the form (57), hence are increasing for $p \in (0, 1)$. This shows that U(p) is increasing, as a product of two positive increasing functions.

The above theorem and Theorem 7 yield our main result

Theorem 9. The L^2 -angle $\beta(r, s)$ between the strips $A = \{-\pi < \text{Re } z < s\pi\}$ and $B = \{r\pi < \text{Re } z < \pi\}$ is given by

(66)
$$\beta(r, s) = \arccos\left(\frac{1-s}{1+s} \cdot \frac{1+r}{1-r}\right)^{1/2} \quad (-1 < r < s < 1).$$

Remark 4. The idea used in the proof of the monotonicity of $F_{r,s}(q)$ (0 < r < s < 1) in the interval (0, 1) leads to the following direct representation of $F_{r,s}(q)$ as a product of two increasing functions:

(67)
$$F_{r,s}(q) = G_{c/(2-d)}(q^{1-d/2})G_{c/(2+d)}(q^{1+d/2}) \quad (0 < r < s < 1),$$

where c = s - r, d = s + r. (Hint: consider rational parameters r = j/n, s = k/n such that $j \equiv k \pmod{2}$). As $r \to 0$ this yields another formula

(68)
$$G_s(q) = G_{s/(2-s)}(q^{1-s/2})G_{s/(2+s)}(q^{1+s/2}) \quad (0 < s < 1)$$

which can be verified by immediate calculations.

References

- S. Bergman, The Kernel Function and Conformal Mapping, Math. Surveys 5, 2nd ed., Amer. Math. Soc., 1970.
- [2] M. Dzhrbashyan, private communication, August 1984.
- [3] G. B. Folland, Introduction to Partial Differential Equations, Princeton Univ. Press, 1976.
- [4] T. Genchev, Paley-Wiener type theorems for functions holomorphic in a half-plane, C. R. Acad. Bulg. Sci. 37 (1983), 141-144.
- [5] I. P. Ramadanov and M. L. Skwarczyński, An angle in L²(C) determined by two plane domains, Bull. Polish Acad. Sci. 32 (1984), 653-659.
- [6] I. Ryzhik and I. Gradshtein, Tables of Integrals, Sums, Series and Products, Izdat. Tekh.-Teoret, Literat., Moscow 1951 (in Russian).
- [7] M. Skwarczyński, Alternating projections in complex analysis, in: Complex Analysis and Applications, L. Iliev and I. Ramadanov (eds.), Bulgar. Acad. Sci., Sofia 1985, 192-199.
- [8] —, A general description of the Bergman projection, Ann. Polon. Math. 46 (volume in honour of F. Leia) (1985), 311–315.
- [9] —, Alternating projections between a strip and a halfplane, Math. Proc. Cambridge Philos. Soc. 102 (1987), 121–129.

Added in proof. In addition to [2], [4] one should consult

- [10] T. Genchev, Integral representations for functions holomorphic in tube domains, C. R. Acad. Bulg. Sci. 37 (1984), 717-720.
- [11] M. M. Dzhrbashyan and V. M. Martirosyan, Integral representations for some classes of functions holomorphic in a strip or in a halfplane, Anal. Math. 12 (1986), 191-212.

Smoleńskiego 27a m. 14, 01-698 Warszawa, Poland