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Algebraic generation of B(X) by two subalgebras
with square zero

by
W. ZELAZKO (Warszawa)

Abstract. Let X be a real or complex Banach space, dim X > 1. The main result of this paper
states that X is decomposable into a direct sum of two mutually isomorphic {closed) subspaces if
and only if the algebra B(X) is algebraically generated by two subalgebras of square zero, one of
them being of dimension one. We also show that if X is a direct sum of n mutnally isomorphic
(closed) subspaces, then the algebra B(X) is algebraically generated by two subalgebras of square
zero. This extends our previous result [9] concerning the case when X is a Hilbert space.

This paper is a contribution towards solving the problem whether for
every (real or complex) Banach space X the algebra B(X) of all its continuous
endomorphisms is generated by two of its abelian subalgebras. We say that the
algebra B(X) is t-generated by its subset S if it coincides with the smallest
t-closed subalgebra of B(X) containing S. Here t denotes some topology on
B(X). When 7 is the norm topology of B(X) we simply say that S generates
B(X), when t is the discrete topology we say that S algebraically generates
B(X). Thus S algebraically generates B(X) if each operator T in B(X) is a linear
combination of finite products of elements of S. B(X) is z-generated by two
abelian subalgebras o/, and &, if it is t-generated by the set § = o, U .

For a subset S of B(X) put $* = {T; T,: T;, T, €S}; thus a subalgebra
o/ < B(X) of square zero is automatically commutative.

In [9] we have observed that for a real or complex Hilbert space H,
dim H > 1, the algebra B(H) is algebraically generated by two of its sub-
algebras of square zero. More precisely, we have shown that if the dimension
of H is even (all infinities are even), then there is a subalgebra &/, = B(H) and
an operator Ve B(H), both of square zero, such’that each operator T in B(H)
can be written in the form

6 T=R,+R,V+VRy+ VR,V
with R, in &/, i = 1, 2, 3, 4. Thus B(H) is algebraically generated by two

subalgebras of square zero, since clearly the one-dimensional subspace of B(H)
spanned by Vis such a subalgebra.
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In the case when the dimension of H is odd the algebra B(H) is also
algebraically generated by two subalgebras of square zero, but it cannot be
claimed this time that one of them is of dimension one.

In the present note we observe that the formula (1) depends upon the
decomposability of the Hilbert space into a direct sum of two isomorphic
closed subspaces, rather than upon the Hilbert space structure. More inte-
resting is the converse result stating that if for some Banach space X the
algebra B(X) is algebraically generated by a subalgebra and by an operator,
both of square zero, then the space X is itself a “square”, i.e. it can be written as
a direct sum of two isomorphic closed subspaces. We also show that if X is an
“nth power”,n > 1, then B(X) is algebraically generated by two subalgebras of
square zero, and give some related propositions.

In the sequel we shall use the following simple fact (cf. [1], Ch. 1, §3,
Corollary 4): If X, and X, are closed linear subspaces of a Banach space X
such that X, n X, = (0) and span (X, u X,) = X, then X is the (topological)
direct sum of X; and X,, i.e. each element x in X can be uniquely written in the
form x = x; +x,, x;€X,;, and the projections P,(x) = x;, i = 1, 2, are con-
tinuous linear operators. In this case we write X = X, @X,.

ProrosiTioN 1. Let X be a real or complex Banach space and suppose
X =X, ®X, where X, and X, are isomorphic (i.e. linearly homeomorphic)
closed linear subspaces of X. Then there is a subalgebra s/, = B(X) with square

zero and an operator V in B(X), V* = 0, such that any element T in B(X) can be
written in the form (1) with R; in o,.

Proof. For a closed linear subspace X, = X put
V)] oo(Xy) = {TeB(X): im T< X, < ker T}.

This is clearly a closed subalgebra of B(X) with square zero.
Let L be a linear homeomorphism of X, onto X, and put

Ve = Lx for xeX,,
0 for xeX,.
This is a well-defined element of B(X) and V2 = 0.
We also put
Ux={0_ for xe X,
Ltx  for xeX,.
Setting s/, = «,(X,) we have clearly Ue o, and also
€ UTUed,

for an arbitrary T in B(X). This follows immediately from im UTU < im U
and ker UTU o ker U. The decomposition X = X, @ X, implies | = P,+P,
where I is the identity operator and P; is the corresponding projection of X
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onto X;, i = 1, 2. Using the obvions relations P, = UVand P, = VU we can
write an arbitrary operator T in B(X) in the form

@ T=UV+VU)TVU+UV)=UVTVU+UVTUV+VUTVU+VUTUYV.

Setting R; = UVTVU, R, = UVTU, R; =UTVU and R, = UTU we see
by (3) that all operators R; are in &,, and (1) follows. ‘

Remark 2. If we put @ = U+V, then in (1) we can replace V by Q
(because U is in &/, and s#2 = (0)). The operator Q satisfies

Q2 =U*4+UV+VU+V? =L

In the case when X is an even-dimensional Hilbert space we can take as Va
partial isometry with initial space X ; and final space X, = X1. In this case we
have U = V* and Q is a hermitian operator (cf. [9]) generating a two-dimen-
sional subalgebra of B(X). Thus in this case B(X) can be generated by a
subalgebra of square zero and a selfadjoint commutative subalgebra. We do
not know whether B(H) can be generated by two selfadjoint commutative
subalgebras.

Somewhat surprising is the fact that the converse of Proposition 1 also
holds true. To formulate the result we need the following notation. For a
nonvoid subset S < B(X) put

ker S = (V{ker T: TeS}, imS =span({J{im T: TeS}).

Thus ker S is a closed linear subspace of X and im S is a linear, but not
necessarily closed subspace of X. !

PROPOSITION 3. Suppose that for a real or complex Banach space X the
algebra B(X) is algebraically generated by a subalgebra < , and an operator V in
B(X), both of square zero. Then;

() There is a direct sum decomposition

X=X, 60X,

where X; = ker#, and X, = ker V.

(i) The closed subspaces X, and X, are isomorphic and V maps ho-
meomorphically X, onto X,. In particular, X, =im V.

(iif) im oy = ker o7.

Proof. In order to prove (i) we have to show

(@) span(X; U X)) =X, (b) X,nX,=(0)

Observe first that setting ¥, =im </, and Y, =imV we have

Y<X, and Y,cX,.

&)
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The first relation follows from the fact that im T; < ker T, for all T; and T, in
o, and the second is straightforward.

Since o7, and V algebraically generate B(X) we can write the identity
operator I in the form

I[=VTo+ ¥ RT,
i=1

with R;e o/, and T;e B(X). The image of the left-hand operator, which is X,
equals the image of the right-hand operator, which is contained in
span(Y; U Yy). Thus span(Y; U Y;) = X, which together with the inclusions (5)
implies (a). Similarly, to prove (b) write the operator I in the form

I=T,V+ ¥ TR,
i=1
with R;e/, and TeB(X). This implies (0) = ker I > ker Vrnker o
= X,nX,, and so (b) follows.
Now, having proved (i) we can write the projection P, of X onto X , in the
form

P,=VT+ Y RT (TeB(X), Redl,).
i=1

n
Since im P, =X, and im ), R, < Y, = X,, we have P, = V'T,. This
. . . . i=1
1m_phes imV>imP, = X,. By (5) we obtain im V= X,. Since ker V= X,,
this implies that the restriction VX, is a one-to-one map of X, onto X, and so
(ii) follows.

In order to prove (iii) write the projection P, of X onto X 1 in the form
P =VT+ ¥ RT, (T,eB(X), Ried,).
i=1

n n
As before this implies P, = ) R,T;, and so X, =imP, =im Y RT,
. i=1 i=1
cimely, =Y, < X,, and (iii) follows.
Propositions 1 and 3 immediately imply the following.

THEOREM. 4. 4 real or complex Banach space X is a “square” (i.e. it has
a direct sum decomposition X, @ X, with X 1 and X, isomorphic) if and only if
the algebra B(X) is algebraically generated by two subalgebras of square zero,
one of them being of dimension one.

Remark 5. Relation (iii) of Proposition 3 implies - that under the
assumptions of that proposition we have o/, < & ,(X 1). However as we see in
Fhe fpllowmg example, we cannot claim that the assumption of Proposition 3
implies &/, = o o(X,).
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EXAMPLE 6. Put X = R* (or C*) and decompose X = X, @ X,, where
X, = span(ey, e,), X, = span(es, e,), with e, , ..., e, the standard basis in X.
Setting

0000 0001 0010
0010 0000 0000
4=10000|> = oo000|° €= |oo0o00]|"
loooo 0000 0000
0000 0000
0001 0000
b=1o0000l" " |1000
0000 0100

we see that ofy(X,) = span(4, B, C, D), and setting </, = span(4, B) we
obtain a proper subalgebra of .« (X ). The relations C = BVA and D = AVB
together with Proposition 1 show that ./, and V algebraically generate B(X),
while o, # o (X,). .

In the above example we cannot claim that (1) holds. In fact, it must fail as
follows from the following .

ProrosiTION 7. Under the assumptions and notation of Proposition 3 the
following are equivalent:

(i) o, = 'ﬂo(Xﬂ—

(i) For each Tin B(X) there are elements R,,..., R,e o, such that (1)
holds.

Moreover, if (i) or (ii) is satisfied, then the operators R, in (1) are uniquely
determined by T and depend upon it in a continuous way.

Proof. The implication (i)=-(ii) follows readily from Propositions 3
and 1, or rather from the proof of the latter.

Assume now (ii). First we show that the operators R, ,..., R, are uniquely
determined by T. If not, then taking for some T two different representations in
the form (1) 'and substracting we obtain

©) R, +R,V+VR,+ VR,V =0.

Thus it is sufficient to show that (6) implies R, =0, i=1,...,4. By (6),
VR3;+VR, V= —R,—R,V. Since the image of the left-hand operator is
contained in X, and that of the right-hand one is contained in X'; (cf. notation
of Proposition 3) the relation X, n X, = (0) implies VR;+ VR, V=0 and
R, +R,V=10. Now VR; = —VR,V implies VR; = 0 and VR,V =0 since
the kernels of the left- and right-hand sides span together the whole of X. One
can ecasily see that the latter equalities imply R, = R, = 0. Similarly
R; = —R,V implies R, = R, =0.
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In order to prove (i) assume that o, # &/,(X,) and try to get a
contradiction. By Remark 5 we have o/, = &/((X,) and so there is some
Re o (X )\, By (i) we can write R =R,+R,V+VR;+VR,V with
Ry,...,R, e, Since Riey(X,),i=1,...,4, the same representation
works as well if we replace &/, by &7 (X,). But then there is another
representation R = R. This contradicts the already proved uniqueness of R; in
(1) and so (i) follows. If we have (i) or (i), then the construction of R; in
Proposition 1 shows that these operators depend continuously upon T. The
conclusion follows.

We now prove that if the space X is an “nth power” for some n > 1, then
B(X) is also algebraically generated by two subalgebras with square zero. We
propose here one of many possible constructions.

ProposITION 8. Let X be a real or complex Banach space and suppose that
X can be decomposed into a direct sum of closed linear subspaces

X=X,®... ®X,,

with the X; all isomorphic to one another. Then the algebra B(X) is algebraically
generated by two subalgebras with square zero.

n=1,

Proof. Denote by L; a linear homeomorphism of X, onto X,
i=1,...,n, and put

Lix for xeX,,
Vx =
0 for xeX, ®...®0 X,,
L7Y for xeX,
U. —_ 11 i
i {0 for xeZ,,

where Z; = @ocjene: Xy i=1,...,10

We check easily that the operators P, = V,U,, i=1,...,n, are the
projections of X onto X;, corresponding to the direct sum decomposition
X=X,®... ®X,,and P, = U,V is the projection of X onto X, for any j,
1<j<n Wehave V;V;=0for 1 <1, j<nand &, =span(V;,..., V)isan
n-dimensional subalgebra of B(X) with square zero. We shall show that &
and the subalgebra given by &, = &/,(X,) (see (2)) algebraically generate the
whole of B(X). In fact, just as in Proposition 1, we can write any operator T in
B(X) in the form

T= (Zo Pi)T(_ZO P)=(UV+ 3 VU)T(U, i+ ¥ VU)
i= i= i=1 Jj=1

n
. L, WUTVU U TU

i

=UWNTY VU+ ¥ KUTU,V,+
i=1 =1

=Ro+ ¥, iR+ 2 ViR +Ropiy Vis
i=1 i=1
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where Ry = U, V,TY. VU, R,=U,TU,, R,,; =Y U,TV,U; and R,

i 7
=U,V;TU,, i=1,...,n. Just as in Proposition 1 we show that R;e.e/,
0<i<2n+1, and so the conclusion follows.

We do not know whether a converse result is true, in particular, whether
the fact that B(X) is algebraically generated by two subalgebras of square zero,
one of them being n-dimensional, implies that X = X, @ ... ® X, with the X,
isomorphic to one another. Similarly to (i) of Proposition 3 we can prove

PROPOSITION 9. Suppose that for a real or complex Banach space X the
algebra B(X) is algebraically generated by two subalgebras sf, and </, with
square zero. Then there is a direct sum decomposition X = X, @ X, into closed
linear subspaces, where X, = ker o/, and X, = ker o .

Since many Banach spaces are “squares” or “nth powers”, Propositions 1
and 8 show that for these spaces the algebra B(X) is algebraically generated by
two subalgebras of square zero. It is so for X = L,(Q, Z, ), C(K) for a
metrizable compact K, the disc algebra, C®[0, 1] and several other spaces.
However, it is not known in general when a Banach space is a “square”, or an
“nth power”. Certainly the James space J ([3]), or the space C(I" '1’1)’ where I’ oy
is the compact space of all ordinal numbers not greater than w,, the first
uncountable ordinal ([6]), cannot be “nth powers”. It is known that for X = J
and for X = C(le), the algebra B(X) has a nonzero multiplicative-linear
functional ([4], [7]), and thus it cannot be generated by any family of
subalgebras with square zero. We do not know whether for these spaces B(X)
can be generated by two abelian subalgebras. Neither do we know whether for
any X, B(X) can be generated by two subalgebras of square zero without being
algebraically generated by such subalgebras. As mentioned in the introduction
we do not know whether for any Banach space X the algebra B(X) is generated
by two commuitative subalgebras, or even algebraically generated by such
subalgebras. Nor do we know whether for X = H a Hilbert space, the algebra
B(H) is generated, or even algebraically generated, by two commutative
C*-subalgebras.

If we consider the t,-generation of B(X), where 7, is the strong operator
topology, then it was shown in [2] that, if H is separable, B(H) is 7,-generated
by two operators, and so by two commutative subalgebras. It was shown in [5]
that B(H) is t-generated by two selfadjoint operators, and so by two
commutative C*-subalgebras. The general problem of 7-generation is settled
by the following.

PRrROPOSITION 10. Let X be a real or complex Banach space, dim X > 1.
Then B(X) is t-generated by two subalgebras of square zero.

The proof will appear in [10].
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Finally, Jet us remark that the algebras o ,(X,) given by (2) are maximal
subalgebras of B(X) with respect to the property of being of square zero, and
all such maximal subalgebras are of the form (2) (see [8]).
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L*-Angles between one-dimensional tubes
by
MACIEJ SKWARCZYNSKI (Warszawa)

Abstract. Let D, = C¥, i=1,2, be two domains with nonempty intersection, such that
D = D, u D, is contained neither in D, nor in D,. Denote by F;, i = 1, 2, the closed subspace in
L*(D) consisting of functions which are holomorphic in D, and otherwise arbitrary. As indicated in
[7], [8] the Bergman projection in D can be described in terms of the orthogonal projections
P; I}(D)—F,. In some cases, the relevent alternating projections procedure can be carried out by
explicit analytic calculations [7], [9]. In this context it is natural to study the angle y € [0, /2]
between the subspaces F; and F,. We call it (for brevity) the L>-angle between D, and D,. It was
shown in [5] that the L*-angle between two halfplanes (bounded by parallel lines) is 0. In the
present paper we are concerned with the more general situation when D,, i = 1, 2, are arbitrary
tubes in the complex plane. We determine the L>-angle a(r) between the strip {0 < Rez < 1} and a
halfplane {Rez >r} (0 <7< 1), as well as the L*-angle f(r,s) between two strips {—=
< Rez<sn}, {rm<Rez<n} (—1<r<s<1). It turns out that

1—s5 141

cos? B(r, §) = ——-——

cos?afr) =r and X
: 1+s5 1-r

We include a brief presentation of the Genchev transform [2], [4] since it plays an important role
in our considerations.

1. The abstract definition of an angle. Let F,, F, be closed subspaces in an
abstract Hilbert space . Assume that F = F; n F, is a proper subset in each
of F, i=1,2. (This implies that each F; contains a nonzero element
orthogonal to F.)

DerFiNiTION 1. The angle ye[0, n/2] between F, and F, is defined by
o cosy = sup [

FisF\{0} [BANRA '
JilF

We shall restate this definition in a way which is less symmetric, but more
convenient for our purpose.

LEMMA 1. Denote by P, the orthogonal projection of # onto F,. Then

P2 £l

2 Cosy = sup AR

S1eF1\{0}
SfiLlF
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