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Such isomorphism can be obtained by a conformal mapping of the rectangle
onto the upper half-plane. Applying analytic continuation through {Imz
= 0} by symmetry we may claim that A,(7) is isomorphic to a subalgebra of
the algebra of functions analytic on C\(y'U7,) and continuous on C where 7,
is the reflection of ¥ with respect to Imz =0, and C denotes the complex
plane. Applying the method used by Hoffman and Singer [5] to- prove
Theorem 5, we arrive at the conclusion that the maximal ideal space of the
algebra 4,(T), and also of the algebra 4,, is a torus.
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Regular quasimultipliers of some semisimple
Banach algebras
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JOSE E. GALE*(Zaragoza)

Abstract. If 4 is a complex nonunital Banach algebra with dense principal ideals we
denote by QM. (4) the pseudo-Banach algebra forméd by Esterle’s regular quasimultipliers of A.
We study the character space A4 of QM (A) for several concrete algebras 4. In particular, for

every nondiscrete metrizable coljnpactly generated abelian group G with dual group I we prove
that BI' is homeomorphically embedded into L'(G)” (if G is compact BT equals L*(G)?). We also

note that there is a relationship between @M, (L' (G)) and the space P(G) of pseudomeasures on
G. If G is compact, QM,(L*(G)) = P(G). §

Intreduction. Let 4 be a complex nonunital commutative Banach alge-
bra possessing dense principal ideals -and such that 4*= {0}, where A*
={aeA: ab=0 for all be A}. A quasimultiplier T of A is an unbounded
operator on A whose domain is a dense principal ideal; so T can be written
as a quotient T =a/b where a,beA and [bA]™ =A. We put QM(A)
={T: T is a quasimultiplier of 4}. A quasimultiplier T = a/b is said to be
regular if there exist A >0 and ce(\;2,[b"A4] satisfying sup,||A"T"¢|| <
+00; let QM. (A) = {Te QM (A): T regular}. These notions and related ideas
were introduced by Esterle in [5] to study the problem of existence of
topologically simple radical Banach algebras.

The set QM,(A) is a pseudo-Banach algebra (see [1], [8]), i.e. it can be
represented as an inductive limit of Banach algebras. To obtain this represen-
tation one needs the following definition. Two commutative Banach algebras
A and B are said to be similar if there exist a commutative Banach algebra D
with dense principal ideals and two continuous homomorphisms @: D — A,
¥: D— B such that ¢ (D), y (D) are dense ideals in A, B respectively. Then:

.
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(i) A is similar to B if and only if QM (4) is bornologically isomorphic
to QM(B) ([5], p. 120); ; :

(i) QM. (4) =limind,.; Mul(4)), where {4;};.; denotes the set of Ba-
nach algebras similar to 4, and Mul(4)) is the multiplier algebra of 4;, for
each jeJ ([5), p- 129). :

In particular, QM,(4) always contains Mul(4) and, if A4 is uniform,
OM, (4) = Mul(4) ([13], p. 1I-8).

If A, B are Binach algebras with dense principal ideals and ¢: 4 — B is
a continuous homomorphism such that ¢(A4) or ¢(4)B is dense in B then
one defines @: QM (4) —» QM (B) as & (a/a’) = ¢(a)/o(a) for all a, a’e A with
[@ A1~ = A. The mapping & is a bornological homomorphism.. Moreover, if
@ is one-one, so is @ ([5]), pp. 83, 84). In particular, if T = a/be OM, (A) we
can define the extended Gelfand transform T of T as T(p) = d(@)/b(¢) for
every pe A, where A is the character space of 4. _ '

‘It is interesting to study the character space A of QM. (A4), called the
extended spectrum of A by Esterle. If A is radical with bounded approximate
identities it is known that A is very large: it can be mapped continuously
onto the character space of H® ([5], p. 135). Nevertheless we do not know
much more of the general properties of A and so it seems a natural starting
point to investigate the nature of A for some concrete Banach algebras. The
method consists in.exploiting the properties of the extended Gelfand trans-
form QM. (A)— C,(A) = {continuous bounded functions on A} for semi-
simple Banach algebras A which are dense in Co(A). A part of the results we
establish here can be seen as an application to harmonic analysis.

In § 1 several examples of similar Banach algebras are given. These
examples are either Banach algebras with an orthogonal Schauder basis or
some algebras of integrable functions. The latter are Segal algebras S(G) on a
nondiscrete metrizable compact abelian group G, with dual group. I'. In that
case we show that S(G) is similar to ¢, (I); therefore QM, (S(G)) is identified
with I®(I") and S(G) with BI, the Stone-Cech compactification of I

In § 2 we consider the Banach algebra C§”(RP) consisting of all the C™- -

functions on RP which are null at infinity together with their m derivatives.
We show that the extended spectrum of CY"(R¥) equals BRP.

In § 3 we consider L'(G) with nondiscrete, metrizable, noncompact and
compactly generated abelian group G. In contrast with the above case here it
does not seem possible to study the extended spectrum X of L' (G) by means
of similarity. However, exploiting the properties of the extended Gelfand
~ transform we prove that SI' is homeomorphically embedded into Z. The

‘problem “Z = BI"” remains open. However, in § 3 we show that the equality ‘

Y = BI' is equivalent to one of the following (equivalent) properties: (i)
OM,(L!(G)) is regular—in the sense of Shilov—on its spectrum X; (ii) T
invertible in' C(I') implies that T is invertible in QM, (L*(G)).

Recall that for the measure algebra M(G) = Mul(L*(G)) both properties
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(i) and (i) are related and exhibit a classical pathology of M (G), namely
M(G) is not regular on its spectrum and there exists y in M (G) such that /i
is bounded below on I' but u is not invertible in M(G) ([18], p. 107). In
Theorem (3.5) we prove that any p in M(G) with i bounded below on I is
also invertible as regular quasimultiplier.’

Finally, in § 4 we sketch the relationship between the quasimultipliers on
G and the set P(G) of all pseudomeasures on G. If G is compact, QM (L' (G))

. = P(G) and so it is possible to give a definition of P(G) with no reference to

the dual group I' of G. The same thing happens for the convolution product
of pseudomeasures (if T =a/b, T'=a/b’, TT is defined as aa/bb’ in
QM (A4)). We conclude the paper by proving that, for G noncompact. com-
pactly generated, the regular quasimultipliers of L' (G) with compact support
are precisely the pseudomeasures on G with compact support.
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§ 1. Examples of similar Banach algebras.

a. Banach algebras with orthogonal Schauder basis. These algebras have
been studied in [9], [10]. These are Banach algebras A4 whose underlying
Banach space has a Schauder basis (e,);2; such that e,e, =e, if n=m, and
e,e, = 0if i # m. If xe A then there is a unique sequence of complex scalars
(x5 ; such that x = Z:i 1 Xney, and if e* denotes the linear functional e (x)
=x,, x€A, n>1, then the sequence (&f);%4 is equicontinuous. Moreover,
each e* is a character on A since xy =2:’=1e,’2‘(x) eX(y)e, for all x, ye A.
Actually, A =(ef)2,. The Gelfand transform of A is the 'mapping
x €4 (e (x))e 4 €co, where ¢, is the Banach algebra of sequences which are
pull at infinity.

We denote by ™ the Banach algebra of bounded sequences. If E is a
Banach space, an unconditional basis for E is, by definition, a Schauder basis
(e such that :

15, 2uet @red] <Gup | et el
n=1 " n=

for all xeE and (A)pe1€1™

Prorosimion (L.1). (i) If A is a Banach algebra "with an orthogonal . v

k Schauder basis then A is similar to ¢, and so QM (A) =1® and A = AN.
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(i) If E is a Banach space with an unconditional basis (en)rey then E,
endowed with the product xy:Z:i enxex(y)e, x,yed, is a Banach

algebra (in an equivalent norm) and (e,)™, is an orthogonal Schauder basis for
E. Moreover, Mul(E) = QM. (E) = I*. '

Proof. (i) Let D be the vector subspace of A formed by the elements x
of A such that Z:il lex (x)| < +co. D is a Banach algebra under the product
%nduced by A4 and the norm [|x||p, = Z:; (lex (x)], xeD. As such an algebra, D
is isometric to the usual /%, with coordinatewise product, and so D is a dense
ideal of co. Further, D contains the set {xc4: e*(x) =0 eventually},

I = L, et e < 3 let () = el

if xeD, and

n=

21 lex (xy)l = Zi leir ()l lex O)] < (sup e} (7)) f lex (x)] < +oc0
n= . n n=1

for al} xeD, ye A. It follows that D is a dense ideal of 4 and the inclusion D
—»_A is continuous, hence 4 and c, are similar (note that D possesses dense
principal ideals: it suffices to take xeD such that e} (5c) # 0 for every n> 1
to have [xD]~ = D). Finally, note that OM,(A) = I* since ¢, is a uniform
algebra.

‘ (i1:) The first part is well known ([10], p. 346). Now, if (1,)=, belongs to
it is clear that the mapping

loD

@ @
Y *e€Ers Y A x,e,€E
n=1 n=1

is a multiplier of E and we have I® = Mul(E) c QM. (E) = 1*. »

Now we give examples of Banach algebras which satisfy the conditions
of the proposition.

1) In the usual Banach sequence spaces co, P (1<p < +o0) the

sequence (5,),%,, where 8, =(0, ..., 0, f, 0,..), n=1, is an unconditional
basis.

m2) Let BY, be the m}}anach subalgebra of ¢, formed by the sequences
()2 €co such that Yo 2 1Xa—x,_1] < + 00 endowed with the norm

o0
(Ceny 11l = max (sup x,l, Y Jx,~x,-,]).
n n=2
(3nsZ1 is an orthogonal Schauder basis for BY,.
3) James’ Banach space J is a Banach subalgebra of ¢,, under a certain

norm ([2], p. 1083). The sequence (5,)%, is al
basis for J. q (6unZ is also an orthogonal Schauder
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BV, and J are semisimple Banach algebras with “small” multiplier
algebras: Mul(BV,) = BV;®C, Mul(J) = JBC = J** (see [2], [13]). By Pro-
position (1.1), QM,(BV,) = QM. (Jy=1*.

4) The Hardy spaces H?(D), 1 < p < + 00, where D is the open unit disk
in C are Banach algebras with the Hadamard product
(zw™Y)dw,

. 1 f(w)
(f*9)(E) =7~ ML w9
where f, ge H?(D) and |z] <r <1 (see [16]). The sequence e,(z) = z", zeD, n
> 1, is an orthogonal Schauder basis for H?(D) if 1 <p < + o0, whence
OM,.(H*(D)) =1° (1 < p < ).

Now, let 4(D) be the Banach space of functions which are continuous
on D and analytic on D, endowed with the norm ||f|l, = sup <11/ (@)l
Under the Hadamard product, A(D) is also a Banach algebra, say A(D),
([16], p. 94). Actually, A(D), is an ideal of each H?(D); ||fll, <l fllo if
feA(D); A(D) is dense in H?(D) if 1 <p < +o0 ([16], p. 84), and A(D),
possesses dense principal ideals (it suffices to consider feA(D) such that
f@=Y."  a,z" (ze D), with > ola] < +oo and a, #.0 for every n> 0, to
have [f, A(D),]- = A(D), since the polynomials are dense in A(D)). In
short, A(D), and H?(D) are similar and QM, (4(D),) = M, (H? (D)) = 1* for
1<p < +o0.

5) The space LP(T), 1'<p < +oo, where T is the circle group is a
Banach algebra with convolution. If 1 <p < + oo, the sequence of trigono-
metric polynomials e,(f) =t", te T ne Z, is an orthogonal Schauder basis for
LP(T) (if p = 2, ()% - » is an unconditional basis), hence L*(T) is similar to
¢o- Moreover, L' (T) is also similar to L?(T), p > 1, and to ¢, (the details are
given in Proposition (1.3) in part b of this section where we study more
specifically algebras of integrable functions), and we see that OM, (L (T))
=] 1<p<+oo. . .

Remarks. (i) By Proposition (1.1) (i), any Banach algebra with an
orthogonal Schauder basis is similar to ¢,. The converse is not true: L' (T) is
similar to ¢, as we have observed in 'S), but it has no Schauder basis
orthogonal for convolution.

To see this, assume that (b,) -, is an orthogonal Schauder basis in

LY(T). Then )
b¥(e) ifj=k,
* * ="
& L {0 A,
since each b* is a character. Further, the Fourier series. of each b, is an

idempotent in co(Z) and so b, is a finite linear combination with coefficients
0 or 1 of the elements e,, meZ. It follows that

a= Y biedb, b= Y

n=— o0 k=—o

ef(bne, k,neZ;
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therefore
@ bh(e)bu= Y bi(e) Buby = ejby, =ef(bn)e;, Jj,meZ.

Let no be fixed. If b} (&) =0 for all ke Z, then ¢} (bny) =0 for all ke Z

by (2) and b,, =0, a contradiction. From this and (1), there is a unique
koeZ such that b, = e,,. This shows that the Schauder basis (b,) -, in
L'(T) is a rearrangement of (e,)2 _, (note that the same argument shows
that any orthogonal Schauder basis in any Banach algebra is a rearrange-
ment of a given one). But this is impossible (see [15], Th. 9, p. 24).

(i) Proposition (1.1) (i) gives examples of mot necessarily uniform
Banach algebras 4 with the property Mul(4) = QM. (4) (see the introduction
and [13], p. II-8).

b. Algebras of integrable functions. Throughout this paper, we denote by
G a nondiscrete locally compact abelian group and by I' its dual group. As
usual, L'(G) denotes the convolution algebra of integrable functions on G
with respect to the normalized Haar measure; if feIl'(G) we set || flls
= [;1fl and we denote by f the Fourier transform of S, which is a
continuous function vanishing at infinity on I, ie. fe Cy(I).

Now we consider Segal algebras S(G) on G (we refer to [17], pp. 127,
128 for the -definition, examples and a list of general properties of Segal
algebras). It is clear from the definition and properties of Segal algebras that
§(G) is a convolution Banach algebra, under a certain norm Il lls, on G; and
§(G) is also a dense ideal of L* (G). Next, we will characterize the nondiscrete
locally compact abelian groups G for which the theory of regular quasimulti-
pliers can be applied to any Segal algebra S(G), in particular to L1 (G).

LemmMa (1.2). Let G be a nondiscrete locally compact abelian group and let
S(G) be a Segal algebra on G. Then:

(@) For feS(G), f+S(G)is || lis-dense in S(G) iff f(y) O for every yeT.

(i) S(G) possesses dense principal ideals iff G is metrizable.

Proof. (i) This part is clear in the case where S(G) = I} (G) by the
Wiener tauberian theorem. In general, if f€§(G) and F) #0 for all yerl
we write I for the || ||s:closure in S(G).of f «S(G). By [17], p. 129, there is a
 unique closed ideal I of L'(G) such that I =I NS (G). Moreover, I = [I]~
_in L'(G). Because S(G) is || [|,-dense in L*(G) ([17], p. 127), so is f *S(G)
{again by the Wiener tauberian theorem). Therefore I = I (G) and Ig

=1 T»S(G) = §(G) as desired. The converse follows from the density of S(G)
in L' (G). -

(i) First recall that G is metrizable if and only if I' is countable at

infinity ([17], p. 94). _
Suppose that G is not metrizable, and take f e I'(G). Set K, = {y 17

icm®

Regular quasimultipliers ) 117

> 1/n}, a compact set in I', and set K = {JK,. Then K # I. For yeI'\K,
F») =0, and so [f*S(G)]™ #S(G). .

Conversely, suppose that G is metrizable. Then there is a sequence (K,)
of compact sets such that I' = (J K,,. Since S(G) is dense in L' (G), for each n
there exists f,e8(G) with f,(y) # 0, yeK,. Set

&k
..gx 2"(1+]I£I13)

where f,(x) = f,(—x), xeG. Then §(y) #0 and so, by (i), [g*S(G)]”
=5(G). =

For G nondiscrete and metrizable it is evident that L'(G) is similar to
any Segal algebra S(G), and a natural way to identify QM,(S(G))—and
OM,(L*(G)) in particular — consists in finding a Segal algebra S(G) for which
the description of QM, (S(G)) is sufficiently simple. For instance, this method
is available if G is compact as the following proposition shows.

g:

ProrosiTionN (1.3). Let G be a nondiscrete metrizable compact abelian
group and let S(G) be a Segql algebra on G. Then S(G) is similar to co(I),
OM,(S(G)) = I™(I') and S{G) = BI.

Proof. For G compact, I' is discrete and countable. The Segal algebra
L?(G) is isometric to I*(I) = {(a,),er: zysrlayl2 < +oo0} which is a dense
ideal of ¢, (I') as an easy computation shows. It follows that I?(G) is similar
to ¢o(I). Since co(I') is uniform, QM, (co(I)) = Mul{co (1) =1"(I). &

Remark. For each locally compact abelian group G we denote by
M (G) the convolution algebra of Borel finite measures on G normed by the
total variation. As is well known, M(G) equals Mul(L'(G)), the multiplier
algebra of L!(G). If G is metrizable, M (G) is contained in QM, (L' (G)) ([5]).
Moreover, if G is also nondiscrete and compact we have identified
OM,(L*(G)) to be I°(I). It may be of some interest to compare certain
properties of M(G) and QM,(L'(G)) in that case: .

1) The character space of M(G) remains somewhat mysterious so far
([20. , ,
1) OM,(L*(G)) = I®(I) so its character space is BI.

2) M(G) is not regular on its character space ([18]).

2y OM,(L*(G)) = I°(I) is regular on fI. . )

3) (related to 2) There exists ue M (G) such that its Fourier transform [
is invertible in I®(I") but u is not invertible in M (G) ([181,_ [19], 123)).

3) Clearly, T is invertible in QM, (L*(G)).if and only if T is invertible in

“1®(I). In particular, if peM(G) and { is invertible in 1*(I) then g is

invertible in QM, (L*(G)). Even more, every quasimultiplier T on G whose
extended Gelfand transform T is bounded on I' is regular. :


GUEST


118 J. E. Galé

The study of QM,(L*(G)), trivial as it has been observed to be if G is
compact, is much more difficult if G is noncompact locally compact. In § 3
we shall deal with this case.

" Note that the theory of quasimultipliers is trivial if G is discrete since in
that case {*(G) has an identity.

§2. A general method of investigating the extended spectrum. In § 1 we
have obtained some results about similarity of Banach algebras by consider-
ing their Gelfand representation. Here we exploit a bit more this canonical
mapping to establish a general procedure for investigating the extended
spectrum when the easy similarities are not available. We have the following
result, whose proof is routine:

Lemma (2.1). Let A be a unital pseudo-Banach algebra and B a unital
Banach algebra. Suppose that ¢: A— B is a bounded injectite unital homo-
morphism such that ¢ (A) = B. Then B is homeomorphically embedded into A
by means of the mapping ¢*: B— A given by ¢* (x) =x0¢ for every xeB.

Furthermore, A =B if and only if each acA such that (@) (x)| = ¢
"(q\ceﬁ) Jor some ¢ >0 is invertible in A.

In the remainder of this section we apply the foregoing lemma to a
Banach algebra of differentiable functions which has a bounded approximate
identity. For m and p nonnegative integers we write |k| = kit ... +k,, k!
=kil...k! for k=(ky,...,k)eN?; &f denotes the partial derivative
& f/ox* for O<|kf<m and feC™(RP). We let C”(R”) be the Banach
algebra of all C"™-functions f on R? such that & f(c0) =0, 0 < |k <m,
endowed with the norm

A=Y sup|éf(x)|/k!.

o<lklsm x

The sequence (e,)>, where

en() = exp(—llulPnY), [ = xP+ ... 42,

x=(x(,..., x,)e R, neN, is a bounded approximate identity for Com (RP)
([21]). Any principal ideal fC§” (R?) where f is nowhere zero on R® is dense
in C§?(R?) since each function in C§”(R?) with compact support belongs to
FCEP(R).

The following result is well known:

LemMA (2.2). Let @ be a positive continuous Junction on RP. Then for every
continuous function f on R® there exists a C'-function g on RP such that

lg(x)—f(x) <w(x) for all xeR®".

In paxticular, for every zero-free continuous function f on R? there is
always a zero-free C(™-function g on R” satisfying |g(x)| < |f(x)| for all x eR®.

icm
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The following lemma will also be used in § 3.

Lemma (2.3). (i) Let F be a continuous function on RP with values in a
unital Banach algebra A, and o a positive continuous function on R such that
lim 5 -0 (x) = 0. Then there exists a function ve C§?(R?) N C (RP) such

sup|[F (x) *o()ll4x(x) "' <1,
xeRP
(i) If F is also of class C™, then v can be chosen so that
sup[|*(Fo) ()2 ()7 <1, Ok <m.
xeRP
(iii) Moreover, if F is also bounded by 1 on RP, then vscan be chosen so
that

0< [kl <m.

sup [|F(F ) () a(x)" <0, nzl.

xekP

Proof. If we set g(x) = [1+||F ()}l ]" ' a(x) B(x) for xe R?, where B(x)
= O(||x||™™) at infinity for every n > 1, B positive and continuous on R?, then

the function
@)= min g(x)
1l 2=1
is continuous on [0, o0). We can take a positive decreasing infinitely
differentiable function h on [0, +o0) such that h(f) <e(t) for every
te[0, ov). We define

+w + oo

o= |

t

+
Mdtm+1...dtz, t>0.

t£ " tm (1+t7%l+1)m
The function  is well defined since
' + 0 + o0 + h(tm) + o dtm+1
dt,,...dt
v fo [ T L

t tm—1

+ 00 + o0 + o hlm
<<5 [ LR
12

o m...dt;)‘%n
: A +3m1

m-1

<...<@GM"R().

Moreover, ® is C' on [0, +o0) and its m first derivatives are

R TR F R htwed)
O () = (—1 o | Aty ity
() (l) ( )J _'f 'jiz ‘j'; (1+tr%|+1) m+ 1
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t20, 0<j<m—1 (with t; =1,

h(®
1+

Using the same method to majorize w?, 0 <j <
we obtain the bounds

@™ () =(-1)" t2>0.

m, as was used for w

; . h
00 < @R, €20, 0<)<m
Now, set v(x) = @ (||x]|?), xeR". It follows that, for k = (k,, ..., k,)e N?
and ||x||> = ¢,
I1F (x) o (0)lLs < |IF (x)iLa " llwm(l)l [Py (x)]
LEFES
< 5 G g PGl
0<I<|k|
< G A+ TP G () IF )l

f=1

<l

n

K|
<a(x) for every xeR?

(by a suitable choice of f), where P, is a polynomial of degree I
(i) It suffices to apply part (i) to the function
[T [+ F L
o<[k<m

(i) In the case where sup.|F(x)jl,<1 we note that whenever
< |kl <m and n > m, then &(F" is a finite combination of expressions of
the form :

PmF° T]

1<jl<|k

(@PY,

with P(n) a polynomial in n whose degree does not exceed |k| and (@Dosin<i '

nonnegative integers such that 0 < g, < n, 0<g; <k, || > 0. Therefore to
prove this part it is enough to apply part (i) to the function
[T [+IFF 4D,

o<|jlsm
1<g<m

We denote by C, (RF) the space of bounded continuous functions on R?.

xcRP. m

THEOREM (2.4). The correspondence
FeC™ (R?) 1> T, e QM(CS (R?))

where Ty (f) = Ff for every feC$(RF) is bijective. It also induces a bijection
between C'™(R?) " C,(R?) and QM (CE (R")).
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Proof. If T is a quasimultiplier of C§”(R?), T is a quotient f/g with
f,g in C§*(RP) and g is zero-free on R”. It follows that T'e C™ (RP). The
injection of C$”(R?) into C, (RF) can be extended to the respective quasimul-
tiplier algebras as an injection too. Since @M, (Co (R?)) = C(RP)—C, (R?) is
uniform—we have QM,(C§"(R) contained in C"™ (R?) nC,(R?). Now, if F
is m times continuously differentiable on R? we can write F = (Fv)/v, where
veCY(RP), v(x) # 0 for every xeR? and FreC{"(R") by Lemma (2.3)(ii)
with A = C. This proves the first part of the theorem.

If, further, -F is bounded on R? and M = sup,__.,|F(x)| we can apply to
F/M part (iii) of Lemma (2.3), and so there exists ve C§” (R?), which nowhere
vanishes on R?, such that (F/M)"ve C{”(RP) for every n > 1; furthermore,

F"oll = M"||(F/My' vl = M" sup |&*[(F/M)"Jo(x) = M"O(n")
xcRP
o<[k|<m

for n = 1. If A = 1/(2(M+1)), then ||A" F"vf| — 0 as n— co, and F is regular as

"a quasimultiplier.

COROLLARY (2.5).- The character space of QM,(C§ (R")) coincides topolo-
gically with BR®, the Stone-Cech compactification of RP.

Proof. Let A = QM,(C)(RY) and B = C,(R?). By Lemma (2.2), 4
dense in B. Suppose that TeA and that T is invertible in B. By Theorem
(24), T is invertible in A4, and so, by Lemma (2.1), A =B. Clearly B = fR". =

§ 3. On the regular quasimultipliers of L! (G), G moncompact. Throughout
this section ‘we denote by Z the extended spectrum of L!(G), where G is a
nondiscrete metrizable noncompact locally compact abelian group. If T is. a
quasimultiplier of L(G) we denote by T the extended Fourier transform of
T. Note that T is a continuous function on I, the dual group of G, and T is
bounded if T is a regular quasimultiplier.

The main result of this section is the following:

If G is compactly generated, then X contains homeomorphically BI’, the
Stone~Cech compactification of T

This assertion is obtained as a corollary of Theorem (3.3) which we will
state and prove below. For the proof we need some partial results that we
state as lemmas. They also give additional information.

Let A be a semisimple unital Banach algebra. We denote by L'(R*; 4)
the convolution Banach algebra of all A-valued Bochmer integrab_le functions
on RP. Recall that the tensor product L'(R*)®A is dense in L' (RF; 4) and
L (R?; A)" = R? x A ([21], p- 473; [3), p. 236). If heL*(R?; A), h denotes the
vector Fourier transform of # and k(x) = h(—x), xeR". Let

C™(R; A) = {F: RP—> A: F is C™}, m=0,1,2,...

2 — Studia Math, 89.2
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" Lemma (3.1). Let m, p be integers such that m > p/2, If F eC®*™(RP; 4)
and F is bounded then there exists veC$#™ (R?)C™ (R?) such that
Froell (R?; A), (F"v) eI (RF; A) for every n> 0 and T = (Fv) /5 is a regular

quasimultiplier of I} (RP; A) such that T=F.

Proof. Without loss of generality we can assume that F is bounded
by 1. According to Lemma (2.3) there exists a zero-free function
ve C§™ (RP) n C'(RP) such that Fve I (R?) and & (F"v)e L' (R?; A), ke N,
O<I|K<2m n>1 I f,=(F"v), n>1, then

XL X (F o) (x) = i [‘7‘(F v)] .

X=Xy, ..., X,)ER?, k=(ky,...,k,)eN?, 0<|k| <2m, n>1, by an argu-
ment similar to the one of the scalar case. Therefore

A+ fu(x) = Dy (x),  xeR?, n>1,

where D, is the corresponding finite combination of partial derivatives of*
Fryp. It follows that f,eL!(R"; 4); in fact,

1D, ()L
L+ IxIf%y"

(the last integral is finite because m > p/2).

It is easy to see that f, = F"v by using continuous -functionals on A.
Analogously, there is g L' (R”) with § = v. The ideal generated by g is dense
in L*(R?; A) since L' (R?; A) = [} (R)®A]~ and [g+ L (R®)]™ = L*(R"), and
the unicity for n > 1 of f,/g as a quasimultiplier of L! (R?; A) follows from the
semisimplicity of A.

Set T = fi/g, so that TeQM (L' (R”; A4)). Since
filx, o

G
for all xeR?, dc A (the power T" refers to the convolutlon) and A is

semisimple, T" g = f, follows, whence g belongs to the domain of definition
of T Further.

Iflls < | 5mm Ik o dx < O(n

- dx _ -
) L~ 00"

(T"+g) (x, &) = ) =F"() (®v() = f,(x, B)

, IT" %41 gpy = 15l = O (™),
whence sup,||(AT)"+gll; < +oo for every le[0, 1) and T is regular. =

Note that if Fe C?™ (R?, 4) is not bounded, then T = fl/g, where f;
=(Fv)’, is in QM (L (R¥; A)) and T =F, but in general T is not regular.

Let p, geN and let T be the g-dimensional torus. We identify T¢ with

[0, 2m) x... x[0, 2x) = [0, 2n)* and we denote by C™ the set of all func-
tions F on RP x T? which are of class C® on R? and C® on 7Y
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Lemma (3.2). Assume G=R’xZ% and m>p/2 fixed If
FeCPmH1.20 ~C  (RP x TY there exists ve C&™ (RPy  C™(R?) and, for each
n >0, a unique h,e I} (G) such that h, = F"v and ||h|, < Mn?™+*9 where M
is a constant depending only on m and q.

Proof. If we consider in C(T9 the topology of uniform convergence
on T? a simple argument based upon the compactness of T? shows that any
complex continuous function on RP xT? can be viewed as a function
belonging to C(R?; C(T9). Actually, the function F of the statement is in
C@m(RP; C(T9) (via Taylor’s formula). Assume F is bounded by 1. Accor-
ding to Lemma (3.1) applied to F and Lemma (2.3)(i) applied to the
function

I [L+11(2/0r" &) FI. 1 ]
O<|<2(m+q)

0€|r|<2q,0<]s|€2m
r+s=1,1<j<2(m+q)

regarded as a member of C(RP; €(T9), we obtain ve C§™ (R) N C'™ (R
such that F"v,f, = (F"v) e I*(R?; C(T9) for n> 0 and

29
sup 26 PR (yw)H( 2 () 7' < Cpn®t0, 21,
yer? || Ot - Otg %)
where D, (x, ) is such that
D(x, ) = (1+|Ix»™(F"v) (x, ) for xeRP,

aeL'(R?) and C,, is a constant depending only on m and q. We next
observe that

D,(x, 1)
WX, ) == (%, )eRP x TY,
200 =y ¢
“whence
> 1 T D007y |
(%, 1) | =su — (v, B e dy
A ar ez TR e L@t%.‘.ﬁtﬁ
1
€ 2m+a) for xeR?, n>1.
= (1+”x”2)m Cm,qn ”anl or €
Thus if e, (x) are the Fourier coefficients of f,(x) (k = (k, ..., k,) € Z,

21, xeRP), we have

; 1 0%
e =|[ fulx, ye ™dt| = [ £.(x, t)‘]e—xkzdt’
e O |,£ | kf,..kg); oo
nrr e, 1 X
MR A+ T

kg # 0.
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It follows that the function
hy: (x, K)eR? x Z9—h,(x, k) = e, (¥)eC, n=1,
is in L'(RP x 2% =

ol = f

RP x 74

L (Rr; 1'(29) since for every n2 1,

2(m+g)
qn("‘ q)’

h(x, Kl dxdk = ¥ [ leg, () dx < C

kezd RP

- where C,,, is a constant dependmg only on m and q. Therefore if T = h,/g
(g =v) we have

mewnn=ﬁumgmn_lgth(J
- [flu("x()x()t Ak v(x) = xU’,. 2:))" ) v(x)

=F"0)(x, 1) = fn(X)(t) = hy(x, 1),

ie. T"+g =h, and T is a regular quasimultiplier of L'(G) with T = F. The
proof for the other cases is clear. =

Let K be a metrizable compact abelian group with dual group 4.
Consider G = R? x Z?x K where p, ge N. The dual group of G is I' = R? x T¢
x4. If F is a function on I' we put F,;(x,t)=F(xt, d), (x,t, d)el.

TueoreM (3.3). Let G = R? xZ? xK be as above and m > p/2. Then for
every bounded function F on I such that Fye C®"+1:29, §e A, there exists a
unique Te QM. (L'(G)) with T=F. Consequently, pI' = X.

Proof. Note that to give a bounded continuous function F on I' = R?
xT%xA4 is equivalent to giving a family (F,);., of uniformly bounded
continuous functions on R” x T¢, where F;() = F (-, 8). Let F in C(I') be
C?m on R? and C®® on T% where m > p/2. Assume F is bounded by 1.
By Lemma (3.2), for any e 4 and n > 0 we can obtain a zero-free function
v €CE™ (R?) " C') (R®) and g;, hs , € L (R? x Z% such that §; = v;, By = Fiv,
and ||h;, ,,||1 < Mr*™*9_ Let (B5);c4 be a family in L' (R” x 2% satisfying

D IBdly < + o0,

ded

Bs(x, )0, (x,t, 5)eRPxZx4.

It is clear that

h=>:(ﬂrs*ha)5' Q=Z(ﬂa*ga)5

ded ded

belong to L' (G), the ideal of L*(G) generated by g is dense in L' (G) and if T
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= hfg we have
(X t 5) ﬁ&(x, t)iié(x: t)
T(x,t,8) = - —- =Fs(x,t)=F(x,t,6
G010 Balmgptg 0= F0 9

for all (x, t, d)er.

Finally, the function f, =) (5%, ,,)5 nz

ded

1, is mtegrable on G since

Il < 62 (185  ho,gll < MP*™*2 3| |Bylly < +00.

ded

By using Fourier transforms, we have (h/g)"+g = f, so ||T" 4|y = ||fll1
= 0(n*™*9), which implies that T is a regular quasimultiplier. Now, by
means of a partition of unity on R?, it is easy to verify that each continuous
(bounded) function on R? xT?x 4 can be approximated by some continuous
(bounded) function F on I such that F;e C®"*1:20 §¢c A. Then it is enough
to recall Lemma (2.1) to conclude that fI" = £ homeomorphically. =

Note again that if the function F of Theorem (3.3) is not assumed to be
bounded then the same argument as in the above proof for n=1 yields
TeQM(L1 (G)) with T =F.

CoRrOLLARY (3.4). If G is a nondiscrete metrizable compactly generated
abelian group (in particular, if G is a metrizable connected abelian group) with
dual group T, then the extended spectrum X of L' (G) contains homeomorphical-
ly BI', the Stone-Cech compactification of I.

Proof By a well-kknown structure theorem (see [7], p. 90) G is
homeomorphic as a group to R” x Z? xK for some p, ge N and K a compact
metrizable group (if G is connected then G = R? xK; [7], p. 390). Therefore
the assertion follows from Theorem (3.3). &

Another consequence of Lemma (2.1) is that fI' = X if and only if every
regular quasimultiplier T of L!(G) whose Fourier transform T is bounded
below on I' is invertible in QM,(L*(G)). This condition on .every
TeQM,(L*(G)) is a “Wiener problem”. Unfortunately, we do not know
whether it holds or not. We recall that the same problem for the algebra
M(G) of finite Borel measures has a negative answer: there exists ye M (G)
satisfying |ii(y)| = ¢ for every yeI and some ¢ >0, but not invertible in
M (G) ([18], p. 107). Because of this we may think that such a measure serves
perhaps to show that X s BI'. Nevertheless, we have

TueoreM (3.5). Let G be a nondiscrete metrizable compactly generated
abelian group. If pe M (G) = Mul(L'(G)) then o (1) = {fi(y): yeI'}". In parti-
cular, if {i(y)] = ¢ > 0 for every yeI’ and some c > 0, then p is invertible in
oM, (L1 (G):
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We recall that the spectrum o (i) of p in QM, (L' (G)) is by definition the
set of complex numbers A such that p—21 is not invertible in QM, (L' (G)). As
is well known o(y) coincides also with {i(x): x€ZX} (see [1], p. 62).

Proof of the theorem. First, assume that p has a compact support.
Then fiis an entire function on R? x T if G = R x Z¢ x K as above, and so if
A is.a complex number such that |Z(y)—A| = ¢ for every yeI' and some ¢ > 0
the function ye I —~(fi(y)—4)~* is bounded on I" and C® on R” x T% Then,
by Theorem (3.3), there is a unique regular quasimultiplier T of L!(G) such
that T = (u—A4)~*. We have showed that A¢s(x) and the theorem is true in
that case. v

Now, for any peM(G) we can take a sequence (u,)ee; of measures in
M (G) with compact support such that lim,.. 4, = 4 in norm since G is
compactly generated, hence o-compact. If A€o (y) there is y X such that
u(x) = 4. On the other hand, ({i,)2, converges to ji uniformly on I' and
Tim, - /1, (x) = f(x). For ¢ >0 given we choose n, such that

Suglﬁ,.o(?%ﬁ(v)l <e/3, i, ()—AGI <&/3.

Since fin, (X)€ o (1yy) and p,, has compact support there exists yoeI such
that |&,, (vo)— i, (x)| <&/3. Finally, the inequalities

1200 = (o)l S 1AG) — fng (O +1 g (6) = g (Pl
F g (va) —A(yo)l <&
show that o(u) = {fi(y): yeI'}", and the theorem is proved. m

Remark. As a consequence of Theorem (3.5 we deduce that the
bounded structure induced by QM, (L*(G)) on M (G) is strictly weaker than
the one associated to the norm of the total variation. If not, M (G) would be
a complete subalgebra of QM, (L' (G)); hence any character y belonging to
the Shilov boundary of the carrier space of M(G) would be extendable to a
character’ of QM, (L'(G)) ([8], p. 38). Because of Theorem (3.5), x would be
approximable in X by eclements of I' and I' would be dense in the Shilov
boundary of M(G)". But this is false ([19], p. 234).

Another approach to the problem “X = I consists in considering the
regularity of QM (L*(G)) in Shilov’s sense. The definition of ‘this concept is
very natural: a pseudo-Banach algebra B is said to be regular in Shilov’s
sense or regular, for short, if for every closed subset X of the character space
of B and every character y of B such that y¢ X there exists be B satisfying
b(X)=0, b(x) #0. If B is a regular pseudo-Banach algebra, if A is a
semisimple Banach algebra and if there is a bounded injective homomor-
phism ¥: B — 4 with dense range then the character space of A4 is dense in
the character space of B (the proof is routine). This implies that whenever
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OM, (L*(G)) is regular then AT = X since C (I is semisimple, but we do not
dispose of any criterion which permits us to assert the regularity of

- QM. (L*(G)). However, is QM, (L' (G)) regular on a representative part of X,

for instance on BI'? Yes (G is always compactly generated):

ProposiTION (3.6). Let gyl and let X be a closed subset of BI' such
that oo ¢ X. Then there exists Te QM, (L (G)) such that T(po) =1 and TX)
=0. In fact, T can be chosen so that T is C'™ on R” x T4 (We suppose G
=R’ x 2 xK)

Proof. Assume X is the con'lplement in BI" of an open neighborhood of
@o of the type

Vitrnruze = 10€BT: f5(@)—f(@o) <22, j=1,..., n}

where fi, ..., fue Co(T) since BI' is the spectrum of C(I). If T = R? x T¢
x4, as in Theorem (3.3), for every j =1, ..., n there exists g;€ C(I) which
is also infinitely differentiable on R? x T¢ such that ;

szx; Ifi(@)—g;(9) = suglﬁ(v)—gj(y)f <égf2.

If we suppose |g;(9)—g;(wo)| <& for some pepI it follows that
5(@) =i (ol < 1;(@) —g;(0)l +19;(9) —g;(20)l +1; (20) =S (@oll < 2.

Hence we have ¥ gpt S Vigpnsrize POt By =g;—g:(po), j=1,..., n, and
h =Z;_'=1 Ihf?; if g=(1/e)h and V={pefl: g(p) <1} then @,eV
< ¥1.gye- Choose an infinitely differentiable function y on R satisfying
Y(0) =1, () =0 for || >1 The function f =y oy satisfies f(pg) =1,
f(V9) =0 and it is bounded on I’ and»C(‘”’ on RP x T?; therefore there, exists
TeQM,(L'(G)) such that T=f, ie. T(po) =1, T(V9)=0. a '

Corotrary (3.7). If G is a nondiscrete metrizable compactly generated
abelian group then QM,(L*(G)) is regular if and only if X = gr.

To conclude this section we establish a positive result. We denote by
C§® the space of functions F on I'= R x T x4 such that F,eC" for
every 6 €4 (r, seN). We also consider the subalgebra

B = {TeOM,(L*(G)): T&_ngmﬂdq)}»
and its Mackey adherence &/ in QM,(L'(G)) (as usual from Theorem (3.3),
G = RP xZ9 xK).

ProrosiTioN (3.8). If G is nondiscrete metrizable and compactly generated,
then o is a full pseudo-Banach subalgebra of QM, (L' (G)) which contains the
measure algebra M(G) and whose character space is BI'. Moreover, < is
regular. .
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Proof. For the proof we summarize previous arguments:

1° M(G) = . since every pe M(G) is Mackey approximable by measu-
res with compact support.

2 4 is clearly full: if Te4 is invertible in QM (L (G)) the extended
Fourier transform of its inverse belongs to C$™* 29 and is bounded on I
Now, since .« is the Mackey adherence of %, « is full ([8], p. 32).

3 For every Te., o(T)={T(y): yel'}”. Indeed, for Te# this is
proved as for measures with compact support in Theorem (3.5). For any
Te </ the proof is based on an approximation of T by elements of 4, again
as in Theorem (3.5).

* 4° From 3, if Tes/ and |T(y)| c for all yeI' and some ¢ > 0, there
exists S €QM, (L' (G)) such that S+ T = I. Actually, S is in o/ since & is full.
Since & is also clearly dense in C(I) the conditions of Lemma (2.1) are
satisfied and so BI' is the character space of .o/.

. 5° o is regular on BI" because it contains &, which is regular on SI
according to Proposition (3.6). =

QuestioN: Does « equal QM, (L' (G))?

§ 4. Quasimultipliers as pseudomeasures. Now, let G be a locally compact

abelian group and I' its dual group. We denote by (x, y) the action of yeI’
on xeG. Let A(G).= {§: geL'(I}; A(G) is isometric to L*(I') under the
norm || fl 4@ = [ 1f @) dy, where dy is the normalized Haar measure on I'.
The space of continuous linear functionals on 4(G) is denoted by P(G) and
its’ elements are called pseudomeasures on G. If o P(G) one defines the
Fourier transform G of ¢ as the unique element in L*(I) such that (o, 5D
= {8, f> for every f eL*(I. The'correspondence ¢+>¢ is an isometry. If
01, 0, €P(G), then o, 0, is defined as the inverse image of G,'G, by “*”
Thus P(G) is a Banach algebra isometric to L®(I).

Recall that M(G) = P(G) ([14], p. 99). Moreover, for G nondiscrete
metrizable, any quasimultiplier T of ‘I*(G) with T bounded on I is a
pseudomeasure on G (obvious). If G is also compact then QM,(L!(G))
=1%(I') (see § 1) and therefore Esterle’s regular quasimultipliers of L'(G) are
exactly the pseudomeasures on G in this case.

The action of T'= f/geQM, (L' (G)), considered as a pseudomeasure on
G, on the elements in A(G) is given by

Tay-3L i Do), = (eDhrel ().

. ‘/EF

Ot()}),

Let p be a trigonometric polynomial on G, ie. p(¥) = Yo (% ) x€G,
with a,e C and & a finite subset of I. We write § for the ;)olynomlal p(x)
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= p(—x), xeG. Then we have

f(v)
) % mg(v)if( N(=r.y

= if(—y)(z (@/G )~y 1)) dy

yed

=(f*9)(0),

where g(x) = Y eo(@/G @) (x, ) xeG. But
()0 =F0a0) = f(y)gf’(—;—) = T o) =(F*) )

for all y, ie. f#§ = T=p and so T, p) = (T *p)(0). Since the trigonometric
polynomials are dense in A(G), this,last equality characterizes T as a
pseudomeasure (note that we use additive notation for the group operation
in G and denote its identity by 0).

We return to a noncompact group G. Clearly, QM,(L'(G)) does not
coincide with P(G) since. Ly, (I) # C,(I). Thus the theory is not so rotund
as in the compact case although some interesting facts are available if G is
compactly generated. We recall that a pseudomeasure ge P(G) is zero on an
open subset 2 < G if <o, 7> =0 for all fe A(G) with support in Q. Then the
support of ¢ is defined as the complement of the largest open set on which ¢
vanishes ([6], p. 463). We will say that a quasimultiplier T of L' (G) such that
T is bounded has a compact support if it has compact support as a
pseudomeasure.

ProrosiTioN 4.1. Let G be a nondiscrete metrizable compactly generated
abelian group. Then the regular quasimultipliers of L' (G) with compact support
are exactly the pseudomeasures on G with compact support.

Proof. Let o be a pseudomeasure on G with compact support suppg.
Consider a relatively compact neighborhood U of suppe in G. Since G is
compactly generated, U is contained in Q x # x K for some compact subset
Q of R” and a finite subset # of Z7 (as in § 3 we assume G = R* x 2% xK).
Choose a function  in C!®(R?) such that § has a compact support in R?,
Y =1 on Q, and consider the function h in L'(I) given by

S h) =W (x)(Z exp (int)) &0 (J)
where y = (x, t, ) e R x T? x4 =T and g, is the unit in L1 (4). Since h(y)
=1 for all yeU,
Gy =0 f> =<0, Y=o, (hx )> = (G, b [> = Gxh. [>
where f(y) = h(—7), yeT, for every f e L*(I'); hence 6 = ¢ x h and & is clearly
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C'? in the variables R?xT". We can apply Theorem (3.3) to choose
f,gell (G)rs'uch Vtha.t 5: = J/§ and f/g belongs to-QM, (L' (G)). The correspon-
dence 6 +— T = f/g is injective, and we have proved the proposition. m

Now note that for G = R? each element ¢ in P(R”) defines a unique
distribution d(c) on R” by

@), ¥y = [ (1)d
RP

for every ¥ in CE3 (R?) = {pe C'(RP): supp ¢ is compact} (here  is the
inverse Fourier transform of ). It is easily verifiable that a pseudomeasure
on R’ has a compact support in the sense of the foregoing definition if and
only if it has a compact support considered as a distribution. Therefore the
rf:gular quasimultipliers of L'(R?) with compact support and the distribu-
tions on R¥ with compact support whose Fourier transforms are bounded on
R? are the same (Proposition (4.1)).

Note that if Te OM,(L*(R?)) and T is C®™ (m > p/2) its action on
A(R?) is given by <d(T), ¥)> =(T *¥)(0) where y is any function in L! (R?)
such that e C§9(R?). To see this, note that if T = 7/§ is C™ we may
assume that § is C™ (Lemma (3.1)). Then /7 belongs to C§3 (R”) and there
exists a function ¢ (in L'(R?) satisfying @g = . It follows that

AT, > = [ T(x)P(9)dx

RP

= [7 )/G()dx = | F()¢(dx = (f * ) (0)
RP RP
(this last equality is given in [11], p. 122). But f¢ = /g = T 7)”
his 1a , p._122). ¢ =19/ =T)=(T+

with 1//@ =y (—1), te R". Therefore {y): Y L' (R?) and Y e CD (R?)} (is cowt)l-
flfl;led ;n the domain of T (as a quasimultiplier) and <d(T), ¥ = (T «§)(0).

s characterizes T as a psendomeasure since L'(R7): (o) i
domse T 4 (R%) {YeL'(R?): JeCly (R?)} is

It would be desirable to characterize the regular quasimultipliers among
the.Pseudomeasures on RP. Perhaps that would permit us to clarify the
relatlgn betwe'en OM, (L (R?) and the quasimultipliers T with bounded T a
question making a part of the problem “Z = gR?".
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