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Complemented kernels of partial differential operators
in weighted spaces of (generalized) functions

by
MICHAEL LANGENBRUCH {Miinster)

Abstract. It is shown that in a large class of weighted function spaces, every partial
differential equation with constant coefficients may be solved by means of a linear and
continuous operator.

Introduction. The existence of a (continuous linear) solution operator for
continuous linear equations has been studied by several authors ([8]-[13],
[15], [17], [18]). D. Vogt ([18]) showed that hypoelliptic partial differential
operators (with constant coefficients) have no right inverses in C*(R"), thus
improving a classical result of Grothendieck for elliptic equations. Ideals in
weighted spaces of entire functions were studied in [10]-[13]. In [8] it was
proved that a large class of hypoelliptic operators have no right inverses in
the classical weighted spaces (W ), and &, (M) (introduced by Gelfand-
Shilov and Palamodov, resp.).

In this paper, a complementary result will be proved: We will show that
a suitable choice of the system of weight functions will lead to so-called
general splitting spaces, i.e. every system of partial differential equations with
constant coefficients will have a (continuous linear) right inverse in these
spaces. We will consider spaces of (ultra)distributions and (ultra)differentiable
functions determined by the weight systems {exp(W (x)+nV (x))|ne N} (and
fexp(W(x)—nV (x))|ne N}, resp), where W(x)=3, , Wi(xl) and V(x)
=Zi$N Vl(lxl') and I’V,‘, V,‘ECL(R).

Let w;:= (W), ;:=(V) and 8 =1 or § = —1, according to the choice
of the sign of nVin the above weight system. We mainly need the following
conditions on the weight functions:

1. w;+6nv, is strictly increasing and unbounded for any neN.

2. 2w, oK L(t) S wpo V7 (Cr)  for large t.

3. 4 =0(w) and t = O(%():

4. w, () < exp(CV;(1) for large t. :

The last condition is used for weighted spaces of distributions and C*-
functions. A stronger assumption is needed when ultradistributions and
ultradifferentiable functions are treated (see (1.5) and Remark 1.3).
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Simple examples satisfying these conditions are W(t) = t* and V() = ™"
for a > oy, or Wi(f) = exp(pt*) and V(1) = exp(y; t) for a; <a, or oy =a
and y; <7.

The conditions are in a sense stable for taking compositions (see the
remark after 3.3). Notice that the usual condition that the weighted space
should be stable for shifts is not needed. This would imply that the weights
are bounded by exp(Cr), while no a priori bound is implied by the condi-
tions of this paper. In fact, the whole space of distributions of finite order is
filled with weighted spaces satisfying our conditions.

The paper is divided into three parts: We first show that the weighted
spaces of (test) functions are isomorphic to power series spaces of infinite
type. This extends the corresponding results in [16] and proves the linear
topological invariants (DN) and (Q) (see [15]) for these spaces. The second
section contains a Paley-Wiener Theorem and an existence theorem for
suitable (pluri)subharmonic functions. In the third section, the Fundamental
Principle of Ehrenpreis and the general splitting theorem of D. Vogt (Theo-
rem 7.1 in [15]) are used to prove the final result.

Partial differential operators in weighted Gevrey spaces of ultradifferen-
tiable functions or ultradistributions of Roumieu type are considered in a
forthcoming paper ([9]). These spaces correspond to power series spaces of
finite type and one has to use the notion of graded spaces, tame linear maps
and tame splitting theorems, as there is no general splitting theorem for
continuous exact sequences of power series spaces of finite type ([19]).

1. Sequence space representations. The general splitting theorem of D.
Vogt (Theorem 7.1 in [15]) is based on certain linear topological invariants
(DN) and (), see [15]), which characterize the (nuclear) subspaces and
quotients of (s). We will prove these invariants in this section for the spaces
of (test) functions of this paper. More precisely, we will show that the spaces
are isomorphic to power series spaces of infinite type. We will need essential-
ly weaker conditions than those normally used in the literature (see [16],
§ 3).

We will only consider functions defined on the real line, leaving the case
of several variables to the reader (see Section 3).

1.1. DerFINTION. Let W, Ve C*(R) and let V be positive.

(@ C=(W, V):={feC*(R)| p.(f) :=sup;xll /P " **]|, < o0 for any
keN}.

(b) Let (M) be a sequence of positive numbers satisfying M, =1 and
the conditions (M.1), (M.2)" and (M.3)' of Komatsu ([6]). Then

Ciarpy W, V)= /e C*(R)| pi(f) :=sup|lfV " ¥, ki/M; < 0
J

for any ke N}.
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C*(W, V) will sometimes be used as a common notation for C*(W, V) and
C("le)(W, V) (similarly, p; for p, and py).

C*(W, V) is a K {M,}-space (see [2]). In Section 3, partial differential
operators in C*(W, V), and in C*(—W, V) will be studied for positive and
even functions W and V.

We may suppose that

(L.1) Vityz=1, |o+Iwl¢ L' (R),

where v:= V' and w:= W’ Indeed, we may consider V(t)+1 (or V(t)+2
+cost) instead of V (if [v| €L*(R)), and C*(W, V) is not changed.
With U(f):= [, (w(r)|+|o(x)l)dr and y 5 0 let § solve the equation

(1.2) U@y =UQ)+sen()3 V()

Then sgn(y) = sgn(y) and e(y):=[J]—|y| is strictly positive.

Let 0 < @eD(R) be fixed. Let ¢, be the convolution of a characteristic
function with ¢(-/e(t))/e(t), where tesgn(y)[yl, |71] =:1, or tel, for some
{el,, or let ¢, be the sum of two such functions. Moreover, we suppose that

(1.3) supp ¢, < I.

Cut-off functions of the ¢,-type and Lemma 1.2 below will frequently be used
in this paper (see 1.5, 2.2 and 2.3).
The Young conjugate F* of a convex function F is defined by

F*(y) := sup(xy—F (x)).

Let M(t) be the function associated with (M) in the sense of Komatsu

(6D, ie.
M) = In(sup (/M)  for teC.

Let % or " be the Fourier transform: f(z):= [fye = dr.

1.2. LemMa. Let W and V satisfy (1.1). Let ¢, and { be defined as above.
(a) Let

(14) (Wl +1o]) (1) < exp(Dy V() for any t.

Then for any k€N there are C; > 0 such that for any f€C*(R) and any y # 0

sup|(f @) * @I(1 +[z) < CysuplfO G0 Pl Jeindx.
zeC x

j<k ¢

(b) Let g; and h; be increasing sequences such that (1/g));av €l and
myi=M/M,_, > hg;. Let Gj:=Tl<;9 and H;:=]Ti<;h and let H be the
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Junction associated to (H;). Suppose that
(1.5) (Wl +)@ <D H (D, V) V()

Then there is (Gj)jeN satisfying (M.1) and (M.3) such that for any ke N there
are C; >0 and k,eN such that for any fe C(‘}‘f,ﬂ(R) and any y # 0

for any t.

(sup £ (0l ki/M;)e 2 ® | et dx,
I

supl(f,) (@) € <
J
if ¢, is defined by peDg,(R).

Proof. I. We may choose increasing unbounded sequences h and §;
such that (1/g)el' and m; > k; ;9; and by = o(hy). So (Gj) satisfies (M 1) and
(M.3y. With A(f) := max {j|h; <t‘ we get (see (3.11) in [6])

Het) _a—}ﬁ‘u = }h(‘”)

t

i)
——di+C

e

=HH+C, =3H(@)
With ¢ < 1/(24D,) we get for large V(z)

for large t.

(1.6) D H YD, V) V() < %ﬁ—l (2D, V() V (1),
and (1.5) implies that
(L5%)  (wl+]u) () S%H"I(Da V() V() for any t and D; = D;(4).

II. For x # 0 and nel, we get

[V —V(x)| < sgn(x) f v(@)ldr < sgn(x)(U(DH-U ) =1V (x),

()] s
V<V <3V(x).
By the mean value theorem, this implies
18 L _Y@sea(®) _UO-U® 2
' e(t) —t V(@) f—t 140
= 2L <t sarv e

for some t,€1,.

icm

Complemented kernels of pdo 41

III. Let tel,ul, for some {el,. Then
19 sup ey H;) < exp(H (4/e (1)) < exp (H (44 (W] + o) ()/V (z.)))

< exp(D; V(1)) < exp(3D5 (V(0)+ V(3))) < exp(9D; V(1))

where we have used (1.8), (1.5%) and (1.7). (1.8) and (1.9) imply

lloPll o (4KY
L

(1.10)  suplloPll. (2kY/M; < e(t) ™ +e(t) TV H;

i
< Cyexp(C, V().
1.2(b) is now an easy consequence of (1.3) and (1.10).

IV. 1.2(a)- may be proved as above, taking the estimates with finite j.
Indeed, (1.8), (1.1) and (1.7) give the following estimate:

(1L11) e < (Wl (@) <exp(CaV(w) < exp(Cs V(Q)-

(1.4) (and (1.5)) do not restrict the global growth of the weight functions,
as does the assumption

) sup (W++nV((+0) <
fl<1

Indeed, for positive functions W and V this implies that
W)+ V() < Crexp(Cit)

(%) is usually used in the literature (see e.g. [16]). It means that C*(W, V) is
stable for shifts.
(1.5) may often be given in an explicit form:

1.3. Remark. (a) Let (M) satisfy (M.2) (see [6]) and let m/(j(Inj)) be
increasing for some o« > 1. Then (1.5) follows from

(Iwl+[u)(2) < Cy m(cly(r)]/(ln V(t))ﬁ
(b) For M;=exp(4f**/@+1), 0 <a<
(L12)  (wl+[D (@) < Crexp(Cy V(D)

m+W(H)+mV () for some m(n).

for some C;>0.

for some B >1 and large t.
1, (1.5) follows from

for some C; > 0.

Proof. (a) Let h; r= j/(j(lnj)ﬁ) with 1 < B < B (< ). Then h; is strictly
increasing, H; satisfies (M.1), (M.2) and
lim H} 2 lim hij3; =
j—oo J—oo
From Lemma 1.4(c) in [14] we get for large t

(Wl 410D (©) < heyn [C2 VOIS CsH H(C V) V(D).
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As (1/g;) = (1/(j (inj)F))e I, the proof is complete.
(b) Let hy:=exp(d(j—1)) with A <A and g;:=exp((A—A)(—1y).
Then m; > h;g; and (1/g;)el'. By (3.11) in [6] we get

( ) Int Int

H@OH—-H(1) = .[h(el)dlé [ (D= +1)dA
0

t
1=
1
< C, (lnt)“"“”"‘
(1.12) now implies (1.5).

The Gevrey sequence M; =

(1% a > 1, is a special case of 1.3(a). (1.5)
holds in this case if

(Wl +[6) () < C V(ey/(n ¥ ()

The sequence M; =exp(4j%) is maximal in (M) satisfies (M.2).

minimal restriction given by (1.5) is (by 1.3(b))
(1wi+1ol) () < exp(C, ¥ (0)

while only (1.4) is needed for C®-functions.

We now inductively define a partition of the real line by using (1.2),
assuming that (1.1) holds. Let x4:=0, x4;:= +1 and let

for some f > 1.

So the

for large t,

xr+sgn(r) = %(X,"’—)?,) = xr+%6(r) Sgﬂ (r):

where X, solves the equation
U(%) = Ul(x)+sgn(x) V(x,).
A solution X, may be chosen by (1.1). (x,) is strictly increasing (by (1.1)) and

(L.13)  (x,) is unbounded from above and below.

Otherwise, e.g. x:=lim,.,x, would exist and limZ%, = lim(2x,,;—X,) = x.
Hence U(x) =limU(X,) = U(x)+3 V(x) and V(x) =0, contradicting (1.1).
The following definition depends on W and V through the definition of
x,. Let ¢(0):=x,—x_,.
1.4. DEFINITION.

(8  A:={c)eCFE
Gie(ce) =Y legl (1 +Js/e(r)|)k exp(kV(x,)) < oo for any keN}.

S,r

(0) Ay = {(c)eC***

gi(ca) 1= Y. Icq] exp (M (ks/e(r) +kV (x,)) < co for any keN}.

sr

We will sometimes use 4. as a common notation.
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1.5. ProrosiTioN. Let W and V satisfy (1.1) and let
1.14) exp(—CV(0)eL!

Then C®(W, V) and A. contain each other as complemented subspaces if W and
V satisfy (14) (for C*(W, V) or (1.5) (for C("f,,j)(W, V).

Proof. (i) For r 0 let tel, =sgn(x)[|xJ, |%[], where X, solves (1.2).
Then

115 |WEO+V@Ee)—-Wx) =Vl <
This implies by (1.7)

for some C > 0.

sgn (%) (U (%) — U (x)) =3 V(x,)-

W(t)+nV (1) < W(x)+2nV (x,)
W(x,)+nV(x,) < W(t)+2nV ()

(ii) Let 0< @eD(R) be such that [p()dt =1 and suppe < {x}]x] < 1/64}.
For r % 0 let &,:= xp, * @ (- /y("))y (), where xp_is the characteristic function
of B,:=(—o0,|x, |+v(r)/2)sgn(x) and y(r):= min(e(), a(r—sgn (). For
r#0let @, 1= @iy — Pr-Let o (1) 1= (psgn(,, (). Then {o,|r € Z}isaresolution
of the identity subordinate to {I,|r€Z} (Io:=(x_3, X;)). ¢, is a function as
considered in 1.2 (for |r| = 2; y = X,_un and { =x,). This also holds for

(1.15) for tel,.

Yoi= —xg,* o (YOO +15 x o (/£ D))y (r£1)

with B,:=(—00, +(x|+7()/16)) and B,:=(—c0, (%, |+ Ty(r£1)/16),
where the sign is chosen as sgn(r). Let Yo €D.(x_5, X;) be 1 on supp @o.

(i) Let S, f:= f (- —x) for feC®(R). Let x,: C“°(R)—>s®,[co and x,:
s®,w — C*(R) be defined by
#y(f) = ( (S—s, (f0)" (2ns/e () e“"""> ,
( ) (s V)EZZ
22 (€ (1) 1= 3 Wy S (T ¢ €220 ¢~ 7).

%, is a mapping into s®, w, since fp,e D(R). x, is defined, since (co)sez€(5)
and the supports of {i,} are locally finite. We have

#2021 (N)(0) = LU Ss, (Z s:r (-, (for) " (2ms/e () e”"”"")>

=Y 0,8, (55, (f0)7)®
=Y¥.e) =2 e. ) =S
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where (f@)~ =3 S (S0, We have used the fact that
(1.17) Yelsupp, = 1
supp(S_y, (/@) = (0, &(r)

by (1.8), and that supp(S_.,(f®o)) = supp(f@e).= (x-2, X2} and £(0) = x,
—X_,.

So x, 0%, is the identity on C*(R).

for reZ,

for r#0

(iv) For geD(R) we have (S_x,g)“(z)=g”(z)ei”’. Lemma 1.2(a) now
shows the following estimate for feC* (W, V):

1 x,) + X,
aba (1) = 2755 (f0,) ~ (2m/e ()| (1 +Is/e () & TF1 0
<G (TR +Isfe() *e ") sup |19 (0
s,r roxel,
J€k+2

xexp(W(x,)+(Cl+C3+k) V(x) <C,4 Pcs )
by (1.15) and (1.11), if we choose C; so large that

(1.18) Te?e L1+ T (xor sl —Ix e 2N
r lr1z1
< C7’(_[53_C3V(x)/4dx)2 < w0

by (1.7) and (1.14).
For fe Coy (W, V), Lemma 1.2(b) implies (with k' = k/(2m))

1
Qi(m(f))=za;)

Mk’ 2msz(r)) — M(k" 2ns/e(r)) ~ C ¥ (x,)
<C e "0ey () < Capes (),

for suitable k” and C,. For s+ 0 this follows from (1.18) and
(1.19) M(ot)—~M(g) > Bln(g/A)Int  for any ¢ >0 and t > 1
(see Prop. 3.4 in [6]). For s=0 we use (1.9) and (1.18):

(1.19) exp(—C, V(x)) < e(r)exp((— C,+Ch) V(x,).

|(f(P,.) A (27'53/6 (r))' eM(k’Zns/z(r))-('- W(x,) +kV(x,)

So x; is a continuous linear mapping from C*(W, V) into A..

(v) The proof of Lemma 1.2(b) shows the following estimate:
supli(, ™ N0, KiIM; < (sup [P (2KY/M;)sup (dnsk/e (r)) /M,
i i g

< Cyexp(C, V (x,)+ M (4rks/e(r))).
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This implies by (1.15")

pi 2 (e)) = sup (S v S5, (3 ™™ T Dk | 0710
o i’ !
] r s

<G Z lexrl exp((C2+ Cs) V (x,) + M (driks/e (1)) < Ca gy (Car)-

The corresponding estimate for the seminorms p, and g, follows similarly.
So %, is a continuous linear mapping from A. into C*(W, V).

(vi) %, 0%, is a continuous projection in A. (by the results of (iii)~(v))
onto a subspace which is isomorphic to C*(W, V) via x,.

(vi) It is sufficient for the purposes of this paper that CX(W, V) is
isomorphic to a complemented subspace of A.. So we will only sketch the
remaining part of the proof.

Let %3: s®,w— C*(R) and 3,: C*(R) —s®, w be defined by
%3 (csr) (l’) c= Z lpr (er (Z Cor 81 6nist/e(r) e‘ W(xr)))’

8 %
(0 (1= 55 (8-, (@) (1657 ()’

where for r # 0,
Y, = yp,*0( /M), B,i= £(xl+e()/8, Ix]+e(r)/4),
b, = xgr*(p(‘/s(r))/s(r), B, = (Ix+(r)/16, |x]+5e (r)/16)
where the sign is chosen as sgn(r). By this choice,

supp®d, <1,, &, lsuppw,. =1, Z Syerys ¥r=1.
veZ

The choice of ¢(0) and ¥,, ®,€D.(0, 1) is clear.
It is proved as above that x; Ox, is a continuous projection in A. onto
a subspace which is isomorphic to C*(W, V) (see also [16], § 5).

Let o = (x;) be an increasing unbounded sequence of positive numbers.
A power series space of infinite type is defined as follows:

0
C Ap @)= {()| ¥ lele™ < oo for any neN}.
r=1

The main result of this section now follows from 1.5 by Pelczynski’s trick
(see [17]):

1.6. Tueorem. For W, Ve C*(R) let Wi=W and v:=V'. Let V>0 and

(1.14) e YO LY (R) for some C > 0.
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(a) C®(W, V) is isomorphic to (s) if
(Wl +10)) () < exp(D, (V () +1))

(b) C(MJ)(W V) is isomorphic to a nuclear and stable power series space
A, (o) if

(15) (W +loD@® <D, H YD, (V&) + 1)) (V()+1)
(1.20) m(2t) < Cm(r)
Here H is chosen as in (1.5) and m(t):=max {j|m; = M;/M;_, <t}

a=(,) is defined by o,:=min{t|myh(t) = n}, where h(t) is the L-
measure of {x|V(x)<t}.

If V(t) and V(—t) are nondecreasing for t >0, then C(‘}‘E{’.)(W, V) is
isomorphic to

(14 for any t.

for any t, and
for large t.

Aoy 1= {(cg)e CZ*|Y ley] mMOTYD < o0 for any ke N}.
S,r

Proof. We may assume that (1.1), (1.4), (1.5) (and (1.14)) hold (see (1.1)).
So A. is defined.

(a) (e (e ") e 2 for suitable C; by (1.18). So 3“7/ (#) tends to o
for {r} — o0, and A is isomorphic to a power series space A (f) of infinite
type (via an increasing rearrangement of {C; V(x)+In{1+l|s/z()l)|(s, NeZ
xZ}). Also, A is nuclear by the Grothendieck—Pietsch criterion. So A is
isomorphic to a complemented subspace of (s) ([15], Th. 1.5). On the other
hand, A contains (s) as a complemented subspace via the projection (c)
— (c50)- So A is isomorphic to (s) by [17], and C °°(W V) is isomorphic to (s)
by 1.5 and [17] again.

(b)(i) As m is increasing, we get from (1.20) and (3.11) in [6]

In(kr)

Mk)—M@) = [ m(eh)di <Inkm(kt) < Cym(t)
Int for t>1.
M (kt)—M(t) = Inkm(t)

So A is isomorphic to

M +ki S kv
(csr) ! Z Icsrl e () +mioten) + AV e < oo for any ke N}

Again by (1.20), A(Mj) is isomorphic to

A= {leg)|Yley ] €M < o0 for any ke N}
with  f(s, 0):=m(sl+1) and f(s, £7):=m((ls|+ DX 14+ 1,— %)) for
r >0, since &(+7) = 2(|x 14 +1)—x4,]) and since by (1.9)

(121) (0, 1) = m(2e(?) < M(2¢/s(r))+C, < A (2e/e())+C; < Cs V().
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(ii) Let B, be an increasing arrangement of {f (s, 7)|(s, )e Z x Z) and let
R (0):=|{s, NeZxZ|f (s, ) < £},
K ):={s,NeZxZ|f (s, 1) <1}l
Then
min {t]| K, () = n} < B, <min {t| K, (1) = n},
R (1) < 2myge 1 +2| {5, NeN x(Z\ 0D V(%) < t, s < u(T) g1 — 1)1
<22y (1+ Y w(@) < 2mypeq (1+R(20),

Vix) <t
since by (1.7), I, :=sgn(®)[|x,, 1%, 4sgan|] is contained in {x|V(x) < 2t} if
V(x,) <t. Next,
K (t)= |{(s, NeNx(Z\{0)|V(x) <
2( Y w@)m,—1>
Vi) <t/4

14 if V()

t/2, |s|+1
3 h(t/8) Myy235

< (myyz—1) #(Tr)H

since V(x,) <

(122)

< /8 for some {€l,. So we have proved that
79‘[../4] < B, < Bay,

(in particular, B, increases to o).
(1i1) A(Mj) is nuclear by the Grothendieck—Pietsch criterion, since

- - - BCy ~CyV(x)
Ze Cym{sfe(r) = CaV(x,) < C3+ Z (1+IS/AD BClB(I‘) le r)
s#0

5

< 00

by (3.12) in [6], (1.19) and (118).

(iv) Ay xA(M) is isomorphic to Ay, via the mapping (c,, dg) — (a; ;).
where dygyq, 1= Cg and Gy, = dg, (for s = 0 see (1.21)). So the assumptions
of [17] are satisfied and C(MJ)(W V) is isomorphic to A, (f). As A, (f) is
stable, we have

Ben £ CiBny  Bu < CiBiwa
So (1.22) shows that A (f) is isomorphic to A, ().

for any Ce N and some C,(C).

W) To prove the last statement in 1.6, we may assume that V, := V],,+
and V_ :=V(—-)|g, are strictly increasing to co (by adding arctant). Then
h() = V+ ‘(t)+V 1(¢) for large t.
Let y, be an increasing arrangement of {g(s, r):=m(s)+ V()| (s, nNeZ
xZ} and let K, and K, be defined as above. Then

K, (1) < 2(myg+1) 2+ V7 )+ V(1) < 4myg h (1),
K,y (0) 2 (myyay =2 (Vi (/A + V1 (t/4)—2) > Smya h(2/4).
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As also a, is stable, this shows as above that a, and y, are equivalent, ie.
A, () = Ay () = C(‘}f,j)(VV, V).
This completes the proof of the theorem.

Theorem 1.6(a) extends Theorem 3.4 of [16], where the weighted space
is assumed to be shift stable (see the remark after 1.2). Sequence space
representations for weighted spaces of ultradifferentiable functions seem to
appear here for the first time. /T(Mj, is the sequence space, which is also
obtained in the shift invariant case.

The isomorphism class of C*(W, V) is independent of W and ¥, while
the isomorphism type of C(‘}‘Q,j)(W, V) is independent of W, but depends on V.

The proof of 1.6(b) implies-a sequence space representation for periodic
ultradifferentiable functions, which was also given in [16], Lemma 8 (with a
longer proof). (1.20) holds iff

2m; < mg;  for some CeN,

which is satisfied if (M.1) and (M.3) hold ([16]), or if M/j! satisfies (M.1),
since then my/j is increasing and
2m; = 2 (myfj) < 2 (may/(2))) = ms;.

2. The Fourier transform on C*(— W, V), and C®(W, V). We will check
the assumptions of the Fundamental Principle of Ehrenpreis (resp. the
Division and Extension Theorem, see [3]) in this section for C*(—W, V) and
C>(W, V),, where W, VeC'(R) are even functions larger than 1. Again,
w:=W' and v:=V".

Let F* be the Young conjugate of F (F*(x) := sup, (xt— F (t))). For k > 0
let M, (z) := kIn(1+]z%), Mj(z) = M (kz) and M_, := — M, where M, is the
common notation for M, and M;.

2.1. DeriniTion. Let L (2) 1= (W+kV)* (Imz)— M, (z) for keR.
@ #F:={fes (Ollfl:=fe ", < o for any keN}.
) #7 = fe A (O]llfllk <o for some ke—N}.
The spaces carry their natural projective (and inductive, resp.) topologies.

2.2. PaLEY-WIENER THEOREM. For s=1 (in (a)) or 6 = —1 (in (b)) sup-
pose that

(2.1)
@.1)

(w+0kv)(t) is increasing to oo for any ke N and large t,
V({t)y— o0 for t—c0.

(a) The Fourier transform % (or ") is an isomorphism of C*(W, V)
onto . ‘
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(b) If W, V(and (M) satisfy (1.4) (resp. (1.5)), then & is an isomorphism
of C*¥(—=W, V), onto H#".

Proof. (a) CX(W, V) is contained in % (R). We may use the Fourier
inversion formula and shift the path of integration into the complex plane
(by (M.2)) to show that % is surjective.

(b)(i) For TeC>=(—W, V), there is k eN such that
IT(2)] = 4T, e < Cpile™)

This shows (by (2.1)) that & is a (continuous) mapping from CZ(—W, V),
into H#T.

for any ze C.

(ii) Let C? denote the d-periodical functions in C®(—W, V). The Fourier
series expansion of f € C? converges in C*(— W, V) (by (2.1) and (M.2)). So if
F(T) =0 for TeC®(—W, VY, then T vanishes on C? for d > 0, and T =0,
since (Jy.oC? is dense in C*(—W, V). So # is injective.

(iii) For ges#. we define a linear functional T on D.(R) by
(T yi= (Zn)'lgg(x)nﬁ(wdx.

T is defined (by (M.2)), since

@3) W@ e

if Yy eD.(R).
If T is continuous on D.(R) for Ehe topology induced by C*(—W, V),
then T may be uniquely extended to TeC®(— W, VY, since D.(R) is dense in

C2(—W, V). So #(T) is defined and is an entire function. If
[Z (D) (x)dx = [g(x)(x)dx  for any YeD(R),
then #(T) =g.

Choose ¢ €D.(R) such that ¢ =1 near 0. Then e Ti=(/mT->Tin
C*(—W, V), and Z (o, T) = #(T) uniformly on compact sets by (b)(i). On
the other hand,

(F(oa D) ¥d = (LT 0ue™™ 0, ¥ (0 = {GT (3,659, ¥ (1))
=@2m) " [{g(x) pu(x—dx iy () dL
=(2m) " [ () (@n*¥) () dx — [g () (x)dx

by (M.2)' and the theorem of dominated convergence.
So & is surjective if T (as defined in (2.2)) is continuous on D.(R) for the
topology of CZ(—W, V).

22

for some C >0 and any k >0,

(iv) We choose ¢, as in part (i) of the proof of Proposition 1.5. Then
there are k; such that for any y €D.(R) and.- any [y,| > 1
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KT < LT 0, < 20~ L1 fg (x+iv) (W) * (x+iy,) dx|

<c Y [exp (M (x+iy,)— M;, (x+iy,))dx

r

x sup|exp (Mg, (x+1y)) (b @,) " (x+iy,)|

W= kV) + Xy (W~ kV) . -V
< C, sup e( Wxjpp) + xyp+( )y sz‘('f’)z jldxe Xp)

r.xel, ri,

by (M.2), Lemma 1.2 and (1.15°). By (1.18), the last sum is finite. We now
choose

Vr = -—sgn(r) (W"‘kU) (x|r|)
»=1

for large |r|,
otherwise.
This implies
Sup xy, +(W—kV)* (yr) < - Xir} Iyrl +(W_kV)* (yr) + c3
xely .
< “(W—kV)(Xm)-i‘ C4.

So T is continuous for the topology of CX(—W, V) and the proof is
complete.

2.3. THEOREM. Let L be defined as in 2.1. Let W and V satisfy (2.1) and
(1.4) (resp. (1.5)) and let

24) t=0(V ().

(a) For any k > 0 there are k', Cy > 0 (resp. for any k' <O there are k
<0 and C, > 0) such that

sup L. (z+{)+2In(1 +|z)) € Ly (z)+ C,.
i<t

(b) Ly(z) is subharmonic (sh.) for k <O.
(c) For any k >0 there are k', C >0 and sh. functions &, such that

—C+ L (2) < Py (2) < Ly (2).

Proof. (a) For large [k'| and |{| <1 we get by (24)
(W+K Vy*(Im{+Imz) < C; +(W+ k' V—1d)* (I z)
< Cy+(W+ (k' —-Cy) ¥)* (Imz).

(a) is now trivial (by (1.19)).
(b) follows from [4], Section 1.6. :
(c)(i) The construction in some sense uses formula (1.2) twice: For fixed
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k>0 and k' >k (to be determined later) we define
@5 (WK V() =: (WK +1) V) (54 0),
y, is strictly increasing to oo, since V is larger than 1 by assumption. Let
(2.6) Xo:=0, x:=t(y)
(W+K V*(3,) =yt () —(W+K V) (£ ().
(i) Let 0 < @ €D.(0, 1/4) and [@(t)dt = 1. For r > 1 let
¥, i=e(r)"2 (p(./a(r))*xﬂye—wlxr)—k'v(xr)

with B,:=(x,+&(r)/4, x,+ 3e(r)/4) and &(r) := X, —x, (see (1.2)). Lemma 1.2,
(1.8) and (1.15") show for large k' >k and r > 1

for r =1, where

Q7 W (2) e < C,exp((Co+1) V(R)+I% Imz|
—W(x,) =K'V (x)) exp(—V(x,)
< Cyexp(W+kV)* (Imz) exp (— V(x,).
(iii) Let
(2.8) |Rez| < 1/e(r),
Then

Yrp=Imzzy, forr>1.

|iB,, (Z)| > eYr(xr+5(r)/4) IlAI[Z Re e ixe dx{ B(T)/Z
0
> e(r)cos(1/2) €77/2,
1/4
lo(-/e()~@| = | | @()Ree™ ™ di|¢(r) > &(r)cos (1/4)
0

by (2.8). The choice of x, and (2.8) now imply for large r
(29) hpr (Z)] 2 C4 exry,.-W(x,)—k'V(.x,) ? C5 e(W-Hz’V)"(yr)

=Cs e(W+(k'+1)V)*(vr+ 1) > Cs W+ + )V)(imz)

(iv) Let k' be so large that (by (M.2))
M ()< =M ()=In(1+]t)+Cq

and let Y,(2) := In |\, (z—s/e(r))| — My (s/&(r)). Then
210) Wyl < Co+(WHKV)* (Im2)— My, (2) = (In (L +1s/2 (0))+ V (5,)-
Let

B,(2) := sup s ), ¥rs(—2)}-

reN
seZ
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(2.10) shows that this supremum locally is a maximum and that
&, (z) < Ly (2)+Cs.

So &, is continuous and sh,, since V,, is sh. ([4], Sect. 1.6).
If |Imz] = C, then there are re N and s such that for y =1 or n= —1

Vo1 =nlmz 2y, |InRez—s/e(r) < 1/(26(r)).
So we get by (2.9)
By(2) 2 Co+(W+(k'+1) V)* (Im2)~ M3y (2) = Cg + Lo (2).

@, (z) has the desired properties for large |[Imz|. Taking the maximum of &,
and finitely many functions of the form

Sllp 'll)bls(z_i’y)s '/lls(_z-"_iy)}’ ')JER,

for suitable 7y, the resulting function @, shows 2.3(c) for k/4.

3. Solution operators for systems of partial differential equations. The
structural results of the preceding sections may now be applied to prove the
existence of continuous linear solution operators for systems of partial
differential equations with constant coefficients. For the convenience of the
reader, we first restate the conditions on the weight functions (now defined
on R") which were used so far, and which will generally be assumed in this
section:

Let W(x Z‘<NW(|X’ )and V(x):= )., Vi(lx]) and let (W) =:w; and
(V) =:v; be contmuous For i < N and large t we assume that:

1. W, and V¥ are strictly increasing and t = O (¥(1)).

2. w;+6ky; is strictly increasing and unbounded for any ke N. Here and
below § may be 1 or —1.

For ultradifferentiable functions C(M) we assume that M; = H,s N M;
where (M, ;);.v satisfy (M.1), (M.2)" and (M 3)" (see [6]) and that

iJ;2

(1.20) m;(2t) < C(my(£)+1)

for m;(t) := max {j|m ;:= M /M, <t}
The spaces C2(6W, V) and #? are now defined as in 1.1 and 2.1.
The weight functions L, now have the form

Ly, (z) = (W+kV)*(Imz)— M, (2),
where
My(2):=k Y In(1+]z]) (for C=(06W, V)),
i<N
Mi(z):= '<ZNM,~(k lzf)sgn(k)  (for Cgi,(BW, V).
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Let R(D) be an rxs system of partial differential operators with
constant coefficients and let {(3;, V})|j =1, ..., J} be a Noetherian operator
for '‘R(—z) (see [3]), with linear d1fferent1a1 operators 9;(z, D,) (of size 1 x5)
with polynomial coefficients and algebraic varieties ¥; contained in the
characteristic variety of R,

Vg := {ze C"|rank'R(—z) < s}.
Let )

o(f)i= (ajflvj)j$.l for f e (CY,

# (Vo) =) e [T £V e(f) = (f)) for some fex(C},
isJ
Hh = (e V) |sup|j}(z < Ce™™ for any keN},
zeV ]
Hri= (e (Va) |sup|jj(z! < Ce™ @ for some ke —N}.
we¥;

#% (and #3) carry their matural projective (resp. inductive) topology.
3.1. ProposiTioN. Let W and V (and (M) satisfy the general assumptions

of this section and (1.4) (resp. (1.5)). Then ¢ is a topological isomorphism
(a) from (AT R(—2)(HFY onto H%,
(b) from (AT R(—z)(HT) onto Hg,

and H'g is defined by a compact (injective) spectrum.

Proof. (b) For any ke —N there is je —N (by Th. 2.3(a)) such that

Li(@)—Lj(2) = —c0  for |z} — c0.
So
(3.1) 7 is defined by a compact (injective) spectrum,
ie. #" is a (DFS)-space. For keR let
() = {f e (CV|Ife | < oo},
H:= () eH VR Ifje” Hlo < 0}

Let B, and B,z be the respective unit balls. Then

32 o ()~

The Division and Extension Theorem (D/E-Th, see p. 240 in [3]) and
Theorem 2.3(a)(b) show that for any ke —N there are ne —N and C >0
such that the equation

#,x is continuous for some n(k).

g=00)

§ — Studia Math. 89.1
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may be solved with f e€CB, if (f}) €Byr. So ¢: (7 = H% is surjective.

HR is defined by a compact (injective) spectrum, since Bp < ¢(CB,),
which is (relatively) compact in #, for some m by (3.1) and (3.2).

0: (H#7) — H'% is open by the open mapping theorem for (DFS)-spaces.
Finally, ‘R(—2z)(s#) = Kero n(s#.) by the D/E-Theorem and Theorem
2.3(a)(b).

(a)(i) o: (1) - #% is continuous by Theorem 2.3(a).

For any keN there is neN such that

'R(—2)(H#F) is dense in 'R(~z)(#,) for the topology of (#,).

As 'R(—2z) is continuous by Th. 2.3(a) and & is an isomorphism, we only
have to show that C*(W, V) is dense in Cuy, (W, V) for the topology of
C(W, V), where C:= {feC®(R")| p(f) < oo} (see 1.1). This is trivially
proved using cut-off functions and convolution. By the D/E-Theorem and
Th. 2.3 (a)(c), 'R(—z) ()" is contained in Ker g N (1), and Ker o N (5#,4)°
is contained in ‘R(—2z)(s#)". So Keron(s#F) is dense in Kero n(o#,4)°
for the topology of (s#,)° for any keN and some n(k)eN.

Again by the D/E-Theorem and Th. 2.3(a)(c), for any k €N there are C
and neN such that the equation

33) 09 =(f)

pas a solution g B, if (f;) eCB,z. Hence (3.3) has a solution g e(s#")* "B,
if (f}) eC(k)Bygr N (HFY (by the classical Mittag-Leffler argument).
So g: (#F) — #% is surjective and open.

(i) Kergn(#F) ="R(—2) (7).
Proof. We have already noticed that Keron(sF)* contains
'R(—z)(s#1). To prove the opposite inclusion, we have to show that

(34 ‘R(—z)g=f

is solvable with ge(#F) if of =0 and f e(H#°7).

() If*R(—2z) f = 0 for some 0 = f €C[z], then there is an r; xr matrix
Q of polynomials such that

‘R(—2)f =0 for feC[z] iff f='Q(—z)g for some geC[z]".
Then {('R;, CM|j < s} is a Noetherian operator for 'Q(—z), where the R;
are the columns of R. The solvability of (3.4) now follows as in (b)(i) by the
D/E-Theorem and Th. 23(a)(c) (with {(R;, C"} instead of ¢ and '‘Q(—z)
instead of ‘R(—2z)).

B I 'R(—=2)f =0 for feC[z] iff f=0, then 'R(—~z)f=0 for

icm°

Complemented kernels of pdo 55

Fex(CY iff f= 0. So the solutions g = g, ()" of (34) (existing by the
D/E-Theorem) are in fact unique and therefore contained in ().

Let P(D) be an rxs system of partial differential operators with
constant coefficients. Let N, be the kernel of P(D) (in the hyperfunctions,
say) and let Q(D) be the matrix of relations implied by P(D) (ie. P(—z) f
=0 for feClz] iff f="'Q(—z)g for some ge C[z]"). Q(D) may be 0.

We may now prove the main result of this paper, concerning the
following two sequences:

(35) 0—NpnC=(—W, V¥ >C2(=W, V¥ BNy nC2 (=W, VY =0,
(3.6 0Ny (CP(W, VY,) —(C2(W, V) B N, n(CR (W, VY,) —0.

3.2. TueoreM. Let W and V (and (M) satisfy the general- assumptions of
this section and (1.4) (resp. (1.5)). Let moreover

37
(33)

Then the sequences (3.5) and (3.6) are exact and split, ie. P(D) has continuous
linear solution operators

Ly: C2(=W, VY "N »C2(=W, V),
Ly: (C2(W, V) A Ng —>(C2(W, V).

Proof. (a) The spaces in (3.5) (resp. (3.6)) are (FS)-spaces (resp. (DFS)-
spaces). So the Paley-Wiener Theorem 2.2 implies that (3.5) (and (3.6)) are
exact iff

v = o(wy),

2w, oV () s woV 1 (C)  for large t.

P(—2): (HY/Q(~D (YT = (H)

is injective with closed range for 6 =1 (resp. 6 = —1). But 1p(—z2) () is
closed by 3.1, being the kernel of the continuous mapping ¢. We have already
noticed that 'P(—z) is injective if Q vanishes, and that {P;, CM]j<s}is a
Noetherian operator for ‘Q(—z) if @ # 0. So the injectivity follows from 3.1
(applied to R = Q) in this case.

The exactness of (3.5) and (3.6) is thus proved.

(b) The splitting of (3.5) will be proved by the general splitting theorem
of D. Vogt ([15], Th. 7.1). All spaces are nuclear by Theorem 1.6. We now
have to check the linear topological invariants (DN) and () (see [15]):

C®(—W, VY and the subspace C*(—W, VY n N, have (DN), since
C®(—W, VY is isomorphic to a power series space of infinite type by
Theorem 1.6. (C®(—W, V) " Np), is isomorphic to H#p by Th. 22
and 3.1(a).

5 may be defined by the equivalent inductive spectrum
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B9 Hp:={HeAVR)If @) < CEHDTHHEM e,
where
L) =W-¥*Am{) for C*(-W, V)
(resp. L;(§) = (Wi~ W)*(Im )+ M ()  for iy, (=W, V),

H

L) = Vio(w;—v) ™ (m )+ In (1 +[¢)
(resp. Ly ({) = Vio(w;—u) ™" (Im{) +m; (0)).

Proof. (i) We have shown in the proof of 1.6 that for any k > 0 there is
C > 0 such that (by (1.20))

Mkt) < M()+Cm(D), M ()+km(t) < M(&0).

Here and below we have omitted the index i. This shows the claim for the
functions M;(z).

w-1)" 1
) W=k O-(W=V 0> Cor ]
C2

(k=Do()d{

2 Cy+(k—1)Vo(w—v)"'(t) for large ¢,
(W=EV)*@)=(W=V)*(t) < Co+(k—1) Vo(w—kv)~*(z)
¢+ Clk—1)Vow—1)"1()

for large t,
where (*) holds iff
(w—kv)o V™1 (Ct) >

(w—v)oV~1() for large r.

This is seen by (3.7) and (3.8):

(w—kv)oV "1 (C = Fwo V™ L(tC) = (w—v)o V™ 1(1).

The spectrum (3.9) is compact by 3.1(b). Hence it is regular and the unit
balls B, of #; are a fundamental system of (absolutely convex closed)
bounded sets, whose polars are a basis of O-neighbourhoods in
C>(—W, V¥ "\ Np. So this space has (@) (see the proof of 5.2 in [15]) if for
any peN there is k > p such that for any ieN there are C, n > | such that

I fj (Z)I < eL(:)+kZ(z) if
1 -
lfJ(Z)I min {Ct @ +iLli) teL(szL(z)}, t> 0.

This is easily shown. So C®(—W, V)* " N, has (@) and the sequence (3.5) is
split by the splitting theorem 7.1 in [15].
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(c) C=(W, V) and the quotient C*(W, VY/Q(—D)C>*(W, V)! have (Q),
since C®(W, VY is isomorphic to a power series space of infinite type by
Th. 1.6.

C2(W, V¥/'P(—D)C>®(W, VY is isomorphic to #5 by 22 and 3.1,
where the norms in % may be defined by

M == 115 €= 4ElL

with L and L defined as in (b) (with (W + ¥)* and w;+v; instead of (W, —V)*
and w;—v;). Indeed, this follows from (3.7) and (3.8) as above.

By using these new norms, (DN) is easily proved for #°} (and hence for
C®(W, VY['P(=D) C=(W, V)).

So the dual sequence to (3.6) is split by the splitting theorem of D. Vogu
and (3.6) also splits.

The conditions of Theorem 3.2 will be illustrated by some simple
examples:

3.3. ExampLes. (a) Let W(t) =
conditions of 3.2 are satisfied:

(@) for C=(6W, V) if 1<B; <, 0< =B,0<y,
<y;

(ii) for C (6W, V), 1 <o, if 1 < By and (B—1)/x < By < B, 0 ¥ < 00,
o if 1< (B—1)z = Bi, (1) <95 < o0, or if 1<f=py, 0<ys <.

(b) Let W(t) =exp(f) and V(1) =exp(y; ¢ #1 for 0 <y, B, By < 0.
Then the conditions of 3.2 are satisfied:
(i) for C2(OW, V) if 0< By <P, y1>0, or if B =B, y; <1;

(i) for C(}‘a](&W, V), a>1,if By =8, Ha<y <1

The functions in 3.3(a)(i) and (b)(i) also satisfy the conditions of 3.2 for
Cisry OW, V) with M; =exp(47*!), 0 <a< L

Notice that the sequence space representation in Th. 1.6 holds for an
essentially larger class of the above functions.

The conditions needed in 3.2 for C*(6W, V) (and for C ; ,(6W, V) with
M; =exp(Aj°T"), see (1.12)) are in a sense stable for comp051t10ns If W and
V satisfy these conditions, then they are also satisfied by WoF and VoF if
f:=F' is nondecreasing, positive and

(3.10) F ) <exp(CLF ()
(3.10) (resp. f (t) < exp(Cy F () V)
So all conditions follow for § = 1 from (3.10) (and (3.10')) for W =F and V
=F8 B <1, if (FF is increasing and positive.

The conditions of 3.2 hold for C7, (6W, V) and W(r) = eW(’) V() = %0
with 1ja <y <1 if W= W' is strictly increasing and

#(Inf)? and V() =" (nt)". Then the

y, <o, orif 1 <py

for large t

for large 1).
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(3.11) W() <exp(eW () for any ¢ >0 and large .

This essentially is (1.4) for W = V! So the conditions seem to get weaker for
faster growing weight functions.

Indeed, Theorem 3.2 may be shown for C*(W, W), in this case, i.e. we
may omit the o-condition (3.7): ’

34. TaeoreM. Let W, =expW,, where W, and W,:= W, are strictly
increasing from 0 to oo on [0, o0). Let

(3.12) W, (t) < exp(eexp(W, (1)) for any &> 0 and large t
Jor C=(W, Wy,
(3.13) (resp.W;(f) < C, H7 1 (Coexp(W (1))  for large t

for C(ﬁ,j,(W, W),, where H; is chosen as in (1.5)).
Then the sequence

0= Np 0 (C2(W, Wy)' ~(C2 (W, Wy) 25 (C2(W, W) A Ny =0
is exact and split.

Proof. All the assumptions of 3.2 are valid except for (3.7). This was
only used in 3.2 to prove (DN) for #%. So we have to show the following:
For any pe N there are k> p and C > 0 such that

”fje—(pW)v(Imz)-rMb(z)Hz < C”ﬁe—(mW)'(lmz)-v-M;n(z)“w
% “/}e-—(kW)"(lmz)-!—Mj‘(z)”w.

The assumptions on (M) being as before, this reduces to the following
statement: For any ne N there are k > p and C such that

(.14 (mW)* () +(kW)* () < 2(pW)* (1) + C.
Here again only one variable is considered. (3.14) holds iff

A= {c)eC¥|Yle)e” 0 < o for jeN} has (DN)
([15], Prop. 5.1). A is nuclear by the Grothendieck—Pietsch criterion, since
(3.15) (W) —(ma W)* (1) = (ny—n,) Wow™ 1 (t/ny) > (ny—ny)In(t/ny)/C.
The last estimate follows from (3.12). (3.12) is also implied by (3.13):

In(t/A) Blnk < M (kt) < H(kt) by (1.19) and hence Int = o (H(1)).
(3.15) also implies that

Ay = {ic)| Y le] ™" < oo for some neN}
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and that A; is isomorphic to
Hy:={fe#(O)||f(2) < keV™@ for some ke N}

with U(f) = W(ln|t)) = exp(W(In|t)) for [t 21 and U()=1 otherwise.
Theorem 3.4 now follows from

3.5. ProposiTion. Let W be convex and increasing and W() =0 for
t<0. Let

(3.12) w(t) <exp(eexp(W () for any &> 0 and large t,
where W:= W'. Then (#y), has (DN) for U (1) = exp (W (Int])).

Proof. Let B,:= {fe #(C)]|f (z)] < V?}. By Lemma 2.1 in [15], we
have to show the existence of me N such that for any ke N there are p, C
with

(3.16) B, < ¢*B,+Ce ®B,,, for ¢>0.
We set / (x) = (x—x,+k+1)g/k and x, =In(g/k). Then

x) < e*+g for x =0,
(3.17) V()

V() <tk+1+pes—g for x>0, p=e*

(consider only the unique point where the derivatives of the left and right
hand sides are equal). Moreover,

(3.18) Y(x) = (k+1)e  for Xi=x,—k<x <X

Let ¢(z) := y (W (In|z))). Then ¢ is sh, since o(e*) = (W)= W(xC,
+C, is convex and increasing on R (see Th. 1.6.7 in [4]. -
(3.17) and (3.18) give the following estimates:
e(x) <™ 4o=Ux)+g for x=0,
3.17
G17) () <(k+1+pU@x)—g for p=e* x>0,
>

(3.18) p(x)=k+1)UK) for X, < W(lnx) < x,,
where we suppose that ¢ is so large that x, =In (o/k) > k. Now,
1/8, = 1/(exp (W™ (x))—exp (W2 (%)) < (W~ (O)k
< exp (4 exp (x)/exp (k) = exp (exp (%) < exp ( U (x)

for %, < W(lnx) < x,, where (+) follows from (3.12) for large ¢. We may
choose heD(R) such that h(x) =1 for W({lnx) < X, and h(x) =0 for
W(ln x) 2 x,, and

W ()] < Cofd, < Coexp(GU () for % < W(lnx) <x,.
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Let feB, and H(z):= h(|z|). Then
|0(Hf) (@) < Cy %+ 12V < €, 9@ (1 4[2]) 2.
So {(Hf)e ?cL*(C) and we may choose a solution G of
0G = ~0(Hf)
such that for some C; independent of ¢ (see Th. 44.2 in [4))
[IG@Pe 2@ (1+]2)2dz < Cs.

Set fy :=G+Hf and f,:=(1—H)f—G. Then [ = f +f; and fe H(C). For
large ¢ we get

(11 @172 d2)"* < Cy (1 2 &2V (14249 2d2)" < Cy e,
(_“fz (z)lz e~ 2k +2+p)UG) dz)l/z
S Co([l2 () e 26 MU (14 12?)"2d) < €070,

The proof is completed by showing that the sup-norms may be estima-
ted by the L*-norms. For fe#(C) we have

C
( [ If@Pdz)'"”*  for any R > 0.

rOI<E( 1

For fixed z choose R, such that U(jz|+R,) = 2U(|z]). Then
/R, = u(0)/U (2) < CefVO  Ce?CU

by the mean value theorem and (3.12). This shows (for |z] = 2)

C

f@l<o( [ 1fe+0Pdz)"
R, i<r,
< éezcv(z) Uzl +Ry) (“f(olze—ztv(g) dC)llz
< CelPCHDVR([| £ ()26~ 20O 4r)"*  for [eN.

So the proposition is proved.

Property (DN) for (#,), was characterized in terms of U by R. Meise

anc! B. A Taylor ([12]), assuming, however, that Ay 18 invariant for shifts,
which gives a priori estimates for W,

_ If W+Inw =Inw is convex, then (3.14) may be seen directly: w™! oexp
is then concave and

W Ee/p)=w (/P = wT (@) ~w ™ (1/p).
This shows (3.14) for k =p%, m=1 and C =0.

Theorem 3.4 does not hold for stable wei i i
: ght functions M (ie.
M2 < CM(). In this case, C®(M, M) is the space Wy o, which was
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considered in [8]. A large class of hypoelliptic operators have no solution
operators in (Wy, )',. In particular, semielliptic nonelliptic equations have no
solution operators in (Wlxl”“ b for 0 <o <1 (except for at most one value
of a).

3.6. Remark. Ler GeC'[0, o) and let g:= G’ be strictly increasing
from 0 to oo on [0, co). Then there is We C'[0, c0) such that w:= W' is
increasing to oo and

GH<W@H<GE+C)+1  for some C >0 and large t,
w(t) S Wty  for any ¢ > 1 and large t.

Proof. Let ¢,:= G !(n) for n > 0. Then y,:=c,—c,-, is strictly dec-
reasing to 0 and Z”y,, = o0. Let the graph of v; be defined by the line
segments joining the points (n, I'),»1 (and (0, I'y)) for I':=1/(n(ln(n+ 1))2)
+7,. Let V be the inverse function of V;(t):= j’oui (x)dx. Then v:=V"is
strictly increasing and for large n we get for te(n—1, n]

Gl =y us y i< fos(x)dx < Vi (t+1),
k=1 k=1 0

n—1 n—1 n
G lOZcCr= 2 nz o Ni—Ci = o (dx—Cy 2 V1 (1)—C,
k=1 k=1 1

since Y 1/(n(ln(n+1))2) <. So
GYSW@E):=V({+C) <G(+Cy)+1  for large 1.

Fix ¢ > 1. Then we have for large n and te[n, n+1]
by (1) 2 Tpey = 1Y((n+ Dl (n+2)7) =177,

1
o) =V'() = ol SV = V(@) for large t.

Vo)
So W has the above-stated properties.

So (1.4) and (1.5) do not imply a priori bounds for the growth of the
weights by the remarks after 3.3. Moreover, the whole space of distributions
of finite order may be filled with weighted spaces satisfying the assumptions
of this paper. However, there is no solution operator for  hypoelliptic
equations P(D) in the space of distributions of finite order. Indeed, if the
kernel of P(D) were complemented in Dy (R, then it would be complement-
ed in C®(R"), contrary to the result of Vogt ([18]). :

Similarly, (Wape,wol = Weepw, kb is the umion of the spaces Wy
:=C®(expW(k-), expW(k")),, which are general splitting spaces by 3.4.
Nevertheless, (W,,, ¢, ), in general allows no linear continuous solution operator
for partial differential equations ([8]).
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If P is hypoelliptic, then Np n C*(— W, V)* may coincide (topologically)
with Np n 4* for some continuously embedded space A < C*(—W, V). Then
Np v A* is complemented in A° if it is complemented in C®(— W, V). So Th.
3.2 may give solution operators in weighted spaces of ultradifferentiable
functions assuming only (1.4) (and not (1.5). Using this argument for
{c=w, V){,)s, one may get solution operators in spaces which are not
tractable directly by the methods of this paper, since they fail to be power
series spaces of infinite type (for example {fe(C™(RY)||[f® e~ "+, < 0
for some ne N and any keN)}). '
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Added in proof (November 1987). In [20] optimal cut off functions are constructed, which
may be used to improve the results of this paper for ultradifferentiable runctions:‘lfet m,/p he
increasing and let C, m, < mc, for any peN and some C; > C eN. (These are conditions (M.l)*
and (M.3) of H. Komatsu, which are stronger than (M.1) and (M.3)). Then there are functions
0< 1, 6C®(R) (see [20]) such that (g, ()dt =1, suppu = [—n/64, n/64] and

Yk 3C, Vn: sup|? ()| ki/M; < Cyexp (M (Ci/n)n,
hx
where M (1) : = In (sup; (t/j}/M))).

Using i instead of ¢(-/e(t))/e(t) in the definition of ¢, in Lemma 1.2, one can show the
following improvement of Lemma 1.2: Let (M,) satisfy (M.1)%, (M.2) and (M.3) and let

&) M (ol +he(®) < CV ()
Then for any keN there are C; >0 such that for any f eCf)(R) and any y #0

for some C >0 and any t.

suplf,) @) exp (M (k) < C (s1p 179 (I K/M)exp(Ca ¥ (0) [ exp (xTma)d.
ze€ ],xel; ¢
Any result of this paper for ultradifferentiable functions then holds if (%) is assumed instaa{i

of (1.5). (%) is strictly weaker than (15): It already holds if (M) also satisfies (M.2) aln‘dﬂl 1f
(10| +1w]) () < mycpy for some C and any t. So () is valid for the Gevrey sequence M, = (ply* if
(o] +w{)(e) < CV(1)* for some C and and t. This improves Remark .1.3 and also gives new
examples in 3.3. Similarly, condition (3.13) in Th. 34 may be substituted by a weaker one
coming from ().
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