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Left-invariant degenerate ellipti‘c operators on
semidirect extensions of homogeneous groups

by

EWA DAMEK (Wroctaw)
¥

Abstract. Let a solvable Lie group § be the semidirect product of a nilpotent group N
and an abelian subgroup A such that Ad,, a €A, are diagonalizable. For a class of second order
left-invariant degenerate elliptic operators L on § we study bounded L-harmenic functions F. We
describe L-boundaries of S and prove, for L hypoelliptic, the convergence of Poisson integrals to
functions on the boundaries. The results of the paper imply theorems on admissible semires-
tricted convergence of classical Paisson integrals on symmetric spaces.

Introduction. This paper treats harmonic functions with respect to left-
invariant degenerate elliptic operators L on a class of solvable Lie groups S.
Our approach is motivated by the classical theory of harmonic functions
with respect to the Laplace-Beltrami operator on a noncompact symmetric
space X = G/K considered as N4, where G = NAK is the Iwasawa decom-
position of the group of its isometries, G. We find a class of boundaries of S
and study the Poisson integrals on them. Among them there is a maximal
boundary in the sense that the Poisson integrals of bounded Borel functions
on it reproduce all the L-harmonic functions.

Our main result is the almost 'everywhere.convergence of Poisson
integrals of L? functions, p > 1. This gives a natural extension to the context
of our spaces and operators of the admissible semirestricted convergence for
symmetric spaces. The main problem we shall have to overcome is little
information on Poisson kernels. We have no explicit formula; we are able,
however, to prove enough properties of the Poisson kernel to obtain the
convergence theorem. Before we sketch our results and techniques in greater
detail we shall describe some of the background facts about harmonic
functions on symmetric spaces. :

Harmonic functions on symmetric spaces have been studied thoroughly.
By a harmonic function on G/K = NA one means a function F such that

i . :
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Key words and phrases: degenerate elliptic left-invariant operators, Poisson kernels,
convergence to the boundary, homogeneous groups. ) .
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DF =0 for all G-invariant operators D which annihilate constants. If F is
bounded then it is harmonic if and only if AF =0, where 4 is the Laplace~
Beltrami operator on G/K. Boundaries for symmetric spaces (in the sense of
[16]) can be identified with some normal subgroups N, of N. These
nilpotent groups have the additional structure of possessing “dilations”. The
Poisson. integrals can then be realized as convolutions on these groups and
this fact greatly facilitates their analysis. N is a maximal boundary, i.. every
bounded harmonic function on G/K is representable as the Poisson integral
of a function feL®(N) [16]. Moreover, the Poisson integrals of functions
fel?(N,), p=1, and of bounded measures are harmonic.

For symmetric spaces two modes of convergence of Poisson integrals up
to a boundary: restricted and admissible semirestricted, defined by A.
Kordnyi, have been studied. Admissible convergence has been proved first for
p =0 by A. Koranyi [16] and A. W. Knapp and A. R. Williamson [15],
‘then for p sufficiently large by A. W. Knapp, L. A. Lindahl and E. M. Stein
[17] and finally for all p>1 by P. Sjogren [22]. If p =1 the admissible
convergence does not hold. The product of discs is a counterexample [14],
[18]. Moreover, we have restricted convergence proved by E. M. Stein [23].
A ‘simpler proof has recently been found by P. Sj6gren [22].

In this paper we consider a class of solvable Lie groups § satisfying the
following conditions:

(i) The Lie algebra s of S is a semidirect sum of a nilpotent algebra n
and an abelian algebra a.

(i) The opérators adg|,, Hea, are diagonalizable. ‘

(iii) There is an Hea such that the operator ady has strictly positive
eigenvalues.
_ Of course, this class includes in particular noncompact symmetric spaces
NA. ‘

We study not only the Laplace—Beltrami operator but the class of left-
invariant operators of the form i

L=X}+ ... +Xj+X

‘where Xy, ..., X;, X es. In the case of a symmetric space this covers second
order elliptic degenerate operators which commute with the N4 action and
annihilate constants. The study of such an operator on an abelian group is
not interesting because it is elliptic on a subgroup. On the other hand, if L is
degenerate elliptic and G-invariant on a symmetric space then it must be
elliptic in view of the action of K. In our situation a new phenomenon
appears. If j <dims and X, ..., X; generate s the operator L is only
hypoelliptic but for our purposes has as good properties as an elliptic one.

The operator L is the infinitesimal generator of a convolution semigroup
of probability measures {y},.,, and for a bounded function F the equality

icm

Left-invariant degenerate elliptic operators 171

LF = 0 (in the sense of distributions) is equivalent to F %, = F, i.e. F is a p-
harmonic function in the sense of Azencott—Cartier [1] with u = Ji;. There-
fore we can apply the theory of boundaries for u~-harmonic functions developed
by A. Raugi [21] and Y. Guivarch [9]. ’

By a theorem of L. Birgé and A. Raugi [2] nontrivial bounded L-
harmonic functions exist on S if and only if 1(Z) < 0 for a root 1 of s, where
X =Y+2Z, Yen, Zca. Then the maximal boundary N, (L) is the subgroup
of N with the Lie algebra being the sum of all the eigenspaces n* correspon-
ding to A such that A(Z) <0. The other boundaries are subgroups of Ny
called in this paper homogeneous subgroups. For the Laplace-Beltrami
operator on a symmetric space we have A(Z) <0 for all 4, N;(L) = N and
the boundaries in the sense of [16] are included in our class of boundaries.

The plan of this paper is as follows. Some basic facts concerning p-
harmonic functions, Lie groups and semigroups of probability measures are
recalled in Section 1. Moreover, we describe there the class of solvable Lie
groups which are the subject of the present paper, and their homogeneous
subgroups. In Section 2 the theory of A. Raugi [21] is adapted to the group
S, and p-boundaries of S are described. This section is a preparation to
Section 3 devoted to degenerate elliptic operators where we prove that the
Poisson kernel v corresponding to the operator L has a positive moment.
This is all what can be proved without any additional assumptions on the
operator. If X, ..., X;, X genera{e s then v has a bounded smooth density
P,. :

Our main result, the convergence theorem for operators such that
Xy, ..., X; generate s, is included in Section 4. We prove it under the
assumption that all roots of s are rational combinations of a maximal
linearly independent over R subset of them. The semigroup of measures
corresponding to such an L has very good properties: it is smooth and
decreases very rapidly at infinity. This makes it possible to prove that
Po(y) < C(1+1x,(») " for some C, &> 0.

This paper is in some sense a continuation of [4] where the semidirect
product of a Heisenberg type nilpotent group N and the group 4 of dilations
of N is considered. The results concerning harmonic functions with respect to
the Laplace-Beltrami operator are analogous to those for rank one symme-
tric spaces. However, due to the absence of the group K the proofs use
different methods. These methods developed further are applicable in a still
more general situation. This is the subject of the next paper by the author
and A. Hulanicki, where the case dimA4 = 1 will be studied in more detail,
and, in particular, the admissible convergence of the Poisson integrals of L'
functions will be proved. This yields the restricted convergence of such
integrals on S. ; :

The author is grateful to Andrzej Hulanicki for his ideas and helpful
suggestions. Many results of this paper are in fact a joint work.
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1. Preliminaries. This section is devoted to a brief presentation of the
later needed basic facts concerning the following topics: u-harmonic func-
tions on a group, invariant Riemannian metrics' on Lie groups and semi-
groups of probability measures.

Ji-harmonic functions. Let G be a separable locally compact group. We
say that a locally compact space X is a G-space if there is a continuous map

G xX3(s, x) = sxeX

such that (ss)x =s(s'x). If g, v are bounded measures on G and X
respectively, the convolution uxv is a measure on X defined by

Uy pxvy = [£(9du@dv(x),  feCo(X).

The measure 5,+v will be denoted by sv.
For a probability measure ¢ on G a Borel bounded function F on G is
called p-harmonic if '

L1 F(s) = [F(ss)du(s) = F » ji(s)

where (M) = u(M™') and the convolution of a function f on G and a
measure pu on G is defined by

Sru) = [y~ Hdu®).

Let X,, X,,... be a sequence of independent G-valued random‘ vari-
ables, each with distribution u. Then for the sample space

G=GxGx ...
”
with the product Borel o-field and the product measure
B=UXUX .o,
“

X; is the projection
X;: G35 =(s1, 53, ..) = X;(5) = 5;€G.

Let s,=X,(5) ... X,(s). :

We say that a G-space X with a probability measure v is a u-boundary
of G if : ’
1.2)

ENERY

and for almost all s€G the measures s,v are *-weakly convergent to the

point mass Jz for a Z(s)e X, ie. if f is a bounded continuous function on
X then.

1.3) 1i:n o8V =L, 829> prae.

The measure v is called a Poisson kernel for I
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Let L(X) be the set of bounded Borel functions on X (1.2) implies that
the Poisson integral

(14 PXf(s) = [f(sx)dv(x), feL(X),

is a p-harmonic function. (X, v) is called a reproducing p-boundary of G if
every bounded p-harmonic function on G is the Poisson integral (1.4) for an
f in L(X).

Finally, we recall that a probability measure u on G is called spread out

" if it satisfies the following equivalent conditions:

(1) There is an integer n> 0 such that the nfold convolution p¥" is
nonsingular with respect to the right-invariant Haar measure m.

(ii) There is an integer n and a nonempty open set U in G such that
w*"(Z) = m(Z) for every Borel subset Z of U.

Lie groups. Let now G be a connected Lie group with a right-invariant
Haar measure m. A nonnegative Borel function Y on G is called subadditive if
it is bounded on compact sets and

@@ Vo) <Y)+y¥ () for x, yin G,
(i) Yx ) =y (x), xeG.
If instead of (i) we have

) T V) <SYEY)  for x, ye6

and also ¥ (x) > 1, we say that ¥ is submultiplicatiu.e.
Let || || be a left-invariant' Riemannian metric on G and 74 the corres-
ponding distance (from the identity), i.e. -

‘ 1
76(x) = inf {||6 (Ollow dt
0

where the infimum is over all C! curves ¢ in G such that ¢(0) =¢, 6(1) = x
(cf. e.g. [11]). 15 is subadditive, and for every nonnegative function  on G
which is bounded on compact sets and satisfies (i), there is a constant C such
that ’ S

(1.5 ‘ Y(x) < Clrg(x)+1). for all x in G

(cf. Proposition 1.2 of [11]). Consequently, for every submultiplicative func-
tion ¥ on G there is a constant C such that

(1.6) W) <Y xeG.

Let U= {x: 14(x) <1} and"let #eCZ(U) be a nonnegative function
such that {®(x)dm(x) = 1. Then for left-invariant vector fields X and Yon G .

-
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we have
Te(X)—1 <15+ P(x) < 16(x)+1,
(17) X (16 D) (9] < [IB )l A, X]| dm(y),
IXY (25 * B} ()} < [[Y@ () IIAD, Xlldm(y). [11],
where 15 % P (x) = frg(xy_l)@(y)dm(y).

If B is an automorphism of G and B¥ the differential of B at xeG then
‘we write

(IB2l = sup {|BE(W): we T.G, |lw|l = 1}.
We shall use the following simple
(1.8) ProvrosiTioN. For any automorphism B of G we have
2 (B() < 1B 76 (-

Proof If Y is a left-invariant vector field on G and xe G, we write Y,
for the corresponding element of T, G. Let for xe G

L, Gay—xyeG.
Since Lpy 0B = BolL,, we have
(1.9) 1B (Yllag = 1Bz (Yo)lle-

Let we T, G and let Y be the left-invariant vector field such that Y, = w.
Then by (1.9)

1B W)llzxy = 11BZ (Yollle < IBEII I Yelle = [Iwl].
I yis a C' curve such that y(0) = e, y(1) = x and ¢(z) = B(y(#)) then

76 (B(x)) < [ll6 (®)log d2

Oty . Qe

1
B3 (5 ()l acrn 4t < 1BEI] {117 (llyqo dt,
0

and the proof is complete.

Finally we recall that a simply connected nilpotent Lie group N is called
homogeneous [6] if there is a basis Fy, ..., E, of the Lie algebra of N and
numbers 1 =d; < ... <d, such that for ¢ >0 the map

d
)
E;—1YE,

extends to an automorphism &, of the Lie algebra. For x =exp X in N we

write §,(x) = exp(6,X). Of course, 6, is an automorphism of N called a
dilation of N.

©
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(1.10)  ProrosiTiON. Let Ty be a left-invariant distance and f a nonnegative
function on the homogeneous group N such thar:

i) f(B,(x)<tf(x) for a d=0 and all t > 1.

(i) U= {x:f(x) < 1} is a bounded set containing an open neighbourhood
of e
Then f(x) < C(l+1y(x)) for some C, > 0.

Proof. The proof is essentially due to E. M. Stein (unpublished). Let
7y (%) = inf {n: xe U"}. 1y is nonnegative, bounded on compact sets and

Ty (X} < Ty (x) +15(y)-

By (1.5) it is sufficient to prove

(L.11) fX) K Cty(x)f for some C, B > 0.

Let ¢t; > 1 be such that U2 c d;, (U). Since 6,, is an automorphism, we
. have ° ‘
(1.12) U e @)U, m=1,2 ..,

and f(x) <#f" for xe(8,,)"(U). Let f'=dlog,t, and

A< f(x) < dome D,

Then by (1.12), x¢ U?", hence 7y(x) > 2™. Consequently, 145(x)* > t{" and
F () <td1y(x)¥, which yields (1.11).

- Semigroups of probability measures. A one-parameter family of measures
{/.L,}»o on a Lie group G is called a semigroup if

Hs* = Howr,  Hmff*p—fllcg =0 for feCo(G).
-0

The infinitesimal generator A of {u},.¢ is defined by
Af =lime™ (f % ~f),
1—0 .

where the domain D(4) of A4 is the set of functions in Co(G) for which the
limit exists in the C, norm. We also define D, (4) as the set of f in L' (m) for .
which the limit exists in the L'(m) norm. !

The following facts are due to G. Hunt and well known (cf. e.g. [12]).
Both D(A) and D, (4) contain C°(G), and A on both D(4) and D, (A4) is the
closure of A on C®(G). For every A > 0 the operator A—A maps D, (4) onto
L'(m) and the inverse map (—A4)~! =K, maps boundedly L'(m) onto
D, (4). We have . . :

Klf =f *kb
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where k; is a nonnegative bounded measure and
1.13) B || f 5 ((3/2) Kge)*" =1 % il | 1y = O

for f in L'(m).

For felP(m), geL’(m), p~*+p~* =1, 1 <p< oo, we write {f, g
= [fydm. The semigroup of probability measures {/i},»o, Where f (M)
=1, (M™1), has the infinitesimal generator A4’, where ‘

(1.14) - Ao, ¥d=Lp, AY), ¢, yeC>(G).

Let L be a second order left-invariant differential operator on ‘G of the
form

ain;Xj+ Z ijja

1<i,js$n Jj=1

where X, ..., X, is a basis of the Lie algebra g of G, the matrix (q;) is
positive-semidefinite and by, ..., b, are arbitrary constants. Such an operator
is. called degenerate elliptic. The closure L of L (restricted to C °°(G)) in Cy is
the infinitesimal generator of a semigroup of probablhty measures {i},»o ON
G (cf. eg. [12]).

" Moreover, for all « >0 and T > 0 we have

(1.15) , [ dy,(x) < Curs 1e(0, T
(cf. [12] for a simple proof).

We can diagonalize the quadratic form 21 <1.j<n %y €i¢; to obtain a basis
Xy, ..., X, of g such that the operator L is of the form

L=X?+ ... +Xi+X, ' .
where X eg. If X4, ...

(1.16) Weak Harnack InequaLity [3]. For an open set U, a compact set

K < U and every differential operator 0 with continuous coefficients there is
a constant C such that

, X.., X generate g (as a Lie algebra) we have

sup |0F ()|

xeK

< CsupF(x)
xel
for every nonnegative function F satisfying LF =0 in U.
Under the assumption ‘that X,, ..
nack inequality holds.

(1.17)  HArNack INgQuALity [3]. For an open set' U, a point xo€U and a
compact -set K < U and every differential operator & with continuous coeffi-

-» X, generate g the following Har-
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cients there is a constant C such that
sup|0F (x)| < CF

xeK

(xo)

for every nonnegative function F satisfying LF = 0.

If Xi,..., X, generate g then, of course, X,, ..., X, d/dt generate the
Lie algebra of the group G xR. Then by Hﬁrmanders theorem [10] the
operator
d

——t L= -i+x+X§+

: .+ X2
dt dr

is hypoelliptic on G xR and so the measures g, are absolutely continuous:
dy, (%) = p; (x)dm(x), t >0. The function

G xR*3(x, 1) = p(x)eR

is C*® and harmonic with respect to the operator -—d/dt+L If feCo(G) and
u(x, 1) = f*p,(x), t >0, then also (—d/dt+L)u=

The left-invariant Haar measure on G will be denoted by my. We define
the convolution of a measure u and a function f by

prf(x) = {fy~ ' 0du®).
Let
"“A == Y12+ . +Y;.2,
whete Y;, ..., Y, is a basis of g and let
~d=V+ .. +¥]

(d/db)f (exptY; X);=0. Then of course
Ap(x~Y) = (4e) (x) = 4¢(%).

By [20], A is essentially selfadjoint on C* < L2(m), (L+4)"1f = kxf,

keL'(m) and for s> n/4, k*eL’(m). Moreover, (P, kdm = <@, kD,
= [ (x) k(x) dm (x). Consequently, there is a constant C such that for every

feD((l:T“)mC“' G) we have ‘

142
o< (e ) 10+ 2

where ¥(x) =

(1.18)

because

f0) =k s(1+dPf (x) = [+ 277 0 k=) dm ().
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Crlioll 2, Where

If peL*(m) then @ «peL?*(m) and [l¢*pil 2, <

v ' dm ,
Cr = su —@! d R
r= sup f ( p v )) P (¥)

which is finite by (1.15).
Now let [ > 5 and ¢eC2. In view of (1.16) and (1.18), for a compact
neighbourhood K of e in G and ¢ > 0, we have

[(1+4) %@, pl
= A+ (1 + D) @) *p) (@)
<C;  sup J(A+D)7§)xp (%)
xeK,reft—e,tte]

d 1/2
<G (—’”—(x)) sup
dm reft—gt+e)

Hence peD((1+4)") for all N=0, 1, ...

”(b * pr”LZ(ml) < C3 ”(p”Lz(m) .

Consequently, since p,e C*(G),

d 1/2
(1.19) ()i <C (E:‘;] (X)) CL+24) Pl 2,

and by (1.15) for every submultiplicative function ¥ on G
(1.20) _“’t

Let X" = X} ... X;" where I is a multiindex, I = (iy, ..., i,). It is well
known [19] that for every I there is an N and a constant C such that

X" AN 2y < CUA+ )]

WY (m)ydm(x) < + 0.

L2(m)

for every fe((1+4)"). Now we prove the following proposition which for
nilpotent Lie ‘groups is proved in [13].
(1.21) ~ Proposrrion. For every real number o and every mul'tiindex 1 we have

ot G(x)

sup {| X p,(x)| €"™: xeG} < 0.

Proof. Let 13+ ® =f be as in (1.7). It suffices to show
sup {| X" p, (x)| e™: xeG} < 0
and this is implied by

(1.22) (X"pye’ e L?(m) for all I and « > 0.

In fact, since by (1.16) and (1.19), X’ Py2 is bounded for every t, we have
X'p, ()= D2 * X! Pyaz ()

icm
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whence
X7 g (3] €79 < Cpya(y™ ") 17D X7 pyys (y0)] €709 dm(y)
< Cllpyz e/ (drvjdm) 1/2||Lz(,,,) [1X" by e f||Lz¢m)

The right side of the inequality is finite because di/dm is multiplicative and
in view of (1.6), (1.7), driijdm < e for some B > 0.
We notice that by repeated application of (1.7) we obtain

(1.23) | X! /O] € Cetd™

and we prove (1.22) by induction on the length -of the multiindex 1. Suppose
that for an X in g X' = XX’ with |I| > |J| and (X’ p)e” €L*(m) for all
a>0. Let {f,] be a sequence of nonnegative functions in C°(G) such that
f.(x) < 1, for every Yeg the sequence supg|Yf,(x)} is bounded and

w

~

lim f,(x) =1 uniformly on compact sets,
He ot
lim Yf,(x) =0 uniformly on compact sets
H o0

([111, p. 267). Then, for every n, in virtue of (1.23) with g = e,

X p)E, g2y = L X ps (X P G?)
S KX (S, X p), (X p) g™ +1<f, XM py (X! p) Xg*)
<< XX py (X P)g*M+C < 1X pl, 1X7 PAG?>
XS X prs (X7 9PN < U XX Pl 2 1C D 01200
+CI X Pl 20 1K )82 2000 FICKED XT P20 1K PDGH 2y

whence, letting n— oo, we obtain (1.22).

A class of solvable Lie groups. Let s be a real solvable Lie algebra of the
form

s = n®a

where n is a nilpotent and a an abelian algebra We assume that the ope-
rators {ady: Hea) are diagonalizable, ie. in a basis E,, ..., E, of n:

- ady(E) = A, (H) E;.

We require that
(1.24)  There is an H in a such that 4,(H)>0, i=1,...,n

This guarantees the existence of a nonnegative basis Hy, .., Hfor 4in a,
ie. a basis such that A(H,) =0 for all Aed and r='1,..., n. Let A be the
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connected and simply connected Lie group with Lie algebra a. The inverse

of exp: a >4 will be denoted by log. We say that logs = —o0, a€A, iff
A{loga) = —o0, Ae4. We also notice that if H,, ..., H, is an arbitrary non-
negative basis, loga = Zf:‘(log a); H; and (loga), — — oo then loga — — .

Putting A; <4 if and only if 4 (H,,) < 4(H,,) for ro=min {r:
A;(H,) # %; (H,)} we introduce a lexicographical order in 4. Then At > A

whenever A;+A4ed. Thus for a suitable numbering of the s we have

A< ... < 4, Let
n'={Xen: VHea ady(X)=A(H) X}, Jled.
Since
iy
LAY <n if Ai+ﬂj§A,
(125 [ n ]{= {0} otherwise,
lin(E;, E;yy,..., E,) is an ideal in n.

" Let S, N be connected and simply connected Lie groups corresponding
to the algebras s, n respectively. Of course, S is a semidirect product of N
and 4. N is a normal subgroup of S and the mapping S3xa—acd is a
homomorphism. Since exp: 1 — N is a global diffeomorphism every xe N can
be written as x =exp(},|_, x;E;). Then

axa™! = x"=exp(} MO E),  aed.
i=1
For the element H of 4, as defined by (1.24), we introduce dilations in N by

8¢ (), = xoPlogn &) t>0’ ;

making N a homogeneous group. )

A subgroup N; of N will be called a homogeneous subgroup if its Lie
algebra n, satisfies the following conditions:

()) ny is invariant under the action of ady, Hea.

(i) There is a subalgebra n, invariant under the action of ady,, Hea,
such that m=n,®n,.

The subgroup corresponding to n, is denoted by N,.
that m; = @, (mn*), i=0,1.

The next lemma is a particular case of a more general proposition.
However, the proof bere is very simple.

It is easy to see

_(1.26) LEITfMA. {: NyxNo3(y,z)—yzeNis a diffeomor phism.

Proof. Let Uy, Uy, U be neighbourhoods of e in Ny, Ny, N respective-
ly such that {: U, xU,~Uis a diffeomorphism. If xe N then x = 9, (x)) for
an x'eU and a t> 0. Thus x' =y 7/, Y'eNy, e Ny, and x = 6,(y') 6,(2).

icm°®
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Moreover, if yed,(U,), z€d,(Uy) then ‘
L, 2) = 8i(Llyy xue (6,10, 8,21 (2)))
which completes the proof.

If 75 is an invariant Riemannian distance and || || the corresponding
norm in k& then .
(1.27) 1 (exp X) < || X]].

On a homogeneous group N we have an inverse incquality, ie. there are
C >0, #20 such that .

(1.28) X1 < C(1+ry(exp X)Y -

The ’proof of (1.28) follows immediately from Proposition (1.10) applied to
the function f(exp X) = ||X||. ' . B ‘ ,

Let G’ be a subgroup of G. Since 14| is a subadditive function on G/,
in view of (1.5) we have .

(1.29) 76 (%) < Clrg () +1),
for a constant C > 0.

In our case the homogencous structures of N, N, N, yield an inverse
estimate.
(1.30)  LemMa. Let ty,, Ty,, Ty be invariant Riemannian distances on N,
No, N respectively. Then there are C >0 and = 0 such that

(1.31) T, () +xo () < C(1 41 ()

xe G,

for all y in Ny and z in N,. ‘
Proof. Let f(yz) =y, (¥)+7n, (2)- By Proposition (1.8)
F(6:(02) < B ln ¥ T, )+ BN )2l Tag (2)-
Hence there is a f; > 0 such that f(5,(y2)) € *1£(yz) for t 2 1. Moreover,

the set {yz: f(yz) <1} is bounded and containis a neighbourhood of the
identity. Consequently, (1.31) follows from Proposition (1.10).

Obviously, § = Ny NoA in the sense that
Ny xNoxAa(y, z, a) -+ yzaeS
is a diffeomorphism. We shall write s = y(s)-z(s)* a(s) and y(s) = my, (s), z(s)
= Tyy (s), a(s)=my(s), x(s) = y(s)z(s) = mn(s).

Let Ty,; Twga, Ts be arbitrary invariant Riemannian distances on N 1»
NoA, S resix:ctively. If in addition N, is a normal subgroup then there is a
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constant -C such that
(1.32) log(1+1y, (¥(9)+Tnga (z(5)- a(s)) < Clrs(s)+1).
To prove (1.32) we write
log (1+ 7y, (y()) < (9
= Ssus? [log(l +Ty, (y(ss)))=log (1 +1Ty, (v (s’)))] .
By Proposition (1.8)
7(yza) < log(1+1y, () +1og (1+[|Ad, ol )

and we can apply (1.5) to y. (See also the proof of Proposition 3.in [81)
Finally, let us remark that since every nilpotent Lie group is of
polynomial growth [5], there is a large a such that

(1.33) i@ +Tn, () “dy < .
Ny
2. p-boundaries of S. Let
4y () = {ed: [i(loga(s)du(s) <0},
s

v”l(ﬂ): @

- Aedi(w)

'"0 (,U) = @ nl_a

Aed\dy (u)
and let Ny (u), No(p) be the subgroups of N corresponding to m (1), mo ().
The aim of this section is to prove the following

- (2.1) TueoreM. For every probability measure i on S such that
{ts(s)du(s) < o0
every homogeneous subgroup Ny of Ny (w) is a u-boundary of S.

The proof of the theorem is a simplification of the proof of a similar
theorem by A. Raugi [21] where only “maximal boundaries” Ny (u) are
considered. The generalization is motivated by the theory of harmonic
functions on symmetric spaces where some homogeneous subgroups of N, (u)
are boundaries [16]. Our simplification of the proof is due to the homogenei-
ty of the groups involved, otherwise we adopt the ideas of A. Raugi [21].

The proof of Theorem (2.1) uses a representation of § on certain spaces
of polynomials on N. Such representations are well known (cf. e.g. [7]). Our
representation is similar to the one given by A. Raugi.

Let my=n,...,m.; =[n,m], ..., m,, = {0}. Since ady, Hea, pre-
serve my, m; = @,.,(m " n') and there is a basis E,, ..., E, of the algebra n
such that: :

() E4, ..., E, are cigenvectors of ady, Hea.

icm
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(i1) Eii*lﬂ, ey Eij, i=L1..,p io=0,1,=n,is a basis of m;/m;,.
We choose the coordinates in N writing x = exp(x, E; + ... +x,E,).

We define the degree of a polynomial on N as follows: '

(i) The degree of a constant polynomial is 0.

(i) dgx; =j for i;_, <i<ij.

@) If I =(,,..., I,) is a multiindex then

dgx’ = Y I,dgx;.
Jj=1

(iv) For an arbitrary polynomial T =Y ;o x
dg T = maxdgx'.
I

Let x'T, aT, x'eN, a€d, be polynomials on N defined by x'T(x)
= T(x'x), aT(x) = T(x*). Then

LlT — Z oy elul(lcga) xl7
I

where A=(ly, ..., &) and I-A=1I, 4+ ... +I, 4, Hence
22)" dgaT=dgT

If (x" x); is the ith coordinate of x'x and i;_; <i < i then (x'x), = x,+x;
+ T (XY, ey x§j_1, Xy, .., X;;_ ), where T; is a polynomial whose degree as a
polynomial of x is at most j—1. Therefore x' T = T+ T, where dgT; <dg T
and :

2.3) dgx'T=dgT

Let J, be the space of polynomials T of degree at most r such that T(yz)
= T(y) for ye N, = expm,, ze Ny = expn,, where N;, N, are homogeneous
subgroups and n = n; @m,. Since the inclusion N, 3y — ye N and the projec-
tion my, are polynomial mappings, Tly, is a polynomial on N, and
T =Ty, omy, . It tollows that J, is the set of polynomials of the form T'omy,
where T" is a polynomial on N, and dg(T'ony,) <r. For s = x'a and TeJ,
we write
sT(x) = T{ny(sx)) = T(x' x").

By (2.2)-(24) it is easy to see that if TeJ, then sTeJ, and (s8) T'= s (sT).
Hence S acts on J,.

Let Yy, ..., Y, x = dim N,, be a basis in n, consisting of eigenvectors of
ady, Hea. Writing '
(2.5

we have coordinates on N;. We choose r such that yf omy,, ..., y; 0%y, €J,.
The polynomials y’oan, dg(y’oan) <'r, form a basis Q of J, (the polyno-

y=exp(y; i+ ... +y, 1)
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mial 1 corresponds to I=(0,...,0). Let W= {I: y'omy, EQ}. and |W|
= dimJ, = d. We order the elements of Q according to the increasing degree.

" Then in view of (2.2) and (2.3) the matrix M (s) of the operator T —sT'is.

upper-triangular and has e"¥°#% on the diagonal, I = (I,, ..., I,) and
(26 ()“xl:'--ylix)
where adH(Y) A, HY,.

In J, we choose an inner product such that the basis Q is orthonormal.

If B is a linear operator defined on a subspace of J, then ||B|| denotes the
norm of B in the sense of this inner product. Let M (s) = [o;(s)], 1 €1, ) < d,

@D Bl =[ay@)], 2<j<d Q) =[], 2<ij<d.
Obviously [IQ()ll < IM() and |B(s)] < |IM(s)]. Finally, we have M(s,)

“‘M(Sm) M(Sl ]

28) 052 = 0lsn) .. Q(s0),

(29) | B(s) = 3 B(s)Q(5-1),
i=1

s, and Q(so) = 1.
Proof of Theorem (2.1). We shall prove that the sequence M (s,)

where s, =s; ...

converges p-ae. to a matrix [o;] such that o;=0 for i=2,...,4d,
j=1,...,d
In v:ew of (2. 8) and (2.9) it sufﬁces to prove that
(2.10) o Lm |QGalYm <1 pae,
m= o0
(2.11 limsup ||B(s '™ <1 pae.
m-—roo

We have [log(1+||M(s)|)du(s) < oo, because log(l+||M(s)) is a
subadditive function. Therefore lmsup, .q||M(s,)I"™ <1 pae. (see eg.
[21], p. 69). Consequently, we have (2.11) and

(2.12) limsup Q@™ <1 pae.

.

Let 4 be as in (26). The strong law of large numbers yields
/mI-iloga, ...a,)— .[I' Alog a(s)) du(s).
. The integral on the right is negative for I 0 and finite by (1.5) because the
fanction s — |I- A(loga(s))| is subadditive. Hence
(2.13) - 0 < lim (e Aosar-amlim < 1 pae,

m=— a0

Now (2.12), (2.13) and Lemma (94) of [21] imply (2.10).
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S acts on N; by s(y)-an(sy We have proved that if TeJ, and
m—co then T|(s ,,.(y)) converges to a constant independent of y. Putting

T =y 0ony,i=1,...,x, we see that lim,,_, s, () exists and is mdependent
of y. Therefore we may write

Z(s) = lim s,,(y).

"ot

Consequently, for every probability measure « on N,

lim 8,0 = 5zm pac.

m =g
Let v, be the measure on N, defined by
Sy Vm> = [ [ (sn(e))dn
for every bounded continuous function f on N;. Then, of course,

(2.14) PHVy = Vi g,

(2.15) lim <f, v = {f, v,

where v is the distribution law of Z (). Hence pxv =v and the proof is
complete.

(2.16)  CoroLLARY. If p, p*® satisfy the assumptions of the previous theorem
then the corresponding Poisson kernels v, v' are equal.

Proof. By (2.15), v is the *-weak limit of v,, and v' is the *-weak limit of
Vam SO they are equal.

We conclude this section with a theorem describing the maximal u-
boundary of S.

(217 Tueorem (A. Raugi [21]). If a probability measure u is spread out
and if its support generates S and frs(s)du(s) < oo, then Ny () is a reproducing
u-boundary of S. The Poisson kernel v is the unique ,u-mvartant (ie. uxv=1v)
probability measure on N,.

Theorem (2.17) is a particular case of Theorems (8.4) and (12.9) of [21].
(2.18)  CorovrLary. If' g, u*? satisfy the assumptions of the previous theorem
then F is p-harmonic if and only if F is p**-harmonic.

3. Degenerate elliptic invariant operators on S. Let Lbe a second order
degenerate elliptic left-invariant differential operator, i.e.

(3.1) L=Xi+ .. +XI+X
where X, ..., X;, Xes. Let {§},»o be the semigroup of probability mea-
sures whose infinitesimal generator is L.

6 - Studin Math, 89.2
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We say that a Borel function F is L-harmonic if LF =0 in the sense of
distributions, i.e. :

(F, L ¢>=0 for ¢eCX(S)

where
Lt =X{+ ... +X]-X.
Of course
(32) ey = W LT ey, 0, ¥eCEO),

‘ We have the following characterization of bounded L-harmonic func-
tions. .

(3.3) Tueorem. 4 bounded Borel function F is L-harmonic if and only if for
every t >0

34 Fxu =F.

Proof. By (1.14) and (3.2), L* is the infinitesimal generator of {i}»q.”
Suppose F is a bounded L-harmonic function on S. Then by definition, for

Qe Cf(ﬂ we have 0= (F,L" @) and consequently 0= (F, i o> for /

@eD,(L*). Let f be in I*(m) and let g > 0. Then
(F.fy=<F, (@=L )Kf>=<F, 0K, [,

because K, f belongs to D, (E). Consequently, for all n=1,2, ..., {F,[>
= (F,(0Kp)"f> and so, by (1.13), putting ¢ =n/t and letting n— o0 we
obtain ‘

Fofo=CF ffy=Frp, [
The rest of the proof is trivial.

" Theorem (3.3) shows that bounded L-harmonic functions on the whole
of § are fi;-harmonic and the theory of Guivarc’h-Raugi applies. In what
follows we shall specify the conditions on L such that the measures g, satisfy
the conditions of Theorem (2.1).

Let LA be the operator on A4 defined by LA f(a)= Lf(a) where
feC*(4) and f(xa) = f(a). Then

(3.5) A=Y z?+2

for a basis Zl; ...y Z, of a and Z e a. Since- N is a normal subgroup of S, Z is
the image of X by the mapping s — s/n = a.
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(3.6) Lemma. For Aed the following conditions are equivalent:
(i) There is a t >0 suoh that |A(loga( 5))du, (s) <0.
(ii) For every t >0, [A(loga(s))df(s) <
(i) A(Z) <0. .
Proof. Since the map s— a(s) is a homémorphism, I# is the infinitesi-

mal genemtor of the semlgroup u! =7, (). In the coordinates a
- GXP(ZmH‘ Z)) the measure !

I ‘ .
@mt)exp(—(4)"" Y (X0 02)dxy o dXy X By oo —apes
i1
where 2 = Z:;loc, Z,;. Consequently,
[A(log a(s)dfi,(s) = — [ A(log a) dy (a)

“ :
= —(4mt)™ " [( Z (Z))exp(—(4n)~? Z (x;+ o)) dx, ...dx

_ K
XdO oy (Xpe 1) Oy () = Y AZYoyt =ti(Z).
i=1 :

Now we are ready to reformulate Theorem (2.1) for L-harmonic func-
tions. We nse the same notation as in Section 2. Moreover, we put n, (L)

=1 (f;), Ny(L) = Ny(fi), No(L) = No(ﬁ1)‘

(3.7 Tueorem. If Ny < Ny(L) is a homogeneous subgroup, then there is a
probability measure v on Ny called the Poisson kernel such that the functions

PYf(s) = [f(s0)dv),
where- f is a Borel bounded function on Ny, are L~ harmomc v is defined by
(2.15) for p=[i.

Proof. Since A(Z) <0, ZeAl {&: nyomt £ {0}} and by (1.15),
Jrs{8)dji (s) < oo, it follows that N, is, in view of Theorem @1, a [,
boundaty of §, n=1, 2, ... Let v be defined by (2.15) for p= j;. In view of
Corollary (2.16), v is the Poisson kernel for ”1 2,, Therefore P f * Hhom
=P [ pe=1,2,..., which implies LPY ) =

Now we shall prove a number of properttes of the Poisson kernel v

corresponding to the operator L.
In what follows p == [i;.

(38) LemMA. Let Aea*, 3,(2) <0, pt=m, () and

n Z /1(11)2 < =i(Z).

(£
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Then
3.9 i) emlosa g (g) < 1.

Proof. I# is the infinitesimal generator of u = m, (). T hercfore 1f we
choose the coordinates a = (xi, ..., %), a=exp(}Y,_, % Z), then the left-
hand side of (3.9) is equal to

1]
(@4m) 12 [ exp(—% Y (—o)?)dx; ...
i=1

dxl X 5(414. 1:....akJ

i
=exp(nA(Z)+n* 2]1 AZ)),

which completes the proof.

(3.10) THEOREM. Let v be the Poisson kernel given by Theorem (3.7). Let TN,
be an arbitrary Riemannian distance on a boundary N,, i as in (2.6) and
n < 1. Assume that

IIM.~

(I A(Z‘)) < —I-AZ)

0). Then
fan, Oy dv(y) < 0.

] Proof. Let the coordinates yy,...,y, in Ny be as in (2.5) and T
=y? Qan In view of (1.27) 1t is sufﬁcxent to prove that there is a constant C
such that for every m

[ T(sm@) du(sy)...
(M(s) T)(0) <

for all IeW, 1 £, ...,

du(s,) <C.

Since T(s,,(e)) = IIB(sw)ll (see (2.7)) we have tg prove

3.11) L JIB " 1Q (5n- D" dia(s) ... du(sn) < co.
First,
JIB (N dugs) < o,
because ||B(s)||"* is dominated by the submultiplicative function
_ (L+NM S (L + 1M (s~ 2.
On the other hand, by (2.8)
QSm—y) = H Q(a)Q(x).

i=m—1
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Let x; = exp X;. Then Q(x;) = ¢ KD where R(X;)is an upper trlangulaf matrix
with zeros on the dlagonal and Q(a) is a diagonal matrix with eigenvalues
e TeW = WA|(0, ..., 0)}, Aas in (2.6). Therefore Q(s,_,) is a linear
combmatlon of

Q (-1 ...a,)R(X,)’fQ(a,,_l e, JRX,_ )t

Q(ﬂ12 1 ax)R(Xx )1

with coefficients less than or equal to 1. Let d be as in (2.7). Then 0 <
€d-2, 1<j3, ..., j, € d=2 0<j, <d—2 and the number ofsummands is
dominated by a constant depending only on d multiplied by (m—1)"2

By the Schwarz inequality

fIQ - . a) RCX" ... Q@151+ 3) RCE,) I da(sy) .. dp(sp— )

< (JIR( z,)"'“" HR(X:,)"II"d,#(ﬁ)---du(sm-o)”z

X(f11Q (1 - az,)ll" NQ @1, -1 -..a)ldulsy) ... dulsm-1))">.
Let now
‘ ! q= maxj’e"’ Moz al®) 13 (s).
TeW’
Since
1Q€ay—1 ..oy " < § emdMostey 1oy ),
TeW’
we have
G12)  [IQy-s...ay I du(sy-y)...duls, ) S(@d-1)g" "%,

On the other hand, R(tX) =tR(X) so there is a constant C’ > 0 such that
IRX)I| < C'||X]|. Consequently, by (1.28)

IR(X) < C(1+1x(exp X))
for some C, f >0 and in view of (1.15), (1.32)

(3.13) b= max [IRXYI"du(s) < oco.
1€)€d=2.

Therefore by (3. 12) (3.13) there is a constant C(d, b) depending on d and b
such that
JUB (sulI"* [1Q (S~ I dpsy) ... dp(sm)
C(d, b)(m—1)"=% g™~ 2 [ B(s)|"* dp(s),

which yields (3.11).
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If v is absolutely continuous with respect to the Haar measure dx on a
boundary N, with density P,, then we obtain the following

(3.14  CoroLLARY. There is a ¢ >0 such that
{Po(y)!~7dy < 0.
Proof. Let « be such that [(L+7y,())) *dy <o, n as in Theorem
(3.10), & = nof(+n), ¢ =nfe+n). Then
[Po) = dy < ([(Po )M~ (17w, )™ dy)' ™ ([(1 47w, (D) D)’
which is finite in view of the previous theorem. ‘ '
From now on we assume that X, ..., X;, X in (3.1) generate s as a Lie
algebra. Under this assumption we have

(3.15) Tugorem. Let Yi, ..., ¥; be a basis of right-invariant vector fields on
a boundary N,. Then ‘the Potsson kernel v on N, and all the nght -invariant
derivatives Y"v of v are bounded smooth functions.

Proof. Let s=yza, F()=P"'f(s), [eCIANy),
= F(yza)e C*(N,). Then

Y7g..() =

and  g,,(y)

[(YT 1) (s w)dv ().
If f> 0 then the Harnack inequality (1.16) yields
1Y go) ()l < dy [l fll -
Consequently,
YT fv) <dr|lflle  for fe CHANY).
Let 4= —Y" ¥/ As in (118) there are C, p >0 such that
1l e < CNA+AY fll 24y,
Hence for every |
[1+4Y f,v)l <
Let § = (1+4)" f. Then ‘
KA+ AY Py, v <

CllL+4Y fll30-

AT

and (1+4'Yve L*(dy) for all =0, 1, ..., which completes the proof.
The density of v will be denoted by P,. Let

(3.16) P,(u) = Po(s™ () D(a™Y)
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where D(a) = exp(4;, (loga)+ .. -+% (log a)). Then

§ 1 (s ) Po (u) du = [ f (u) P, () du,
IPl,p < D(a™ )= 0r| Pyl 25 107,

(3.17)  Tueorem. For every feI’(N,), p>1, the function P™ f is L
harmonic.

Proof. Let Hy, ..., H be a nonnegative basis for 4, a = exp(z ! H)),
b=exp(Yr_, b H) cll’ld 8, = {xa: xeN, at b, i=1,..,k}. We choose

geC,(N,) such that || f~gl|,, <& Then PMygis L- harmomc and

suplP™ ()= P"' £ (s) < IIf~gll,psup 1Pl < C(B)e,
seSp, s&Sp, )

p~l+g ! =1, which yields that P™ f is L-harmonic.

4. Hypoelliptic invariant operators. In this section we continue our study
of the properties of v and the Poisson integrals P"!f to prove finally a
number of results concerning the convergence of P S to f as loga(s)—
—c0. We are able to do it, however, only under the additional assumption
that X, ..., X, in (3.1) generate s as a Lie algebra. Then the measures , are

absolutely continuous with respect to the Haar measure and Theorems (2.17),
(3.15) yield :

(41) Tueorem. A bounded function F is L-harmonic if and only if
.2 F=p"1Py¢

for an feL™(Ny(L).

Since, by Theorem (3.15), PoeLP(Ny), p = 1, and as will be shown in
Theorem (44), Pye Co(Ny), we also have a version of Theorem (4.1) for
harmonic functions satisfying an L” condition. Indeed, repeating the argu-
ments of A, W. Knapp and R. E. Williamson (Theorem (3.2) of [15]) we
obtain

(43) TwuroreM. Let F be an L-harmonic function and F,,(y) = F(yza). If
sup lHF,,,HL,,(N ) 2@ eNo(L)A} <o for a p 1 then F is the Poisson inte-
gral of:

(i) a finite signed measure if p = 1;

(i) an L function if p > 1.

Now we shall prove the required properties of P,
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TueoreM. There are C, ¢ > 0 such that’
Po(y) C(l+y, ()"

Proof. Let P(3,y) = P,(y) where P, is as in (3.16). Putting F(s)

= [f(») P(s, y)dy into (3.4) we obtain

' [£G)P(s, Ddy = [ (0 P(ss1, y)dydu(sy).
Now since Pe C®(S x N,), the Tonelli theorem yields
(4.5) P(s, &) = [P(ssy, €)du(sy)-

Let g be the density of pu with respect to the right-invariant Haar
measure.. Then p = q(uza) W (u, z)dudz da, where du, dz, da are the Haar
measures on N;, No, A respectively and W(y, z) is a polynomial. By (1.28)

(4.6) W (u, 2)| < ¢y (L+Ty(uz))
Let
@.7 JPo) (1474, ())'dy = ¢, < 00,
P(s) = P(s, e) and ¢ = n/(2B) where B is as in (1.31). Then by (4.5)
Py (L+1n, O)F = [P(s) (1 +7x, 0)) duls)
< [Pyuza) (1+7y, Gu)f (1 + Ty (W) g (uza) W, z)dudz da = W.

- (44

for some ¢y, y > 0.

We apply the Schwarz inequality to W. In view of
P(uza) = Py(a™*(z™* (u"l)))D\(a‘l)
we may write
W, = ‘fP(yuza)2(1+rN1 (yu))* du = [ Puza)* (1 +y, (W))* du
= [Pola™" (z7 " W))* (1 +7x, @)* D (a™ ") du
= [Po(a™* @) (1+ v, (z(w)** D(a™ ') du.
‘ Now by (1.29) and (1.31)
Wi < ca (1+ 2 () [ Po () D(a™") (14, (a(w))' du-
Therefore (4.7) and Proposition (1.8) yield
W < C4(1+T~ @) D(a™ ") (1+]|Ad,|, )"
Let
¥(@) = (1+D(@ O (1+D(@)"* (1 +|Ad, - 1|, [)"* (1 +]|Ad,], )72,
In view of (1.6), ¥ (a) <exp(cs(ty(a)+1)) for a ¢5 > 0. Therefore by the

cm
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Schwarz inequality -
W < cq [(L+ty@)72 54 ((1+1y, (W) g (uza)® W (u, 2 du)'" dz da.
If o is as in (1.33) then
W< cs(f(1 +yy(2) 7% dz)”2
x [(J (1 +7ho @P* (L +Tx @) (141w, (W) g (uza)* W (u, 2)* dudz)'"”

xexp(cs t4(a))da.
By (1.29), (1.31), (4.6) and Proposition (1.21)

W< ¢ J-(‘v(l+TN(uz))ye~ms(uza)di‘ dz)l/z ecj‘m(a)da

for a y >0 and every ¢ > 0.
Now taking o large enough and applying (1.32), (1. 33) and Proposition
(1.5) of [111 we see that W is finite.

Let Y;,...,Y% be a basis of n; such that adg(¥)) =}.‘j(H)Y, and
by << A,-x. Then lin(Y, ..., Y,) is an ideal of ny, i =1, ..., x (see (1.25))
and therefore every ye N, can be written as
» X
y=Jlexp(¥)
i=1
(cf. Lemma (3.1) of [16], [22]). yq, ...
4.8)

, ¥y are called canonical coordinates,
CoroLLARY. There are C, y >0 such that
Po(y) < Cmin(L, [p4]77% .oy [y

Proof. Since N, is a homogeneous group (see (1.24)), the corollary
follows immediately from Proposmon (1.10) applied to the function f(x)
= MAX;xy,,.,y Vil

(49) Lemma. There are constants C, o >0 such that if u, ye N then
[Po () —Po ()] < Cllu—yll (L [lall + | — pll)*

(Z,_1 Lyil?)!/2.

Proof. Let Y/, ..., ¥, be a ba51s of right-invariant vector fields on Nj.
Since § = Z WY w1th W,; being polynomials and by Theorem (3.15),
Y/ Py, j=1, ,x, are bounded, we have °

(4.10) 17Po )l < C(A+IIyIlY

for some constants C, > 0.
Let y be the curve given by y(t); = u;+t(y,—uy), te [0, L]. We then have

[Po(u)—Po(y)l < SupllVPo y @)y —ull,
and by (4.10) the assertion follows.

where ||y|| =
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Lemma (4.9) completes the list of properties of the Poisson kernel which
are necessary to prove Theorem (4.13) below. The proof by P. Sjogren [22]
which we adopt requires the assumption that all Le 4 are combinations with
rational coefficients of a maximal linearly independent over R subset of 4. A
subset of a vector space having this property will be called rational. 4 is
rational in the case of symmetric spaces [24].

Now let a; be a subspace of a with the following properties:

(4.11) There is an Hea; such that A(H)>0 for every Aed;
= {i: n, nnt 5 {0}
(4.12)  The set 4y[,, = {Alay: ieAl‘} is rational.

Every linear complement V to 4if={H: Vied, A(H)=0} is an
example of such a subspace. Indeed, if H is such that A(H) > 0 for Aed and

H=H+H", HeV, H' e A{, then H' satisfies (4.11). Since 4, is rational and-

the mapping
' ling(4,)224 — Aly € ling(4, Jy)
is an isomorphism, 4,], satisfies (4.12).
We say that loga — — 00, ac 4; = expay, if and only if for every le 4,

we have A(loga)— —oo. Now we are ready to prove the convergence
theorem.

(4.13)  TuEOREM. Let a, be a linear complement of a in a, Ay = expa, and
let Ky, Ko be compact sets in Ny and N A, respectively. If f e L*(N,) for a
p>1 and loga; — — o0, a;eay, then for ae. y,eN,
N
(4.14) Pl f(y1 a4 yzae) = f(y1)
uniformly with respect to yeK,, za,eK,.
Remarks. 1. “Uniformly” means that there is a measurable set M & N,

such that N,\M has Lebesgue measure 0 and for all y, e M, &> 0 and any
compact sets K;, Ky, K; = N;, Kq = Ny Ay,

IP™ £ (1 ay yzag)—f (n,)] <&

whenever yeK,;, zag€K, and A(a;) < A(da}) for every Aled, and an ay

depending on yy, ¢ K, K,.

2, Our theorem is a generalization of the semirestricted admissible
convergence of Poisson integrals on symmetric spaces (see [16], [22]). In the
case of a symmetric space a; = {H: A(H) =0, AeII'} where II' is a subset of
the set II consisting of simple roots and m = @,,, n, 4
= {led: Ala) # 0}. Then the corresponding subgroup N, is norméll and a,
is the linear subspace of a spanned by the elements dual to IT \IT'. Obviously,
such an a, satisfies the conditions'(4.11) and (4.12). Theorem (4.13) for a; and
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n, as above has been proved by A. Kordnyi [16] for the L* case and by P.
Sjogren [22] for every p > 1.

Proof. Obviously we have (4.14) for fe C,(Ny). Let
(4.15) :
Mf (y,) = sup {”f(h a, yzao(u))l Po(w)du: ajc A4y, yeK;, za,e Ko}

We shall prove that for every p > 1 there is a constant C, such that
(4.1 MWy < Coll fllyy  FELPND;

the theorem then follows by a standard approximation argument.
By (4.12) there is a basis H,, ..., H; of a; such that %(H,-) is an integer
for Aed;. For a= e:xp(Z:=1 a H;) we write [a] = exp(},_, [4]H,). Let

K ={ay yzag: Vi (a)e[—1, 1], yeKy, zaseKo}.
By the Harnack inequality (1.17) there is a constant C such that
sup F(s) < CF(e)
sekK

for every nonnegative harmonic F. Hence

P f(yy ayyza0) < CP™' f(y; [a,]),  felP(Ny, f =0,

because L is left-invariant. Now it is sufficient to prove inequality (4.16)
writing M’ f instead of MY, where .

M f(y) = sup [|f (y5-,W)| Po(w)du,
heZX

X X .
_w([]expu ¥)) =[] exple "w %), h=(hy, ..., h).
i=1 i=1

The proof follows closely that of Proposition (5.1) of [22], because in view of
Corollaries (3.14), (4.8) and Lemma (4.9), P, has the properties required by P.
Sjogren for the kernel in (4.15).
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