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Factors of coalescent automorphisms
by
MARIUSZ LEMANCZYK (Torun)

Abstract. The class of all ergodic coalescent automorphisms is not closed under taking
factors, powers and inverse limits. Even if a T-invariant sub-g-algebra of an ergodic coalescent
automorphism T is completely invariant it need not be coalescent. However, if % is a completely
invariant sub-g-algebra of a simple automorphism T then it is canonical.

L Introduction. Let T be an ergodic automorphism of a Lebesgue space
(X, 8, u). The centralizer of T, C(T), is the semigroup of all endomorphisms
S: (X, B, W— (X, #, ) such that ST = TS. T is called coalescent if C(T) is
a group, or equivalently, if every endomorphism commuting with T is
invertible ([8]). Another definition of coalescence is the following (see [5],
[9]): if a T-nvariant sub-c-algebra ¥ — % has the property that
T (X,8,)— (X, B, and T (X, ¥, y)— (X, ¥, 1) are isomorphic, i.e. ¥
is isomorphic to &, then ¥ = %.

The basic problem connected with coalescence is’ whether or not it
implies zero entropy. Observe that no Bernoulli automorphism is coalescent.
Indeed, if 7 is a Bernoulli automorphism then represent t as 7, x1,, where
t,: (W, €, v)— (W, €, v) is Bernoulli and

1) h(zy) = h(z)/2.
Then take the flip map f(x, y) = (y, x) which is in the centralizer of 7, x1,

and take the corresponding sub-c-algebra ¥, = {Ae ¥®%: fA=A4 ae}.
Then the factor

T, X1, (WxW, %, v xV) = (WX W, b, vxV)

is again Bernoulli with the same entropy as 7. Hence t and (2) are
isomorphic and consequently 7 is not coalescent (the original proof of that
fact is due to Kaminski [5]).

Therefore to prove that coalescence implies zero entropy it is enough to
show that the class of all ergodic coalescent automorphisms is closed under

 taking factors (then use Sinai’s Weak Isomorphism Theorem). That is why

the question on factors of coalescent automorphisms stated by Newton in [8]
is important. However, in the present paper we provide a counterexample to
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that question. This makes the hypothesis that there are ergodic coalescent
autormorphisms with positive entropy quite plausible.

Let ¥ = # be a Tinvariant sub-g-algebra. Following [9], ¥ is called

(3) canonical

provided that if %" is another T-invariant sub-g-algebra which is isomorphic
to %, then % =% (of course, in that case % is coalescent);

(4)  completely invariant

provided that S™! % = & for every SeC(T).

Newton’s ‘question [9] is whether these two notions coincide. We show
‘that it is even possible for a completely invariant % to be noncoalescent.
"However, there is a class of ergodic automorphisms called simple transforma-
tions ([4]) for which (3) and (4) coincide.

In the last section we discuss the problem of coalescence of inverse limits
of coalescent automorphisms.

The results of the paper are applications of [4], [11], f12].

II. A class of coalescent automorphisms with a factor which is not
coalescent. Let T: (X, 8, w —(X, 4, w) be an ergodic automorphism. De-
note by J(X, ..., X) the space of all n-joinings of T:

(5)' AeJ(X, ..., X)if A is a Tx ... x T-invariant .probability measure on
%,Q...®%,, B:=2%, such that lg = p.

A standard example of ergodic 2-joinings comes from the centralizer of T.
More precisely, if Se C(T) then the measure given by

) : ks(AxB) = p(ANnS~'B),

is a 2-joining. Following [4], [12] we call T 2-fold simple if each ergodic 2-
joining of T either is on the graph of some SeC(T) or is the product
measure gxu. It is an easy observation that 2-fold simplicity implies
coalescence (consider g(4 xB) = u(S™1 4 r\B))

Now, for n> 1 and any S;eC(T), i=1,
Hy....5, Eiven by

/"S,_,....S,,(Al X

is called an off-diagonal.
T is said to be simple if C(T) is a group and for every n > 2 and every,
-joining A the set {1,..., n} can be split into subsets s, ..., 5, such that
Ai 4 is an off-diagonal and A is the product of these off- dlagonals (4D It is

proved «n [4] that if T is weakly mixing and simple then so is T k % 0, If T

is simple and C(7) is trivial, ie. C(T) = {T*: ieZ}, then T has the minimal
self-joining (MSJ) property. '

., 1, the measure (n-joining)

xA)=pu(ST A ... ASTEA,)

icm

Observe that the transformations T,
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For further properties of simple automorphisms we refer to [4].
Now, we fix T (X, @, 1) — (X, 8, p). We require T to have the MSJ
property.
Let G be an infinite metric abelian group such that
)] ‘ @n>0) (VgeG)

We denote by ug the Haar measure on G. Let ¢: X — G be measurable and
such that the corresponding G-extension

® T (Y, p~( 5, (Tx, ?(x)9)

is weakly mixing. We recdll that the paper [3] ensures the existence of an
abundance of such ¢’s. .
Take geG and definé o,6 C(T) by

©® a,(x, by = (x, hg),

g"=1.

Y =XxG, i=pxUg, 7?,(x,91=

heG.

o, geG, are weakly mixing G-exten-
sions of T Indeed, T, g, is an n-root of (T, o,)" = T -and the latter automor-
phism is weakly mixing.
Hence if {g,} = G, g; # g; whenever i+ j, then
U=T,a, xT,0,,x....
' (YxYx...

(10) :
JEXFX L) (VXY X, BXEX )
is ergodic (actually, it is weakly mixing).

We intend to prove the following
CU) = C(T,0,) XC(T,0,,) x .. = C(T)"*

This result will be a simple’consequence of the lemma below. Although
this lemma easily follows from Rudolph’s considerations [11] it is stated
neither in [11] nor in [4]. Therefore we give a proof. :

THEOREM 1.

Lemma 1. Let 2 (W, €, V) —’(W %, v) be a weakly mixing stmple trans-
formation. Then for every ReC(t X1 x . .) there are @: N— N which is one-
to-one (but not necessarily onto) and a sequence {8,} = C(x) such that

(11) R=(S;x8,x..)op
where
(12) B(x1, X25 ) = (Xprs Xpc2)s -

Proof Set W=WxW..., 7 =VXVX..., T =TXTX ...:_(W, ) — (W, ¥).
Consider the 2-joining of ¥ which lies on the graph of R, ie.

(13) (A xB)=¥(ANR By
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where
. o — o0
Ace ® %, Be®%, %=%-=4¢.
i .

1 i=1
" Denote by ¥ the projection of ¥ on
ENRQE = (%,®... Q€)% ®... ®F).

Thus 7§’ is a 2n-joining of ¢ and therefore 7’ is a product of off-diagonals,
But Wum = Wlym =V x... xv, so the off-diagonals are either a single
coordinate, or a pair: one from %™ and one from %'™.

Now, letting n— co we assert that

(Vr) @1

for‘ some S, eC (7). Indeed, otherwise there exists a coordinate, say %., which
is independent of &2, %, with respect to 7. But from (13) it follows that

(14)

lergr @g; = VS,

(15) (VCe®%) @De® %) 7 (CAD)=0.
' i=1

i=1

Therefore if (14) fails then by (15) the sets from %, are independent of one

anotl}er (with respect to ¥g). This is an obvious contradiction because of the
marginals of v.

Now, using (14) we can define ¢: N— N by or =t. This definition is
correct and ¢ is one-to-one. Moreover, if we put
®

R =(8;x8,x..)0p
we see that 7 =V and thefefope R =R
Proof of Theorem 1. Let Ve C(U). Then by (7)
VeC(U") = C((T,0,) x(T, Og))" % ) =C(TIxTrx ..).
Sigce T, is simple as a weakly mixing group extension of an MSJ-automor-
phism [4], so is T". Now, by Lemma 1
V=(S;x8,x..)of
where S;e C(T))), ¥: N— N is one-to-one. By [4] it‘ follows that
C(T) = C(T) = C(T,0,)") = C(T, ),
Hence S;e C(T,). All we have to show is that ¥ =1id. Observe that
C(L)a(87* xS  x ..)oV = ).
Moreover, from (12) it follows that

Uol/;,((x" hy), Gz, ba), ) = (T, 04, Copys hyery), T,

gea.

Ty, Xy Bya))s - ),

icm°
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‘p OU((xl’ hy), (X3, hy), )= (7:,, agw(l)('xw(l)s h.pu)), Eﬂgw(z)(xw(zp hw(Z))a )
Hence y =id and Theorem 1 is proved.
Now, we list some cdnsequences of Theorem 1.

Remark 1. The class of ergodic coalescent atutomorphisms is not closed
under taking factors. This is so because U has T'x T'x ... as a factor and the
latter automorphism, obviously, is not coalescent.

Remark 2. The class of ergodic coalescent automorphisms is closed
under taking roots, but not powers. Indeed, U is coalescent but its nth power
is not.

Remark 3. Using the same methods as in the proof of Theorem 1 one
can show that T,0,, xT,0,, X ... and Zl;,ag,l X 7:,09,1 % ... are isomorphic iff

the sets {g;} and {g]} are the same.

Remark 4. Because T, 0, and T,0,, g # h, are not isomorphic, using
the considerations above and Rudolph’s arguments [11] one can show that
the factors T, o, are canonical factors of U. Notice that this gives a new
proof for both Theorem 1 and Remark 3.

‘Remark 5. D. Newton in [9] asked whether every completely invariant

sub-g-algebra has to appear as canonical. We see that for our example U, .
the c-algebra generated by P
(16) {A; xGxAy; xG x...: Aje B}
is completely invariant. Indeed, this is a consequence of Theorem 1 and of
the following fact:

C(T,0,) = C(T)={T; oy neZ, heG} ([4].

But the c-algebra (16) is not even coalescent and consequently cannot be

. canonical.

In the next section we provide a class of ergodic automorphisms for
which the answer to Newton’s question is affirmative. '

L. If % is completely invariant then it is canonical for simple transforma-
tions. Let T' (X, 8, u) — (X, 8, 1) be an ergodic coalescent automorphism.
If H is a subgroup of C(T), then the c-algebra

C(H)= {AcB: (VSecH) SA=4 ae}

defines a factor of T. .
If ¢ is a Tinvariant sub-g-algebra of 4, then

H(#) = {SeC(T): (VAe%) SA =4 ae)

. is a subgroup of C(T).
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We will use the following result.

. Tueorem 2 ([4], [12]). Let T be a weakly mixing 2-fold simple automor-
phism. If 4 is a nontrivial T-invariant sub-c-algebra, then H (%) is compact and
(17, % = ¢(H (%))

Now, we are able to prove ‘the following

~ Tarorem 3. Let T be a weakly mixing simple automorphism and % < %

a nontrivial T-invariant sub-c-algebra. The. following are equivalent:

(i) € is canonical.

(i) € is completely invariant.

(iii) € is simple.

(iv) H(%) is normal.

Proof. (iii)é(iv) is proved in [4], (i)=>(ii) is always true.
(ii) = (iv). Let U&C(T). We wish to show '

UH@U ' =H(¥). .

To this end take SeH(%). To pro've USU *eH(%) it is necessary to
show USU™* A =4 ae. for Ac%. But U™! Ac ¢ because % is completely
invariant. Hence SU™'4 =U"'4 ae. On the other hand, if SeH (%) then

(18)

S=UW™*SU)U" ' and U~'SU € H(%) from the foregoing argument. There- "

fore (18) holds.

(iv) = (i). Let H(%) be normal and take SeC(T). We have to show
(19) : SE=4¢.

From (17) we have
(200 SAe% iff SAc €(H(%¥)) iff U(SA4) =S4 ae. for every Ue H(%).

But US = SU’ with U’e H(%) because H(%) is normal, and therefore USA
=8U'A =54 ae, so S =¥. Analogously S™'%4 =¥, and hence (19)
holds.

(@) =>(). Let p: € — Cﬁ’ establish an isomorphism between two T1nv¢~
riant sub-g-algebras.

Take the relatively independent joining over the common factor, ie. the
measure - on #Q@F given by

}21) (A xB) =

where E(-|%) denotes. the conditional cxpectatlon Th.lS measure need not be
ergodic so we can decompose it as

[ECAI90™ BB|9 dy

i= jﬁydv('}’)

icm
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where the ji, are ergodic 2-joinings of T and v is a probability measure (see
(4D

‘Now, from (21) it follows that
(22)

Ae¥

iff, E(AXXAX x@d)=0=[,(4xeA VA xpd) y-ae.

Hence, for a.e. 9, [i, is not the product measure and from the simplicity of T
we get
(‘23) Ay (A xB) = p(A N S; ' B),
Combining (22) and (23) we ha\;e

0=/, (4 xpA)=pu(AnS; g4 for Ae¥.

Thus S;* qu < A° ae. for 4 e€%. But the measures of these two sets are the

S,eC(T).

" same, s0 S, ' pA° = A° ae. for Ae¥. Consequently, 5,4 = ¢4 ae. for every

Aeé. This implies ¥' = ¢% =S, % = %, since € is completely invariant. We
have thus proved that ¥ is canonical.

CoroLLARY 1. If T is simple and C(T) is abelian then every factor of T is
canonical.- In particular, for every weakly mixing G-extension T, of an MSJ-
automorphism T, where G is compact abelian, every factor of T, is canonical.

Remark 6. From [4] it follows that every factor of a s1mp1e automor-
phism is coalescent.

IV. An application to finite rank automorphisms. For the definition and
properties of finite rank (FR-) automorphisms we refer to [10].
We are interested in the following problem: is every factor of an ergodic

" FR-automorphism canonical? The answer is affirmative in the case of rank 1

because these automorphisms have simple spectrum (see [1], [9]). In this
section we prove that in the class of all ergodic FR-automorphisms the
answer is megative:

The following lemma can be easﬂy proved.

LemMA 2. Let T: (X, B, W) — (X, B, 1) be of rank 1 and weakly mixing
and let' G be any finite group. Then there exists a measurable ¢: X — G such
that the corresponding G-extension T, is weakly mixing and has rank at most
the order of G, ie. tk(T,) <Gl 2

Now, let T have the MSJ property and rank 1. Let G be a finite group
with a subgroup H = G which is not normal. Take a ¢: X — G such that T,
is weakly mixing and rk(T,) <|G| (Lemma 2). Thus

(24) = {T;:'aa: neZ, geG} (4.
Set H = {o): heH} (see (9)). Then H is not normal in C(T,). Hence

T, is simple and C(T,


GUEST


166 M. Lemanczyk

combining (24) with Theorem 3 we see that the factor determined by H is
not canonical.

However, in this case if ¥ and % induce isomorphic factors then they
are linked by an element Se C(T,) (ie. €' = S%). It is natural to ask whether
in the class of FR-automorphisms this is the only reason for two different
sub-c-algebras to determine isomorphic factors.

V. Inverse limits of coalescent autemorphisms. It is not hard to see that
the class of all coalescent automorphisms is not closed under taking inverse
limits. Indeed, if T is simple and weakly mixing, then

C(Tx ... xT)={(Sy x... x8,)op: S;€C(T) and ’
@is a coordinate permutation}.
Therefore Tx ... x T = T™ is coalescent but lim inv T® = Tx Tx ... is not.
The situation quite changes if we deal with simple automorphisms,

TueoreM 4. If T: (X, B, W) — (X, &, ) is an ergodic automorphism and
B, < # are T-invariant sub-c-algebras such that B, 7 B and T: (X, B, 1)
—~ (X, B,, ) is 2-fold simple (simple) then so is T: # — .

In particular, inverse limits of 2-fold simple automorphisms are coalescent,

Proof. Take any ergodic AeJ (X, X) which is not the product measure.
In order to prove that A is on the graph of some Se€(T) is is enough to
show (see [7]) that

25) (VAe®) @BeB) .

First, observe that

AAXXAX xB) =
(26) Alg, a4, 18 not the product measure for » large enough.

Indeed, since 2 is not the product measure on #®%, there must exist
two sets A, Be # such that

(27 A(A xB) # u(A) u(B).

Let A,, B,€%,, n = 1, be chosen so that u(4 AA,)—~ 0 and u(BAB,) -0 as
n— co. Then the conditions

AA, x X NAxX) =pu(ANA,),
imply

AMX xB,AX xB) = u(BAB,)

AA,xXNX XB,AAxX "X xB)—0

This together with (27) implies (26).
Since |z qq, is not the product measure, by the simplicity of T %,
—%,, A is on the graph of some S,eC(T, #,). In other words,

(28) \ (VAe®,) @BecB,) A(AxXAXxB)=

as n— o0,

icm
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Now, fix any Ae# and select a s_equchce A, B, n=1,2,..
that )
(29) uALA4)—0
In view of (28) there is a séquencc B,e#,n=1,2,..

(30) A(A,xXAX xB,) =0.

As an immediate consequence of the inequality
AX xB,AX xByyi) S AMX xB,AA, xX)+A(A, X X AApiy X X)
A (Ayry x X AX xByyy)

we find that {B,} is a Cauchy sequence. Combining this with (30) and (29).we
conclude that (25) holds and hence 0 # — 4 is 2-fold simple.

To finish the proof we have to show that if n> 2 and AleJ(X, ..., X),
gt gap = BX M T#], B =B, i,j=1,...,n then A=ux... xu (n fac-
tors) (i.e. we have to show that T & — 93‘ is a pairwise mdependent process

., such

as n—oo.

., such that

[4]). But if A4 00 = ux u then
Mei@@a@ =puxy, k=1,
" and by the simplicity .of T: B~ By,
'”m)@ oy = KX XA

Hence letting k — oo and applying the arguments which were used to prove
(26) we get A= ux ... xu and the proof is complete.

Professor J. P. Thouvenot asked in a conversation whether or not every
d-limit of ergodic FR-automorphisms is coalescent.

We have been unable to solve this problem. However, if we restrict our
attention to local rank 1 automorphisms ([2]), then the answer is negative.
This is so because Katok in [6] proved that the class, say &, of all
automorphisms admitting linked approximation of the type (n, n+1,...,n
+m~—1) is of the second category (in the weak topology). Using arguments
from the proof of Theorem 4.4 in [6] we see that for every Te X/, T™ is of
local rank 1. Now, by taking o = (&, X", we see that the class of those
Ts for which T%™, m > 1, has local rank 1 is of the second category. As a
conclusion, even the inverse limit of ergodic local rank 1 automorphisms
need not be coalescent.
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Left-invariant degenerate ellipti‘c operators on
semidirect extensions of homogeneous groups

by

EWA DAMEK (Wroctaw)
¥

Abstract. Let a solvable Lie group § be the semidirect product of a nilpotent group N
and an abelian subgroup A such that Ad,, a €A, are diagonalizable. For a class of second order
left-invariant degenerate elliptic operators L on § we study bounded L-harmenic functions F. We
describe L-boundaries of S and prove, for L hypoelliptic, the convergence of Poisson integrals to
functions on the boundaries. The results of the paper imply theorems on admissible semires-
tricted convergence of classical Paisson integrals on symmetric spaces.

Introduction. This paper treats harmonic functions with respect to left-
invariant degenerate elliptic operators L on a class of solvable Lie groups S.
Our approach is motivated by the classical theory of harmonic functions
with respect to the Laplace-Beltrami operator on a noncompact symmetric
space X = G/K considered as N4, where G = NAK is the Iwasawa decom-
position of the group of its isometries, G. We find a class of boundaries of S
and study the Poisson integrals on them. Among them there is a maximal
boundary in the sense that the Poisson integrals of bounded Borel functions
on it reproduce all the L-harmonic functions.

Our main result is the almost 'everywhere.convergence of Poisson
integrals of L? functions, p > 1. This gives a natural extension to the context
of our spaces and operators of the admissible semirestricted convergence for
symmetric spaces. The main problem we shall have to overcome is little
information on Poisson kernels. We have no explicit formula; we are able,
however, to prove enough properties of the Poisson kernel to obtain the
convergence theorem. Before we sketch our results and techniques in greater
detail we shall describe some of the background facts about harmonic
functions on symmetric spaces. :

Harmonic functions on symmetric spaces have been studied thoroughly.
By a harmonic function on G/K = NA one means a function F such that

i . :
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