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Basic sequences and smooth porms in Banach spaces
by
CATHERINE FINET (Mons)

Abstract. This paper is concerned with the existence of basic sequences with small basis
constants. We also study smoothness properties of norms.

Preliminaries. Let E be a Banach space. The characteristic of a subspace
X of the dual E* is the number

I/ &

r(X) = up .
N V]

We refer the reader to [9], [16] for the basic facts on this notion. Obviously
0<r(X)< 1.
We define

x(E) = sup {r(X): X & E*}.

For a nonreflexive Banach space E, one has } < yx(E) < 1. We notice that if
E is a Banach space with a basis (x,) and X is the subspace of E* spanned
by the coefficient functionals then we have r(X) = K (x,)~* > 0 (where K (x,)
is the basis constant of (x,)).

We get the following

Lemma 0.1. If (x,) is a basis of E with basis constant strictly less than
x(E)™! then (x,) is shrinking. :

We will show that a kind of converse of this lemma is valid: namely, if
E is any Banach space, there exists, for any & > 0, a nonshrinking basic
sequence (x,) in E with K (x,) < y(E)”!+e¢. In this direction, A. Pekczyniski
has shown the existence of a nonshrinking basic sequence in a nonreflexive
Banach space [14]. We also mention the result of M. Zippin: if E is a
Banach space with a basis, then E is reflexive if and only if each basis of E is
shrinking [17]. In both resuits, there are no estimates of the basis constants.
We end the first chapter by some applications, in particular we get an
extension of a result of [7].

In the second chapter, we introduce a class of Banach spaces satisfying
smoothness conditions and we get y(E) <1 for any Banach space E in this
class (Theorem 2.3). As a consequence, if X and Y are superreflexive Banach
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spaces then y (K (X, Y)) is stricly less than 1, where K (X, Y) is the space of
compact operators from X to Y. We also present some questions and in
particular a renorming problem.
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Notation. If E is a Banach space, the closed unit ball of E is denoted by
B(E), the unit sphere by S(E). The dual of E is E*. The basis constant of a

basic sequence (x,) is denoted by K (x,). For a set 4, conv (A) is the norm-
closed convex hull of A and [A] is the span of A. K (X, Y) denotes the space
of compact operators from X to Y (with the operator norm). For the
definitions and basic facts on basic sequences the reader should consult [1].

1. Construction of basic sequences with a given constant. The main result
of this chapter is the following:

Tueorem 1.1. Let E be a nonreflexive Banach space. For every ¢ >0,
there exists a nonshrinking basic sequence (x,) such that K (x,) < x(E)™'+e
and there exists a nonboundedly complete basic sequence (y,) such that
K(y,) <1l+e.

Let us first note that there is no restriction on x(E). Hence any
nonreflexive Banach space contains a nonshrinking basic sequence (x,) with
K (x,) < 2+e¢; any nonreflexive dual space contains a nonshrinking basic
sequence (y,) with K (y,) < 1+e. The proof of the theorem does not use the
methods of A. Pelczynski [14] or M. Zippin [17] but the local reflexivity
principle [12].

Proof of the theorem. Observe first that y(E) may also be computed
by the following formula:

¥ (B~ = i:;f\E {In||: = is the projection of E@Rx**
x% dal

onto E with kernel Rx**}.

Let & be any positive number. There is x¥*e E¥*\E, ||x¥*]| =1 and
[I7l] < x(E)~*(1+¢), where = is the projection of E@Rx** onto E with kernel
Rx¥*. We will construct a sequence (x,) in E such that for any increasing
sequence of integers (n;):

(a) The sequence (x}*, x}*—x,} is basic with basis constant near to 1.

(b) (x,) is a nonshrinking basic sequence with basis constant near to
x(E)"

{c) (x—X,_,) is a basic sequence with basis constant near to 1.
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Choose (&,),50 S0 that 0 <g, <1 for all n>0 and H"“’ 1(1—&:,)
—¢, for any increasing sequence of integers (L). There is f; € S(E¥) such that
x¥*(f1) = 1—&;. Let F, denote the 1-dimensional subspace of E** spanned
by x¥*. By the local reflexivity principle [12], there is a one-to-one operator
T,: F,— E so that:

LATIITT < 1+£.

2 fi(TxE*) = xt*(f)-

We put x, = Tj x¥*.

Let F, denote the 2~ dn'nenswnal subspace of E** spanned by x}* and
x¥*—x,. There is a set Z, = {ey, ..., engy} = S(F,) which forms an &,/2-net
for S(F,). Pick ef, ..., eﬁ(z,eS(E*) so that ef(e) > 1—e,/2, and put

— *
7% = {ef, ..., &)

By the local reflexivity principle, there is a one-to-one operator Tp: Fp — E

such that:
LITINT: < L+&o-
2. i (T, x*¥) = x**(f1),
3. ef (T xt*) = x*(ef),
4 T,x; =x;.

We put x, = T, x¥*.
Notice that for any scalar a, we get

Vx**eF,.
VefeZ%.

lx3* +a(xt* —x,)l| = 1—ey.
Indeed,
[lcE* + a (a* —x Il = | fi (4% + a (et —xy))|
=

L 3 —lal 1 fy (T

We repeat the above procedure. Inductively, we find for all n>2

)l Z 1.

F, =[x, x¥*—x, ..., xF*~x,_1],
Z,=1e, ..., enw} an g,/2-net for S(F,),
Z* = (e}, ..., eyt < S(E¥) such that ef(e) > 1—e,/2,

and a 1-1 operator T,: F,— E with:

LATINT M < L+go-
2 f1(T,x*) = x**(f), Vx**eF,.
3. ef (T, xt*) = x¥*(ef), VefeUr<icnZl-
4. T, (e} =e, VeeF,NnE.
We put x, = T,x}*.
(a) The same computation as before gives ||[xt*+a(xf*—x,)|| = 1—eéy,

for all n> 1.
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We now claim that for any ye S(F,), n = 2, any scalar a, and any p > 0,
=1

I|y+a( '“xn-f-p)”

Indeed, there exists ¢;€ Z, such that ||y—e] <
We get

b,,/2 and ef(e) > 1—g,/2.

2|e y+a(x‘{‘*—x,,+,,))!
= lef (e) —|ef (e, — y)| —lal lef (xT
>

1—¢/2—llei =)l > 1—¢,.

Iy +a(ef* =X

— Xp+ p)l

For any scalars a4, ...
(li)a we get

» Gn+p and for any increasing sequence of integers

+

n+p n+p—
I3 atr =l =15

a; (xt* — xll) +a,4p(xt*

_xln+1)”

xt* =)

n+tp—1

> (1 _gln-l-p'l) “ Z

ntp—1

T (-3 alxt*—x,)|
i i=1

n
2 (1—¢) H 2 ai(x’f*“‘xl,)”-
=1

This concludes the proof of (a).

(b) Let (I) be any increasing sequence of integers and let ay, ..., a, be
any scalars. Then
NS ax = n(E ax+ 3 axte)
n
<”75””Z a; Xy, + Z aixi'*“
i=1 i=n+1
n+p
(B A+ X a)xt*+ z a; (x, — xt¥)|
i=1 i=
n+p n+p
< 2B (1+e)(1—e0)|( Z )3+ 3 @ (x,— x|
i= i=1

ntp
<a(B) 1 +o)(1—e0) || T @
i1
This proves that the sequence (x;) is basic with

K(x) < (1+e)(1—e0)™ " x(E)™".
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Moreover, since for all n, f(x,) =x¥*(f}) =
nonshrinking.

Hence, in particular, we have proved that there exists a nonshrinking
basic sequence (x,) with basis constant near to yx(E)™ L.

Land IT7Y <

1—g,, the sequence (x;) is

(c) We will suppose ||T|| < 1+¢,. Then

n
(> ai(xti—xziﬂ)” = [lag (e = x1) + .o a0, —x; )
i=1

=T, , (a1 (%1, —2)+ ...+, (e, —xT¥)]

< |lag (e —x1) + -0 Fa, (0, —xF¥)).

Since X, =X

= (x;,_, —x}*)—(x,, —x1*) and (x,—x1*) is a basic se-
quence, we have .

IIZ (0=

<(l—gg)™?

+(@nr1—a) (31,

%, )|

llay (e = x)+ oo Fayoy (X~ ) +a, (6, — xT¥)
= Xf*) +(ap42—

|

—Xp)+ .

A+ 1)(x1,,+2 —x*)+ ...
. '_+(an+p_an+p—- 1)(xl
< (L—eg0) Hlay (x,

< (U—eo) L, T, oy Gog =)+ ..

+an(xl,,_xl,,+1)+ +an+p(xl —XT*)”

n+p

—xt*)]I

+an+p(xln+
+p
< (1—gg) " (142 ” Z ai(xti“xziﬂ)”,
i=1

and so (x;—x;,,) is a basic sequence with basis constant near to 1.

We are ready to finish the proof of the second assertion of the theorem.
We first assume that E contains an isomorphic copy of /;. Then E contains
almost isometric copies of I, [11]. Let (¢) be the usual basis of [,. Consider
the sequence (x,) = (ey, e;—ey, ..., €,—€y—1, -..). Then (x,) is a non-boun-
dedly complete basis of I, with basis constant equal to 1.

Suppose now that E does not contain a copy of I;. There is no loss of
generality in assuming that E is separable. Then our sequence (x,) has a
subsequence (x,,) which is o (E**, E¥)-convergent. But (x,,) does not converge
to a point of E, since 0 is the only possible limit point of a basic sequence,
but for all n, fi(x,) = 1—¢,.

We have

“xn;_l) = _xn0+xnp

2 — Studia Math. 89.1
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P -]
Therefore supp”Zi:.l(x Xy_,)|| is finite, but the series Zi=1(xni—xni_1)
* does not converge in E. Moreover, (x,,—x,, _,) is basic with basis constant
near to 1. =

Let us mention some applications.
We define y'(E) for a Banach space E by

x'(E)

%' (E) can be considered as the “shrinking basic sequences index” because of
the following corollary:

=inf{y(F)~!: F < E}.

CoroLLArY 1.2. Let E be a Banach space. Then
X' (E) = sup {A: every basic sequence (x,) with K(x,) <A is shrinking}.

CoroLLARY 1.3. If E is a separable Banach space with y'(E) > 1, then E*
is separable.

Proof. Since E is separable, there exists a o(E* E)-dense sequence
(x,) in B(E*). So r[x,] =1 and [x,] = E* =

The above corollary should be compared with the following result: if E
is a separable space such that [e,]* is separable for every basic sequence (e,)
then E* is separable [10].

Remark. Let E be a Banach space which is an M-ideal of its bidual.
Then y(E) = 1/2 [7]. This class is stable under subspaces. Hence y'(E) = 2.

We now give an isomorphic version of the following result of G.
Godefroy and P. Saphar [7]. Let E be a Banach space such that E* contains
no proper 1-norming subspace and let (T;) be a sequence of contractions on
E such that for every xeE, lim,)|T,x—x|| =0. Then we have lim, ||T* x*
—x*|| =0 for every x*eE*.

We will replace the metric assumption (the T, are contractions) by an
algebraic one (the T, commute).

Our next result is

CoroLLary 14. Let E be a separable Banach space such that (I > 1,

V' (x,) basic sequence K(x,) <a=(x,) shrinking). Then VX <E, VT,: X - X
with

rank(T) <co, sup||T) <,

0
LL=%T, Vkn,

we have ||T* x*—x¥| =0, Vx*eX*.

ITx—x| =0, VxeX,

Proof. Let (T,),>, be a sequence of operators on X satisfying (x). Then

icm
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lim,, || ;¥ x* — x*|| =
generated by U
= (suplITIN~*

0 for every x* in the norm-closed subspace I' of X*
, TF(X™) [16]. But it is easy to check that r(I)
and thus r(I) >a™?, and this implies that I' = X*. =

Let us note that under the same assumptions on E, the projections
associated with a basic sequence satisfy the conclusion of Corollary 1.4. We
get here the result (lim, || ¥ x* — x*| = 0 for every x*e X*) for any sequence
T, satisfying ().

2. A smoothness condition. Examples. Let us introduce a condition of
uniform smoothness which is close to the one given in [4], [5]. We use the
same terminology. Let E be a Banach space. 2 (E) is the set of points of the
unit sphere where the norm is Fréchet-smooth; for every xe 2(E), we denote
by f. the differential of this norm at x.

DerinitioN 2.1. We say that E is almost uniformly smooth (a.us.) if there
exists a family (A4,)g<,<1 of subsets of Z(E) such that:
(a) Vee]O0, 1[, 36(s) > O:

YEB(E¥), xed,, y(x)21-4(d) = |y—fill <e

(b) Ve: B(E*) =conv {f,: xeA,) +eB(E¥).

EXAMPLES. ¢ (I') is a.us. for any I'. Every superreflexive Banach space is
a.us. for every equivalent norm [5]. A nontrivial class of new examples is
provided by our next result:

ProrositioN 2.2. If X, Y are superreflexive Banach spaces then K(X, Y)
is aus.

Proof. The proof follows the method of [4], [7]; we only give the main
ideas. The following facts are known. Let xe S (X) (resp. ye S(Y)) and assume
that x (resp. y) is strongly exposed in B(X) (resp. B(Y)) by f.e X* (resp.
f,€ Y*). Then x®y is strongly exposed in B(X®Y) by f,®f, [7]. Moreover,
if there is a uniformity in the strong exposition of x and y then there is also
a uniformity in the strong eéxposition of x®y [4]. Since a superreflexive
Banach space is a.u.s., the unit ball of X and the unit ball of Y* are of type
(b) from Definition 2.1. Using the technique of [7], we conclude that the unit
ball of X*®,Y is also of type (b). =

Of course, the proposition is not true in general for reflexive Banach
spaces. If X = @, 7, and Y = R then K(X, ¥) = @, /] and K(X, Y) is not
a.us. [4]. J. Partington has shown that every Banach space may be equiva-
lently renormed to have property f ([13], see also [15])). For a reflexive
Banach space it is easy to see that property S implies almost uniform
smoothness. Therefore if X and Y are reflexive Banach spaces then K (X, Y)
admits an equivalent almost uniformly smooth norm.
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We use the technique of [4] in the proof of the main result of this
chapter.

TueoreM 2.3. If E is au.s. then x(E) is strictly less than 1.

Proof. Suppose x(E) = 1. There are a sequence (y,) in S(E**\E) and a
sequence of projections (r,) such that =, is the projection of E@Ry, onto E
with kernel Ry, and 1 < |=,|| < 1+ 1/n® Therefore

(6)) lle]l < (1+1/n?)|le+y, for any ecE.

By using a technique similar to that in [4] we show that ker y, N B(E¥)
is “almost” o (E*, E)-dense in B(E*). More precisely, there is an integer N
such that for every n> N and every heS(E), one has

ker y, N B(E*) ¢ {xeB(E*): |h(x)] < 1—1/n}.

The idea is the following. Suppose this is not true. Let N be an integer
such that there are n> N and heS(E) satisfying

ker y, " B(E*) < {xe B(E*): |h(x)] < 1—1/n}.
Then for u = (n+1/n)heE it can be shown as in [4] that |jul] > (1+ 1/n?)|lu

—y,ll, a contradiction with (1).
Therefore

3N, Vn= N, Vxed,, JyBekery, nB(E¥: yH(x)>1-1/n.

Let M > max {N, 1/6(¢)}; then for n> M we get ||y{)—fll <e. Now,

Y (I < 1y (= VDI 1yn GBI
Since y{%jeker y,, one has

Ve>0,IM, Vuz=M: suply,(f) <e.
xed,

By Definition 2.1(b), this implies ||y,/| -+ 0 as n— co, a contradiction. =

CoroLLARY 24. If X and Y are superreflexive Banach spaces then
x(K(X, Y)) is strictly less than 1.

We now mention two questions.

QuesTtioN 2.5. Let X, Y be superreflexive Banach spaces. Does there exist
a > 1 such that if (x,) is a basic sequence in K (X, Y) with K(x,) < a then (x,)
is shrinking? Of course, Theorem 2.3 does not imply the existence of o since
the property yx(E) <1 is not hereditary (L. V. Gladun and A. M. Plichko
have constructed [6] an example of a Banach space X which contains a
norm-one complemented hyperplane Y with y(Y) =1, x(X) < 2/3).

icm
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The second question concerns a renorming problem:

QuEsTION 2.6. Is it possible to renorm a Banach space E with separable
dual so that y(E) < 1? (see’ [2]). The answer is affirmative whenever E is a
quasi-reflexive Banach space: if E is a quasi-reflexive Banach space then
there exists on E an equivalent norm such that y(E) =1/2 [8].
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