icm°®

STUDIA MATHEMATICA, T. XC. (1988)

Gaussian measures in Urbanik’s sense and
a characterization theorem for abelian groups

by
G. M. FEL'DMAN (Kharkov)

Abstract. Gaussian measures on the real line can be characterized as follows. Let
£1s.ves &g ... be independent identically distributed random variables with distribution y. If for
any system of integers {a, ..., 4}, s = 2, with af = al+ ... +a? the linear forms ay ¢, and a, &,
+...+a& are identically distributed, then y is a Gaussian distribution. In this paper a
complete description is given of the class of those locally compact abelian groups for which an
analogous theorem is valid.

Gaussian measures on the real line can be characterized as follows.

THeOREM A. Let &, ..., & be independent identically distributed random
variables with distribution y. If for any system of integers {aq, ..., a;}, s = 2,
satisfying

6] af=al+..+a?

the linear forms ag &, and a, &+ ... +a.&; are identically distributed, then vy is
a symmetric Gaussian distribution (1).

Theorem A can be equivalently formulated as follows: If the characteri-
stic function §(y) of a distribution y satisfies the system of equations

@ P(agyy =9(ary)...7(a,y).

where {aq, ..., a,} runs through all systems of integers satisfying (1), then 7 is
a symmetric Gaussian distribution.

In this paper we give a complete description of the class of those locally
compact abelian groups for which an analogous theorem is valid. It turns
out that this characterization of Gaussian distributions is closely connected
with measures on groups, Gaussian in Urbanik’s sense (see [8], [2]). We will

(") As was shown by Linnik (see ¢.g. [6]), v is Gaussian if it is only assumed that the linear
forms ag&; and a, &)+ ... +a, ¢, arc identically distributed for one fixed system of real numbers
{ags ..., a,} satisfying (1). The case s = 2 was earlier studied by Polya. This result of Linnik is a
much more subtle characterization of Gaussian distributions than Theorem A.
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use some results from the structure theory of locally compact abelian groups
and from Pontryagin’s duality theory (see e.g. [4]).

Let X be a locally compact abelian separable metric group, Y= X* its
character group, (x, y) the value of the character ye Y on xe X, and Cy the
zero component of X. If G is a closed subgroup of X, then G* denotes its
annihilator, G* = {yeY: (x, y) = 1 for all xeG}. We have the isomorphism
G* =~ Y/G*. We denote by R, Z and T the groups of reals, of integers and the
circle group respectively. The degenerate distribution concentrated at xe X
will be denoted by E,. If uis a distribution on X, then the distribution [ is
defined by fi(E) = u(—E) for every Borel set E. The support of u is denoted
by o(y).

A distribution y is called idempotent if w* = px E, for some xe X. The
set of all idempotent distributions on X will be denoted by I(X). It coincides
with the set of all translations of the Haar distributions my of compact
subgroups K of X (see e.g. [7]).

Dermnttion 1 ([7]). A distribution. y on X is called Gaussian if its
characteristic function can be written in the form

3 70) = (x, yyexp{—o ()}

for some xeX, where ¢(y) is a continuous nonnegative function on Y
satisfying

@ Py +y)+ e,

for all y;, y,eY.

A Gaussian distribution is called symmetric if x =0 in (3).

The sets of all Gaussian distributions and of all symmetric Gaussian
distributions on X will be denoted by I'(X) and I'’(X) respectively.

Let o denote the set of all systems of integers A = {ao, ..., a;}, s > 2,
satisfying (1). Let I (X), Ae o, be the set of all distributions y on X with
the following property: if &, ..., & are independent identically distributed
random variables with values in X and with distribution y, then the linear
forms apé; and a, & + ... +a,& are identically distributed. Just as in the
case of the real line, ye FA (X) iff 7(y) satisfies (2).-

Let I'(X) = Nyew T4(X) and consider still another class of distribu-
tions on X, closely connected with I',(X). If ye Y, then y(y) denotes the
image of the distribution y under the homomorphism y: X — T.

—y2) =2[0 (1) + ¢ k2)]

DerntTioN 2 (cf. [8], [2]). A distribution y on X is called Gaussian in
Urbanik’s sense if y(y)eI'(T) for each yeY.

The set of distributions on X which are Gaussian in Urbanik’s sense will
be denoted by I'y(X).
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ProposiTioN 1. Let y be a distribution on X. Then the following condi-
tions are equivalent;

(i) vel 4 (X). ‘
(i) y =7 and for each character yeY either y(y)eI'(T) (ie. yeI'y(X)),
or y(y) =

(iii) The characteristic function 7(y) is real-valued and satisfies the system
of equations

s) ) = GO,
For the proof we will need the following

Lemma 1. Let X = T. Then I'(X) = {myx} VI (X)VE, *I'"(X), where {
is the element of order two in X.

neZ, n=2.

Proof. Clearly, the characteristic function of a distribution ye I' , (X) on
any group X satisfies the system (5). Without loss of generality we can
assume that X =T, Y= Z. Let yeI' ,(T). If (1) = 0, then $(—1) = 0 and (5)
shows that 5(n) = 0 for all ne Z, n 0, ie. y = my. If (1) 5 0, then we put
7(1) = exp {a+ib}, where a<0, —w <b < 0. Then §(—1) = exp {a—ib}
and (5) implies that

if n>0,

-+ fexp{an®+ibn’}
“m”{ if n<0.

exp {an®—ibn?}
Since the function §(n) also satisfies the equation 7(2n) = (5(n)*5(—n), we,

have exp {2ibn?) = 1 for all ne Z. This yields b = 7k for some ke Z, and so
yel*(T) W E, «I'"(T). The proof of the lemma is complete.

Proof of Proposition 1. (i)=(ii). Let y be any distribution on X
and let yeY. Then the characteristic function of the distribution y(y) is

(6) () () = F(ny),

Hence y(y)eI'(T) whenever ye ', (X), and (i) follows from Lemma 1.
(ii) = (iii). Let ye Y. Then it is easily seen that the characteristic function
of the distribution y(y) satisfies

) @ = (o) )y,
Now, (6) gives (5).
(iii) = (i) is obvious.

CoroLLARY 1. We have the equality {yeI'((X): $(y) > 0 for all ye Y}
={yeTlx(X): () > 0 for all ye Y},

nelZ.

neZ, nz2,

6 — Studia Mathematica XC.2
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Note that (4) shows that @(ny) =n 2¢(y) for any ye Y, neZ. Therefore
I*(X) = I',(X). However, in contrast to the classical situation, in general
there may exist on X non-Gaussian distributions belonging to I',,(X). Set
Io(X) = I1(X)n I, (X). The set I(X) can be easily described.

For any ne Z, n # 0, consider the homomorphism X — X defined by x
— nx. The image of X under this map will be denoted by nX.

ProrosiTioN 2. Let K be a compact subgroup of X. Then the following
conditions are equivalent:

1° mgel o (X).
2° K is connected.

Proof. Let neZ, n#0. By a standard argument one can show the
equivalence of the following conditions:

(a) nK =K.

(b) If nyeK*, then yeK*
Note also that #ig(y) =1 for yeK*, and rig(y) =0 otherwise.

1° = 2°. The characteristic function rig(y) satisfies the system (5). Fix
neZ, n = 2. Then if nye K* we have rig(ny).= 1 and (5) shows that iy (y)
=1, i.e. ye K* Tt follows that (b), and hence (a), is fulfilled, i.e. nK = K for
any ne Z, n> 2. This implies that K is connected (see [4]).

20 =>1° If K is connected, then nK = K for every neZ, nz 2. Hence
(b) holds. We show that the function rig (y) satisfies (5). If ye K*, then (5) is
obviously fulfilled, since #ig(y) = rig(ny) =1. If y¢K* then (b) yields
ny¢ Kt We have #ig(y) = fiig(ny) = 0. It follows that the characteristic
function #ix (y) satisfies condition (iii) of Proposition 1, and so mge ' (X).

Remark 1. Clearly, E, eI ,(X)<>2x = 0. Suppose 4 = my *E, €l ,(X).
Then the group K is connected, and the restriction of the charactenstw
function 1(y) to K* can be, written in the form A(y)=([x,], y), where
[x0]€X/K, 2{xp] =0, ie. 2x, = x'€K. Since K is connected, we have in
particular 2K = K. Hence x' = 2x", x"eK. Put x = x,—x". Then 2x =0
and [xo] ==[x], and therefore 1 = my xE,.

PrOPOSITION 3. Let yeI'y,(X). Then there is xe X with 2x = 0 such that
o(y+E,) = Cy.

Proof. Denote by Y, the subgroup of all compact elements in Y. Let
yo€ Yo. Then for some sequence of positive integers ny— co we have n;y,
—0. If |§(yo)l <1, then (5) shows that

-~ * ~ . ~ nz
=7(0) = lim 9(n; yo) = lim (7(yo))" = 0

Hence |7(y)l =1 on Y,. Since ¥y ~(X/Cy)*, we have 7(y) = ([xo], y), y& Yo,
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for some [x0]e X/Cx with 2[x,] = 0. Arguing now as in Remark 1 we
obtain the existence of an element xe X with 2x = 0 such that §(y) = (x, y)
for ye Yy. Set ¥ =y E,. Then ¥ (y) =1 on Y, and so ¢(y) = Y5". But Y5"
= Cyx (see [4]). The proof of Proposition 3 is complete.

Obviously, the set I',,(X) is a semigroup with respect to convolution.
Therefore

Io(X)# (X)) @ I' o (X).
Our pioblem is the description of those groups X for which

M I (X}# (X)) = I' o (X).

Note that if X satisfies (7), then every distribution yeI',(X) is invariant
with respect to some connected subgroup K of X, and y induces a Gaussian
distribution on the factor group X/K.

Elements Xq,..., X,eX are called independent if k;x,+ ... +k,X;,
=0, k;eZ, implies k1 =..=k, =0,

TueoreM 1. A group X satisfies the equality (7) if and only if the following
condition () is fulfilled: in the group C%, any two elements which are not
infinitely divisible are dependent.

For the proof we will need the following lemmas.

LemmMa 2 ([L1]). Suppose X has no subgroup isomorphic to T. Assume that
yel (X) and y =17y *7,, where the y; are distributions on X. Then y;eI' (X).

Lemma 3 ([2]). Suppose X satisfies the following condition (f): either
Cx~T or any factor group of the group Y contains an infinitely divisible
element. Then

I'(X) = Iy(X).

On the other hand, if condition () is not fulfilled, then there is a distribution
yeI'y(X) such that $(y) >0 for all yeY and y¢I'(X).

Note also that by the structure theorem any connected group X is
isomorphic to R™+G, where m > 0 and G is a compact connected group.
Then Y =~ R™+H, where H = G* is a discrete group consisting of elements of
infinite order (see [4]).

Proof of Theorem 1. Necessity. Suppose condition (o) is not
satisfied for X. Then Cy # {0}. Clearly, it suffices to construct a distribution
yel’ (Cx) with yél, (Cx)*F (Cy). Therefore without loss-of generahty we
may assume that X itself is connected. Two cases are poss1blc
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1) X is not compact, and in Y there is an element which is not infinitely
divisible. Let X = R"+G, where m > 1 and G is a compact connected group.
The elements of the group Y= R™+ H, where H = G*, will be denoted by y
= (s, h), where seR™, he H. If y, = (S0, ho) is not infinitely divisible, then
neither is # = (0, k). Denote by L, the subgroup of Y consisting of all
elements depending on 1, ie. of elemcnts yeY such that py = gn for some
p,qeZ. Since n is not infinitely divisible, we have L, ~ Z. Consider the
subgroup H, = R™+L, of Y. Put K, = H}. Then K, = R'"+ T. By Lemma 3
there is on K, a distribution yoe I'y(K,) such that 5o(y) > 0 for yeH, and
yo¢ ' (K,). Define

1 )_{Yo()’) if yeH,,

if yeY\H,.

Obviously, f(y) is a positive-definite function on Y. Since the subgroup H is’

open, f(y) is continuous. By the Bochner-Khinchin theorem, f(y) = 7(y),
where y is a distribution on X. We will check that ye I',(X). By Proposition
1 it suffices to verify that f(y) satisfies the system of equatlons (5). By
Corollary 1, yoely, (K,). Hence each of the equations (5) is satisfied for
yed,. If y¢ H,, then by construction ny¢ H, and so each of the equations
(5) is satisfied too. Therefore yel',(X). Since Y0¢I'(K,), we have
y¢I(X)*I'(X).

2) X is compact and there are in Y two independent elements r/,C
which are not infinitely divisible. Since X is compact and connected, Y is
discrete and consists of elements of infinite order. Consider the subgroups L,
and L. We have L, ~ I, & Z and L, NI = {0}. Without loss of generality we
can assume 5 and { to be generators of the groups L, and L, respectively.
Define on Y the function

exp{ an?}  if either y=ny, or y=n¢, neZ,
foy= .
if yeY\L, UL,

where o is chosen so that },.oexp{—an®} < 4. Then

eX) =3 f(x =0
ye¥
and so S(y) is the characteristic function of a distribution y on X. By
construction, ye ', (X) and y¢I(X)*I'(X). The proof of the necessity is
complete.
Sufficiency. If Cy = {0}, then the equality (7) follows. from Proposi-
tion 3. Let Cy# {0} In view of Proposition 3 we can assume X to be

connected. Suppose yeI',(X). Put v=ysjel,(X), E = {yeY: 7(y) # 0}.
There are two possibilities:
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(i) Y consists of infinitely divisible elements. We first check that E is a
subgroup in Y Let y;, y2€E, y, #0, y, % 0. Two cases are possible:

1. L, =L, Then py, = gy, for some p, ge Z. Hence in view of (5) we
obtain

P14y #0 < F(pO1+12) #0 < F((p+)ya) # 0 < F(¥3) #£0

provided that p+q # 0. If p+q =0, then obviously §(y, +y,) # 0.

2. L, #L,,. Then L NL,={0}. Put L=L, +L, and define a
monomorphnsm l// L—R? 1n the followmg way. For any yeL y # 0, there
are n, ny, meZ, n#0, such that ny =n y, +nyy,. Let Yy () =(ry, r2), 1y
=m/n, for y#0, Y (0)=0. On the group W(L) <R* we consider the
positive-definite function I(ry, r;) = I} (y)) = ¥(y). From the equality

1-Reg(t; +1t,) < 2[(1—Reg(t,))+(1—Reg(t,))],

valid for any positive-definite function g(y) on Y and for all t, t,e Y, we
Obtain ®

®) 1=1(ry, r2) S 2[(1=1(ry, O)+(1=10, )], (ry, r2) W (D).

Consider the group ¥ (L,) with discrete topology and write K; = (y (Ly h)
The functions I(ry, 0), (ry, OI)EI// (Ly,), and 1(0, 1)), (0, ra) ey (L,,), are ‘the
characteristic functions of some distributions u €I, (K)). Since the elements
y: and y, are infinitely divisible, the groups l/l(Ly} consist of infinitely
divisible elements. Clearly, all their factor groups also have this property.
Applying Corollary 1 and Lemma 3 to the groups K; and the distributions
W, we see that p,el’(K). Consequently, I(ry, 0) =exp{~a;r?}, 10, r)
=exp {—a,r3}. Since the subgroups

Hy={r;: y() =(ry, 0), yeL 1} Hy={ry: y(») =(0,r2), yeL, ya )

are dense in R, it follows from (8) that the function.l(r,, rz) is continuous at
zero on (L) in the topology induced from K2 :
We now use the inequality

o lg (¢)—g (t2))* < 2(1—Reg(t; —t3),

valid for any posxtnve-deﬁmte function g(y) on Y and for all ¢, t;e Y. (9)
implies that I(r,, r,) is uniformly continuous on ¥ (L). Since y (L) is dense in
R?, the function I(ry, rz) can be extended to a continuous positive-definite
function (s, 5,) on R?, also satisfying the system of equations'(2). It is easily
seen that I(s,, ;) is then the characteristic function of a Gaussian distribu-
tion. "Therefore I(ry, ry) ¢ 0 for (ry, ro)e¥(L). In particalar, I(1, 1) = #(y,
+y2) = |7(yy +y2)|* # 0. We have thus proved that E is a subgroup of
Y (open, of course).
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Denote by § the distribution on the factor group X_/El whose characte-
ristic function is the restriction of 7(y) to E. Put u = é x6. Then pel o(X/EH
by Corollary 1, since pel ,(X/E). Since Y consists of infinitely divisible
elements, it is easily verified that so does E, and therefore any factor group of
E has an infinitely divisible element. Hence ueI' (X/E Y) by Lemma 3. Since
the group X/E* has no subgroup isomorphic to 7 Lemma 2 shows that

5eT'(X/EY. Observe now that the subgroup E* is connected. We have thus -

obtained the following representation for 7(y):

5( )'_ ([xo], yyexp {—o(y)} if yeE,
"= if yeY\E,

where [x,]JeX/E* and the function ¢o(y) on E is as in (3). Obviously,
2([xo] = 0. Arguing as in Remark 1 we obtain the existence of an element
xe X with 2x = 0 such that ([x,], ) = (x, y) for yeE. We extend ¢o(y) to a
function ¢(y) on Y with the same properties (see e.g. [5]). Let poe I (X) and
50(») = exp {—@(y)}. Then y = m_, *E, +y,, where A ='m_; xE el 4(X), ie.
yel,(X)*I'*(X). We bave thus proved the sufficiency in case (i).

(i) Y contains an element which is not infinitely divisible. Then it easily
follows from the assumptions of the theorem that X is compact, and so Yis
discrete and consists of elements of infinite order. As above, we first check
that E is a subgroup of Y. Let y,, y,€E, y; #0, y,# 0. If y; and y, are
either dependent or infinitely divisible, then, as shown in case (i), y,+y2 €E.
It remains to consider the case where y, is infinitely divisible and y, is not.
Then L, NL,,={0}. Put L= L, +L,,. Let y;€ I\L, v L,,. We have ny;
=nyy,+n, y, for some n,ny, n,eZ different from zero. Hence (n,—n4)
+ny; =ny(y; +y)e L, +L,,. Now (@) shows that y; is infinitely divisible.

If yseE, then, as shown in case (i), L, +L,, = E. This implies that
n,(y1+y.)eE, and (5) shows that y, +y,eE.

Consider now the case where y ¢ E for any ye L\ L,, U L,,; we show that
this is impossible. Let the monomorphism y: L— R?, the function I(ry, ry)
on ¥ (L) and the subgroups H; and H, of R be defined as in case (i). In our
present situation, H, is dense in R and H, = Z. Without loss of generality
we can assume that H, = Z. Just as in case (i) we verify that [(ry, 0) =
exp{—a;ri}, (r1, O ey (Ly,). It is also clear that (0, m) = exp {~ayn?},
(0, n) ey (Ly,). The function I(ry, n) is continuous at zero on the group V(L)
in the topology induced from R+ Z, and so in view of the inequality (9) it is
uniformly continuous on (L), Since ¥ (L) is dense in R+ Z, we can extend
l(ry, n) to a positive-definite function I(s, n) on R+ Z. Since by assumption
(L\L,, UL, )nE = @, it follows that I(r;, n) =0 for all (r;, n) ey (L) with

ryn# 0. But this contradicts the continuity of (s, n) at (0, 1). The proof that -

E is a subgroup of Y is complete.
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Just as in case (i), let & be the distribution on X/E* whose characteristic
function is the restriction of §(y) to E. We show that §eI'(X/E™).

Suppose X/E* # T. It is easily seen that any factor group of E then has
an infinitely divisible element and the factor group X/E* has no subgroup
isomorphic to T The argument in this case is the same as in case (i). On the
other hand, if X/E* ~ T, then §eI'(X/EY by Lemma 1. The proof is now
finished as in case (i). This completes the proof of Theorem 1.

Remark 2. Condition () of Lemma 3 is necessary and sufficient for X
to have the following property: if yel',(X) and (y) # 0 for all ye ¥, then
yel'(X).

Proof. If X does not satisfy (), then by Lemma 3 there is a distribu-
tion yeFy(X) such that 7(y) >0 for all ye Y and y¢I'(X). The necessity
now follows from Corollary 1. )

Sufficiency. Suppose yel',(X) and 7(y) #0 for all yeY. Then
yel'y(X) by Proposition 1, and so yeI'(X) by Lemma 3.

We complement Theorem 1 with the following assertion:

ProprosiTION 4. Suppose ye I (X) and vy is an infinitely divisible distribu-
tion. Then yel, (X)»I*(X).

For the proof we need

Lemma 4 ([3]). Suppose that an infinitely divisible distribution y on
a group X has no idempotent factors. Let v =7y «x75. Then

(10) 7(2) = ()
for every yeY. Equality holds in (10} for all yeY if and only if yel'(X).

Proposition 4 can now be proved as follows. Consider E
={yeY: #(y) 0}. Since v is an infinitely divisible distribution, E is a
subgroup of Y ([7]). Since ve I ,(X), the restriction of ¥(y) to E satisfies the
equation (5) for n=2. By Lemma 4 this restriction is the characteristic
function of a Gaussian distribution. Clearly, in the class of infinitely divisible
distributions a Gaussian distribution has only Gaussian factors; it follows
that the restriction of §(y) to E is also the characteristic function of a
Gaussian distribution. The argument is now finished just as in the proof of
the sufficiency in Theorem 1.
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