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On projections in H' and BMO
oy
PAUL F. X. MULLER (Linz)

Abstract. It is shown that BMO is primary. This property is derived from the finite-
dimensional version. It is also shown that H* is primary. This is derived from the properties of
subspaces of H' generated by infinite subsequences of the Haar basis in H 1, This solves a
problem from [6]. A linear embedding i: BMOy— BMO is constructed which satisfies the
condition of order-inversion in the sense of [3].

Introduction. To the pair (n, i), neN, 0<i< 271, we associate the ‘
dyadic interval (2""1‘, 27Mi+ 1)] and the Haar function h,;, which is 1 on the
left half of (27", 27"(i+1)], —1 on the right half and zero elsewhere.

Dyadic intervals are nested in the sense that if I nJ # O then either
I <7 or J = I We order the set of dyadic intervals (n, i) lexicographically.

Given f =3, Gnihu in L(0, 1), we write

S(f):=(T a2, (1 llg =[S0
(ni)
Then H':={feD: ||fll; <oo}. H, denotes the subspace of H' spanned
by (B m<n 0<j<2"—13.
Given f eL*(0, 1] and a dyadic interval I we write

foe=171(f 1S llemo == sup {1 fIf=fI1P)H?: T dyadic interval},‘
I I

BMO = {feL!: [f=0, [|fllmo < %0}
The duality between BMO and H! is established by the following
formula:

17141 = sup {|§ fal: llgliao =1, g€ L7}

We frequently use the fact that for f =Y ay hy; We can express the BMO
norm of f in terms of the cogfficients. In fact,
I fllomo = sup(2" 2 27" an)
mi) - (mag) S(mD)
BMO, denotes the subspace of BMO generated by {hmi: m<n, 0<j
<2m—-11. , o
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By the John-Nirenberg Theorem, an equivalent norm on BMO is given
by the expression sup|I|~* [, |f—/;|, where the supremum is extended over all
dyadic intervals. f

We use the following notation (cf. Jones [8]). Given a set I < (0, 1] and
collections of, % of dyadic intervals we write I " 4 for the set {Je#: J =1 }
and o "B for {J: Jes, JeR). Q, denotes the collection of all dyadic
intervals with length at least 27"

Let J be a dyadic interval- Then Q,(J) denotes the collection of all
dyadic intervals contained in J and having length at least 27"|J|. We write
Gi(J, #)={lesf: I =J and J maximal},

G, H= U G ).
IeGy— 1 (J, o)

The following fact (cf. Garnett [7], Ch. X, Lemma 3.2) will be useful

later. Given 0 <y <1, ne N and a collection of dyadic intervals ./ so that

supll| =0 Y ] >,
Ied Je ned I—y
there exists Ioe o/ so that )
2 W=yl

JeGyI g, )

We recall a few concepts from the theory of Banach spaces. An infinite-
dimensional Banach space X is called primary iff for any bounded idempo-
tent linear operator P on X, either the range of P or its kernel is isomorphic
to X. Bounded idempotent linear operators are called projections. The range
of a projection on X is by definition a complemented subspace of X. The
fundamental link between projections and isomorphisms is given by the
decomposition principle of Petczynski: Let X be a Banach space isomorphic
to (3. X),, for some pe[1, oo], and suppose that a complemented subspace Y
of X contains a subspace Z which is complemented in Y and isomorphic to
X. Then Y is isomorphic to X.

Being primary is an isomorphism invariant. Hence Theorem 6 of this
paper holds if H' is replaced there by any space X known to be isomorphic
to H; for instance we can take:

— H'(B,), neN, the Hardy space of bounded analytic functions on the
n-dimensional ball (cf. Maurey [97], Carleson [51, Wojtaszezyk [12] for n = 1,
Wojtaszczyk [13] and Wolniewicz [14] for n > 1).

—~ H'((#,), 2, P), the Hardy spaces of bounded martingales on Q,
provided P((,»0Usen4E) > 0, where 4%:= (B: B is an atom in %, and
P(B) <&} (cf. Muller [107). .

Consequently, Theorem 1 holds if BMO is replaced by the dual space

of H'(B,) resp. H'((#,), @, P). See also the remark after the proof of
Theorem 2. - i :
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A.
} Tueorem 1. If BMO is isomorphic to the direct sum of two spaces X and
Y, then either X or Y is isomorphic to BMO.

Theorem 1 will be derived from its finite-dimensional version.

TueoreM 2. For any neN and for any ¢ > 0 there exists N(n, ¢) such
that if N > N(n, ¢) and if T is any operator on BMOy with norm less than c,
then the identity on BMO, factorizes boundedly either through T or through
"T—14, ie. there exist operators U,V and jo€{l, 2} such that the diagram

id BMO;,

BMO,
U v

BMOy ————————3=BMOy
T

commutes, where T, = T and T, =1d—T, |U|||IV]| <c.

We begin by showing that Theorem 1 follows from Theorem 2.

LemMA 3. For any ¢ >0 and any neN, there exists‘N(s‘, n) with the
following property: If N> N(g, n) and E is an n-dimens%ona'l subspace of
BMOy, there exists a subspace F of BMOy which is isometric to BMO, and a
projection Q from BMOy on F such that [|Qll < 1 and

lOx|| < ellx|l for xeE.

Proof. We first show that for any xe E with |lx|| <1 'and any &> 0,.
ne N, there is N (g, n) such that for any N > N (e, n) there exists I'e Qy with:

‘(Pa) Q,(I} = Qn-
2

(Pb) sup;eg,m /™! 1{x, hedl <.
KeJ nQuth

Suppose to the contrary that this condition does not hold. Then we can
find x&E, |{x|| < 1, &0 > 0, noe N such that for any Ne N there exists No > N,

such that for any IeQy, with Qno (D) = On, we obtain the inequality

)

K&l QD

sup 1= [<x, hgdl > eo.

JeQn g

Let J be a dyadic interval and
b):= Y I<x hedls

K@y
Bi= 1T b(I) = 8ol Qugl) = Cugl-
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By assumption we get

suplf|™* 3 |J| = No—no.

TR Jel nB
By the variant of [7], Ch. X, Lemma 3.2, mentioned in the introduction,
there exist I, € B, m, = 3(No—n,) such that

> K=
KeGyy (11,9
Consequently,
my

b(K) = 80”‘1%[11]-
J=1 KeGjI1,®)

On the other hand, it follows from the expression of BMO norms in
terms of coefficients that

S

j=1 KeGI1,%)

b(K) < nomi’?{I4], ‘
N
Wh.lCh leads to a contradiction for large enough N,.
Using an Auerbach basis in E we may substitute for (Pb) the following
inequality:

(Pb’) sup sup [I7Y Y [<x, Byl <e. y
xeE  TeQy(l o) JeQ,d o)Al
lIxl <1
Now we define

F:=span {h;: IeQ,(I)},
0: BMOy—F, f— Y f hfll>h.
IeQuI o)

Clearly, F is isometric to BMO, and Q is a bounded idempotent map
onto F with norm 1. It remains to estimate sup, . nxn <1 12 (.
Given x€E, ||x|| < 1, we have

12 (Mo < 2suplJ|™* 3> [<x, hy/IKIDIIK]
J KeZ nQyl o)
<2 swp PITHOF [Gx e <2
TeQ,(1g) KeJnQ,Tg)

In order to prove Theorem 1 we use the isomorphism
BMO ~ (3, BMOy),,

which is obtained (implicitly) in Wojtaszczyk [9], p. 153. We then completc
the proof exactly as in Bourgain [3], Lemma 2.
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The following lemma and proposition are needed for the proof of
Theorem 2.

IUle.ﬂIla

Notation. For a collection # of dyadic intervals we write &/* :=
max ;= G,((0, 1], &).

LemMa 4. Let o be a collection of dyadic intervals. Gwen leN, ¢ >0,
xe BMO, yeHl we put
= {Ked: K| (|<x, )+, b)) > )

Then there exists a collection 9 of pairwise disjoint dyadzc intervals such that:
(a) Ie D implies 1¢ 2.
(b) 2* > A*(1-1/D.
(©) infipuw WYH: Jel o @} > 27 @Il I /et

Proof. Suppose not; then for
@;:= ) el |

Temax.o/
we get IF > L*(1/) for j=1, ...,
_ [1+Z(IIXII+IIJJII)T.

=271} B

i, where

esd*
Now )
Z > (1<%, B +1<p, ) > Z Y &lLl > ol ¢/l
j=1Led; «ﬁj
On the other hand,

f T (16 hdl+1<s B < o Illsmeo |2/ 1+ </io 1Vl -

j=1Led;
< o (1l +1y1)-
Hence \/% < I{|xI| +1lylp/Aesf*), contradicting the choice of ip. ®

ProrositioN 5. For any neN, g >0, IeQ,, and ¢ >0 there exists
N(n, (er), c) such that if N > N(n, (), ¢) and if T is any operator on BMOy
with norm less than c, there exist collections of pairwise disjoint zntervals
(E,),EQ such that:

(1) If 1,JeQ, and if I J, then either

En{t: Y ht)y=1}=E;
KeEy
or
Enft: Y () =—-1} =
KeEy
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(@ 11> 3 K> [I(1-47") for IeQ,

KeEy

(iiiy For y:= Y hy the following inequality holds:
KeEy

S IKThy, by <e;  for each JeQ,.
I+J
@) If we st T:i=T T:=1d=T ;=1L <y, T >4},
X;:=span {h: Ied)},
ij; X;»BMOy, h —h,

. Shyh
P;: BMOy - X;, f— : ,
! v E,. i <Gy, iy

then:
(a) 1P, T’;f Fllamo <'4e1f llamos feX;, where

e=sup(I]™* ¥ }J] )12,
I Jer
(b) 1Pl <

Proof of Proposition 5.

Construction. Fix y <1 such that 2" > 1—8~" and choose d; >0 with
T€Q, such that 6, <g,/2 and ), &, <&/2.

Step 00. Ego:=(0, 1), hoo:= hoo, Doo:= (0, 1].
Step 10. Consider-
= {2 =0, 135 1L <Thao, hdI+I<T* oo, hudl) > Soo}-

By Lemma 4 there exists a collection @i, of pairwise disjoint dyadic
intervals such that:

(@) Ie 2,, implies I¢ A.
by Zto > 2%,
(c) inf {1 1€} > 2- @I T/Goo(1 =2
Now put
Eioi={J€2i0: T =(0,4]}, hyoi= Y hy.

JeEy g

- Step (m, i) for i 0. We are given: Ry, ..., h,..y, E E and
Doos vy Drmyi—1. Define o e T '

={J:31€D,,;_, such that J = I}.
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Bo={Les: |L"* (Y - (<Thy, hdl+I1<T* by, by Y)) > 6}

(k) <(m,i—1)

By Lemma 4 there exists a collection 9,,; of pairwise disjoint dyadic 1ntervals
such that:

(a) T€D,, implies ¢ 4.
(b) i >y Ty

. —({2m m (1~ )y 2
(C) lnfleg,,,,-_l {IIVIJ[ IE.OZ!,,,;iﬁJ} ) 2"+ 2" | T || (B L = 7)¥™) .

Finally, we define
. {t B 12 (®) =1} for i even,
" {t hm ni-nel) =— for i odd,

iR
1}
Epi=1JePy: I ©Sp}, hui= Y h.
IEE g

Step (m, i) for i = 0. We replace (m, i—1) by (m—1, 2"~ 1), but otherwise
we verbatlm repeat the construction.

We stop the process at step (1, 27. A possible estimate of N (n, {en), ¢)is
given by the number -

n+1 — )y, n
2(2 /(1 =)y é(n’z,.))Z -

Verification of (i)~(iv).

(i) is clear.

(ii) follows from the choice of y ‘and from _property (b) of Zy, IeQ,.
(iii) First, for I fixed we have ) [{Th;, ;> < &;, and

oJ <1
KTh;, B =<k, T*RS| <8, for J > 1.
This follows from property (a) of Z;. Finally,
S KThy, Byl = 3 1<Thy, Bl + Y [<Thy, ) < 6+ ), 8y <.
J J<I J>I J>I
J#I
(ivia) By the construction of (%) the: operator i: BMOy —BMO,
h; = h; is bounded with norm less than 2 (cf. [10], Theorem 0). Next fix

]efl 2} and put a;: -((Th,, By~ Take f = Za,h, with || fllsmo = 1.
Then we have

7}f= Z <7;f: EI)E“I

Isdj
=Y a;(T; By, By B o+ Z Z ay <T hJ, ko
IE.VIJ ‘Ied j
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Hence we obtain the estimate

I1P; T; f— S3mo = “ 2 Z a; <T; hJa h1>h1°‘1||BMo

Ted

J#I
8suplII ) [Z ax {T;hy, hx>| K|~
K<l J:;tK
< 16supll|™' Y e2IK|™!
I K<l

(iv(b) First we recall that for f given
1/ i3m0 = sup {ITI7* JLf=A* <f, b # 0}
I

(cf. [8], p. 855). Fix now xeBMOy; by the definition of P;, {(P;x, hy> =0
for I¢|) {J: JeEy, KeQ,}. Hence in order to estimate ||P;X|[pyo it suffices
to take KeQ,, JeEg, and to estimate as follows: .

VI~ f1P; x—(P;x),)?
J

<27 Y IKx, BRI T Ry, By ™2

Ted;

I<K
_ [<x, Al
<4ty —mi’z-
Is.dj
IckK

<4UTt Y
Iedj
I<K

YT I BN

Ted; JeEy

I<K
LYty IJI)(Jé 1<%, by P
T

Ted; JeEy
I<cK

<BKITH Y Y I k)P IITE <
Is.ai.)' Ey
ICK

< 8IKITH Y L) Ixl3vo-

LeEg

12
J

|<x, By
?

MR - -
K U3 KX, AP

Ted;
ek

~ 4|KI”
< 4|K|”
< 4IK|”

BIKI™H 3 X <k, kP17

LeEg J L

Proof of Theorem 2. Fix my > n-4"*%, 1> 9 >1-47" and (&),
such that !

sup [I|™1 ¥ 117 e} < 1o

Iele Jel
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Take N(my, (), c) large enough for Proposition 5 to hold. Let o, X;,
jeil, 2}, be as in Proposition 5. There exists joe {1, 2} so that

sup [I|71 3 [J| >

sdlo JcI

n-4"-2.

.Hence by the (dual version of) Main Lemma 2in [10] there exist u;: BMO,

— X, and v;: X;  —BMO, such that |luy|||lo;|| <10 and the diagram

BMo, ——d  » BMmO,

uy vy

Id
Xy,

commutes.

On the-other hand;-by a standard approximation theorem we obtain
(from Proposition 5) u;: X;;—BMOy and v,: BMOy— X such that

luz)l llvall < 10 and the diagram

Jo

id
M %

commutes. @

Remarks. Theorem 1 still holds if BMO is replaced by (ZHl)l1 or
(3.BMO, ) Dualization and Bochkarev’s result [2] imply that in Theorem
2, BMO, and BMOy, can be replaced by L and Ly respectively, the
spaces of trigonometric polynomials equipped with the L' norm. According
to Bourgain this does not follow from the methods of [4].

B. By using two theorems from [10] we give an easy proof of the fact
that H! is primary. This proof follows the ideas of Alspach-Enflo-Odell [1].

THEOREM 6. For any operator T: H Y — H?! there exists a factorization of
Id: H* > H*' through T or ld—T.

Proof. Fix a sequence (g;) of positive numbers indexed by the family of
dyadic intervals so that |[} e, hy|| < 1/1000; (r,, n€N) denotes the sequence
of Rademacher functions on (0, 1]. First we observe that there exists an

4 — Studia Math. 89.2
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increasing sequence m{(n, i)) so that for P := 2y Tmimiy We have the following
estimate:

¥ IKThy, iyl <&

1k
This follows from the fact that for any I, r,y; tends weakly to zero as n— o0,
Next define Tl =T T,=Wd-T, je{l, 2},

0 (TR B B 10/2), Xi= span (s Te ),

. 1
P H' X, f[— Y )
e N g YL >
Our choice of (k) gives the following estimates (cf. [10], Theorem 0):

(a) 1P}l < 4.
®) I1P; T [~/ < thollfll for feX;.
, Hence there exist u;: X; —H', v;: H' — X; such that |juf}|lvdl < 10 and the
diagram

X ———t—

u,l ‘v,

Hi____ﬁ_____,,_ﬂ

commutes. o
On the other hand, there exists joe {1, 2} so that

|{t: tel for infinitely many Iedjo'}l > 0.

Now we combine the selection process of the proof of Theorem la in
[10]' with Theorem 0 in [10] to conclude that there exists i: H'— X, ,

: X; — H' such that ||i]|||Q|| < 10 and the diagram
Jo

L

o

1 1

——————-—————————)—H

A

e e
Yo

commutes. m
C.

DeriniTion (cf. Bourgain [3], p. 47). A linear map it BMOy — BMO (or
i: Hy— HY is called order-inversing if

i(h,)espan {h;: I€S,},
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whcrc (Sm)(,, Dy denotes pairwise disjoint collections of dyadic 1ntervals such
that (n, iy <(m,j) implies
inf{I: IeS,} >sup{J: JeS,;}.

In Bourgain [3] it was shown that given an order-inversing embedding
i: Hy— H*, there does not exist an order-inversing linear map i*: BMOy
— BMO satisfying <i(hy), i* (b)) = (b, by;> and

|li*¥]l < C  (independent of N).

Examples of order-inversing embeddings i: Hy — H' are easily construc-
ted, and there exist many of them. This leads to the following question:

Does there exist C > 0 so that for any Ne N there exists an order-
inversing linear map i*: BMOy — BMO satlsfylng 1/OlflIl < |*(NHI for
feBMOy such that

) <€?

I learned about this question in discussions with P. ijtaszczyk for -

which I express my appreciation. Unexpectedly, the answer is affirmative. -

Construction of the operator. Fix NeN and start with
Step 0: EOO = (0= %]: ty :=%:
1, te(0, 4],
g1(t):= {

elsewhere.

Having constructed Eqyq, ..., E, on g2t bus 915 -o0s G for n <N we
continue as follows:

Step n: t,.q:=t,/2+%. The interval (t,, t,4,] is then divided into 2"**

dyadic intervals (I, 1-f)osjsz"“—1 of length 27" (t,.,—t,), and we set

Epi 2040 = B OLs 1,014 5 Jje{0, 1}, 0<i< 21,

an+1
13 te U In+11:
<o
L Coan—q
Ge1(:=9 g-1g,0), te U Ky,
. j=0
0’ te(tn+1a 1]

Observe that
ont1l n—q

U Ly = (tm tws1ls 'Un E,;=(0,t,].
=

Hence g,+, is well defined on (0, 1].
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We stop-this process after having defined gy. Starting with E, n_, we

choose inductively pairwise disjoint collections of dyadic intervals (Su)miep,
which satisfy the conditions in the definition of order-inversion and

Z X (n’ l)E QN'

IeSy;
This implies in particular that for m <n, I€S, and JeS,,,

InJ#0

= XEm-a

implies I>J.
Next we define

ﬂm'(t) = ( Z h!)(t)gn(t)a

TeSp;

(n, )€ Qx-

Lemma 7. For any a,eC, (n, )eQy we have the estimate
”Z Ay; hni“BMO < “Z Ayi ﬁni“BMO s \/E “Z Qn; hnilIBMO . L

Remark. This means that i*: BMO ——rBMO h,,, = By is the operator,
we are looking for.

Proof of Lemma 7. We start with the right-hand inequality. Fix
(o, i0)€ O, I € Syso- Then g (#) = 27" for any te and some mo < no. Let
jo be the (well-defined) integer so that (ng—m, jo) = (1o, io)- ‘

Let us analyse the behaviour of (h,), (n, i)eQy, on the interval I:

Case 1: ng—mo <n<ng and (n, i) < (ng—my, jo). Then we have hZ (1)

=27"0F"0" for any tel.

= (. Then we have

Case 2: ng—mg S n<ng and (n, i) N\(ng—mg, jo)

F2() =0 for any tel. _
Case 3: n< ho—mo and (n, i) arbitrary. Then we have R%(t)=0 for tel.

This analysis helps us now to estimate:

[t _[(2 by - au Eni)l)z
1
2n- 1 211

Z Z anl ni ( Z Z Qpi ni)l)

n=ng=mqy i=1

=7 {(

I n=ng—mg i=1
"o 2"-1
<2III"§( X % auh
I n= "0 mg i=
28—

Z za

n=ng—mg i=0

=21~ m 1R (0t

icm
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no

=2~ 3

n=ng~mq (ni) <(ng—mg,jg)

asi 2—m0+no-~nlll

o
n=no=—mg (n,i) <(ng—mg,ig)
< 2[[¥ a hf oo -
To prove the left-hand inequality fix (m, j)€Qy such that
VA Z ay2™"= ”Z i hnt”BMO'
(m,i) =(m,j)

<2Y—1 so that (N, iy) =(m,j) and J €S, so that J < (m, j).

at2"n

Choose i, <

Observe that then g3(t) = 2" for teJ and {J|~* f Za = 0. Hence
[~ 1 J-(Zam' h'm-—(Z Qi hm‘).l) =J]! I(Z [ hni)z
J ) 7
=J~* Z az27"2mJ)
(mi) =(m, )
= ”Z Qp; hm'“l%MO'
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Factors of coalescent automorphisms
by
MARIUSZ LEMANCZYK (Torun)

Abstract. The class of all ergodic coalescent automorphisms is not closed under taking
factors, powers and inverse limits. Even if a T-invariant sub-g-algebra of an ergodic coalescent
automorphism T is completely invariant it need not be coalescent. However, if % is a completely
invariant sub-g-algebra of a simple automorphism T then it is canonical.

L Introduction. Let T be an ergodic automorphism of a Lebesgue space
(X, 8, u). The centralizer of T, C(T), is the semigroup of all endomorphisms
S: (X, B, W— (X, #, ) such that ST = TS. T is called coalescent if C(T) is
a group, or equivalently, if every endomorphism commuting with T is
invertible ([8]). Another definition of coalescence is the following (see [5],
[9]): if a T-nvariant sub-c-algebra ¥ — % has the property that
T (X,8,)— (X, B, and T (X, ¥, y)— (X, ¥, 1) are isomorphic, i.e. ¥
is isomorphic to &, then ¥ = %.

The basic problem connected with coalescence is’ whether or not it
implies zero entropy. Observe that no Bernoulli automorphism is coalescent.
Indeed, if 7 is a Bernoulli automorphism then represent t as 7, x1,, where
t,: (W, €, v)— (W, €, v) is Bernoulli and

1) h(zy) = h(z)/2.
Then take the flip map f(x, y) = (y, x) which is in the centralizer of 7, x1,

and take the corresponding sub-c-algebra ¥, = {Ae ¥®%: fA=A4 ae}.
Then the factor

T, X1, (WxW, %, v xV) = (WX W, b, vxV)

is again Bernoulli with the same entropy as 7. Hence t and (2) are
isomorphic and consequently 7 is not coalescent (the original proof of that
fact is due to Kaminski [5]).

Therefore to prove that coalescence implies zero entropy it is enough to
show that the class of all ergodic coalescent automorphisms is closed under

 taking factors (then use Sinai’s Weak Isomorphism Theorem). That is why

the question on factors of coalescent automorphisms stated by Newton in [8]
is important. However, in the present paper we provide a counterexample to
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