| ©   |
|-----|
| 200 |
|     |

## STUDIA MATHEMATICA, T. LXXXIX. (1988)

## Basic sequences and smooth norms in Banach spaces

by

## CATHERINE FINET (Mons)

Abstract. This paper is concerned with the existence of basic sequences with small basis constants. We also study smoothness properties of norms.

**Preliminaries.** Let E be a Banach space. The *characteristic* of a subspace X of the dual  $E^*$  is the number

$$r(X) = \inf_{x \in E \setminus \{0\}} \sup_{f \in X \setminus \{0\}} \frac{|f(x)|}{||f|| ||x||}.$$

We refer the reader to [9], [16] for the basic facts on this notion. Obviously  $0 \le r(X) \le 1$ .

We define

$$\chi(E) = \sup \{ r(X) \colon X \not\subseteq E^* \}.$$

For a nonreflexive Banach space E, one has  $\frac{1}{2} \le \chi(E) \le 1$ . We notice that if E is a Banach space with a basis  $(x_n)$  and X is the subspace of  $E^*$  spanned by the coefficient functionals then we have  $r(X) \ge K(x_n)^{-1} > 0$  (where  $K(x_n)$  is the basis constant of  $(x_n)$ ).

We get the following

Lemma 0.1. If  $(x_n)$  is a basis of E with basis constant strictly less than  $\chi(E)^{-1}$  then  $(x_n)$  is shrinking.

We will show that a kind of converse of this lemma is valid: namely, if E is any Banach space, there exists, for any  $\varepsilon > 0$ , a nonshrinking basic sequence  $(x_n)$  in E with  $K(x_n) \le \chi(E)^{-1} + \varepsilon$ . In this direction, A. Pełczyński has shown the existence of a nonshrinking basic sequence in a nonreflexive Banach space [14]. We also mention the result of M. Zippin: if E is a Banach space with a basis, then E is reflexive if and only if each basis of E is shrinking [17]. In both results, there are no estimates of the basis constants. We end the first chapter by some applications, in particular we get an extension of a result of [7].

In the second chapter, we introduce a class of Banach spaces satisfying smoothness conditions and we get  $\chi(E) < 1$  for any Banach space E in this class (Theorem 2.3). As a consequence, if X and Y are superreflexive Banach

2

spaces then  $\chi(K(X, Y))$  is strictly less than 1, where K(X, Y) is the space of compact operators from X to Y. We also present some questions and in particular a renorming problem.

Acknowledgements. The paper was prepared during my visit at the University of Columbia. It is a great pleasure to thank here Michèle and Gilles Godefroy, Paula and Elias Saab for their warm hospitality. I wish to express here my gratitude to Professor G. Godefroy for his help, suggestions and the many stimulating discussions we had.

**Notation.** If E is a Banach space, the closed unit ball of E is denoted by B(E), the unit sphere by S(E). The dual of E is  $E^*$ . The basis constant of a basic sequence  $(x_n)$  is denoted by  $K(x_n)$ . For a set A,  $\overline{\text{conv}}(A)$  is the norm-closed convex hull of A and [A] is the span of A. K(X, Y) denotes the space of compact operators from X to Y (with the operator norm). For the definitions and basic facts on basic sequences the reader should consult [1].

1. Construction of basic sequences with a given constant. The main result of this chapter is the following:

THEOREM 1.1. Let E be a nonreflexive Banach space. For every  $\varepsilon > 0$ , there exists a nonshrinking basic sequence  $(x_n)$  such that  $K(x_n) \leq \chi(E)^{-1} + \varepsilon$  and there exists a nonboundedly complete basic sequence  $(y_n)$  such that  $K(y_n) \leq 1 + \varepsilon$ .

Let us first note that there is no restriction on  $\chi(E)$ . Hence any nonreflexive Banach space contains a nonshrinking basic sequence  $(x_n)$  with  $K(x_n) \leq 2+\varepsilon$ ; any nonreflexive dual space contains a nonshrinking basic sequence  $(y_n)$  with  $K(y_n) \leq 1+\varepsilon$ . The proof of the theorem does not use the methods of A. Pełczyński [14] or M. Zippin [17] but the local reflexivity principle [12].

Proof of the theorem. Observe first that  $\chi(E)$  may also be computed by the following formula:

$$\chi(E)^{-1} = \inf_{x^{**} \in F^{**} \setminus E} \{ ||\pi|| : \pi \text{ is the projection of } E \oplus Rx^{**} \}$$

onto E with kernel  $Rx^{**}$ .

Let  $\varepsilon$  be any positive number. There is  $x_1^{**} \in E^{**} \setminus E$ ,  $||x_1^{**}|| = 1$  and  $||\pi|| \leq \chi(E)^{-1} (1+\varepsilon)$ , where  $\pi$  is the projection of  $E \oplus Rx_1^{**}$  onto E with kernel  $Rx_1^{**}$ . We will construct a sequence  $(x_n)$  in E such that for any increasing sequence of integers  $(n_i)$ :

- (a) The sequence  $(x_1^{**}, x_1^{**} x_{n_i})$  is basic with basis constant near to 1.
- (b)  $(x_{n_i})$  is a nonshrinking basic sequence with basis constant near to  $\chi(E)^{-1}$ .
  - (c)  $(x_{n_i} x_{n_{i-1}})$  is a basic sequence with basis constant near to 1.



Choose  $(\varepsilon_n)_{n\geqslant 0}$  so that  $0<\varepsilon_n<1$  for all  $n\geqslant 0$  and  $\prod_{i=n}^{n+p-1}(1-\varepsilon_{ii})\geqslant 1-\varepsilon_0$  for any increasing sequence of integers  $(l_i)$ . There is  $f_1\in S(E^*)$  such that  $x_1^{**}(f_1)\geqslant 1-\varepsilon_1$ . Let  $F_1$  denote the 1-dimensional subspace of  $E^{**}$  spanned by  $x_1^{**}$ . By the local reflexivity principle [12], there is a one-to-one operator  $T_i\colon F_1\to E$  so that:

1.  $||T_1|| ||T_1^{-1}|| \leq 1 + \varepsilon_0$ .

2. 
$$f_1(T_1 x_1^{**}) = x_1^{**}(f_1)$$
.

We put  $x_1 = T_1 x_1^{**}$ .

Let  $F_2$  denote the 2-dimensional subspace of  $E^{**}$  spanned by  $x_1^{**}$  and  $x_1^{**}-x_1$ . There is a set  $Z_2=\{e_1,\ldots,e_{N(2)}\}\subset S(F_2)$  which forms an  $\varepsilon_2/2$ -net for  $S(F_2)$ . Pick  $e_1^*,\ldots,e_{N(2)}^*\in S(E^*)$  so that  $e_i^*(e_i)>1-\varepsilon_2/2$ , and put

$$Z_2^* = \{e_1^*, \ldots, e_{N(2)}^*\}.$$

By the local reflexivity principle, there is a one-to-one operator  $T_2$ :  $F_2 \to E$  such that:

1.  $||T_2|| ||T_2^{-1}|| \leq 1 + \varepsilon_0$ .

2.  $f_1(T_2 x^{**}) = x^{**}(f_1), \forall x^{**} \in F_2.$ 

3.  $e_i^*(T_2x_1^{**}) = x_1^{**}(e_i^*), \forall e_i^* \in \mathbb{Z}_2^*.$ 

4.  $T_2 x_1 = x_1$ .

We put  $x_2 = T_2 x_1^{**}$ .

Notice that for any scalar a, we get

$$||x_1^{**} + a(x_1^{**} - x_1)|| \ge 1 - \varepsilon_1.$$

Indeed.

$$||x_1^{**} + a(x_1^{**} - x_1)|| \ge |f_1(x_1^{**} + a(x_1^{**} - x_1))|$$
  
 
$$\ge |f_1(x_1^{**})| - |a| |f_1(x_1^{**} - x_1)| \ge 1 - \varepsilon_1.$$

We repeat the above procedure. Inductively, we find for all  $n \ge 2$ 

$$\begin{split} F_n &= [x_1^{**}, x_1^{**} - x_1, \dots, x_1^{**} - x_{n-1}], \\ Z_n &= \{e_1, \dots, e_{N(n)}\} \quad \text{an } \varepsilon_n/2\text{-net for } S(F_n), \\ Z_n^* &= \{e_1^*, \dots, e_{N(n)}^*\} \subset S(E^*) \quad \text{such that} \quad e_i^*(e_i) > 1 - \varepsilon_n/2, \end{split}$$

and a 1-1 operator  $T_n: F_n \to E$  with:

1.  $||T_n|| ||T_n^{-1}|| \le 1 + \varepsilon_0$ .

2.  $f_1(T_n x^{**}) = x^{**}(f_1), \quad \forall x^{**} \in F_n.$ 

3.  $e_i^*(T_n x_1^{**}) = x_1^{**}(e_i^*), \quad \forall e_i^* \in \bigcup_{2 \le i \le n} Z_i^*.$ 

4.  $T_n(e) = e$ ,  $\forall e \in F_n \cap E$ .

We put  $x_n = T_n x_1^{**}$ .

(a) The same computation as before gives  $||x_1^{**}+a(x_1^{**}-x_n)|| \ge 1-\varepsilon_1$ , for all  $n\ge 1$ .

We now claim that for any  $y \in S(F_n)$ ,  $n \ge 2$ , any scalar a, and any  $p \ge 0$ ,

$$||y+a(x_1^{**}-x_{n+p})|| \ge 1-\varepsilon_n$$

Indeed, there exists  $e_i \in Z_n$  such that  $||y-e_i|| \le \varepsilon_n/2$  and  $e_i^*(e_i) > 1 - \varepsilon_n/2$ . We get

$$||y + a(x_1^{**} - x_{n+p})|| \ge |e_i^*(y + a(x_1^{**} - x_{n+p}))|$$

$$\ge |e_i^*(e_i)| - |e_i^*(e_i - y)| - |a| |e_i^*(x_1^{**} - x_{n+p})|$$

$$\ge 1 - \varepsilon_n/2 - ||e_i - y|| \ge 1 - \varepsilon_n.$$

For any scalars  $a_1, \ldots, a_{n+p}$  and for any increasing sequence of integers  $(l_l)$ , we get

$$\begin{split} \left\| \sum_{i=1}^{n+p} a_i (x_1^{**} - x_{l_i}) \right\| &= \left\| \sum_{i=1}^{n+p-1} a_i (x_1^{**} - x_{l_i}) + a_{n+p} (x_1^{**} - x_{l_{n+p}}) \right\| \\ &\geqslant (1 - \varepsilon_{l_{n+p-1}}) \left\| \sum_{i=1}^{n+p-1} a_i (x_1^{**} - x_{l_i}) \right\| \\ &\geqslant \prod_{i=n}^{n+p-1} (1 - \varepsilon_{l_i}) \left\| \sum_{i=1}^{n} a_i (x_1^{**} - x_{l_i}) \right\| \\ &\geqslant (1 - \varepsilon_0) \left\| \sum_{i=1}^{n} a_i (x_1^{**} - x_{l_i}) \right\|. \end{split}$$

This concludes the proof of (a).

(b) Let  $(l_i)$  be any increasing sequence of integers and let  $a_1, \ldots, a_n$  be any scalars. Then

$$\begin{split} \|\sum_{i=1}^{n} a_{i} \, x_{l_{i}}\| &= \|\pi \left(\sum_{i=1}^{n} a_{i} \, x_{l_{i}} + \sum_{i=n+1}^{n+p} a_{i} \, x_{1}^{**}\right)\| \\ &\leq \|\pi\| \|\sum_{i=1}^{n} a_{i} \, x_{l_{i}} + \sum_{i=n+1}^{n+p} a_{i} \, x_{1}^{**}\| \\ &\leq \chi(E)^{-1} \, (1+\varepsilon) \|\left(\sum_{i=1}^{n+p} a_{i}\right) x_{1}^{**} + \sum_{i=1}^{n} a_{i} \, (x_{l_{i}} - x_{1}^{**})\| \\ &\leq \chi(E)^{-1} \, (1+\varepsilon) (1-\varepsilon_{0})^{-1} \left\|\left(\sum_{i=1}^{n+p} a_{i}\right) x_{1}^{**} + \sum_{i=1}^{n+p} a_{i} \, (x_{l_{i}} - x_{1}^{**})\right\| \\ &\leq \chi(E)^{-1} \, (1+\varepsilon) (1-\varepsilon_{0})^{-1} \left\|\sum_{i=1}^{n+p} a_{i} \, x_{l_{i}}\right\|. \end{split}$$

This proves that the sequence  $(x_l)$  is basic with

$$K(x_i) \leq (1+\varepsilon)(1-\varepsilon_0)^{-1} \chi(E)^{-1}.$$

Moreover, since for all n,  $f_1(x_n) = x_1^{**}(f_1) \ge 1 - \varepsilon_1$ , the sequence  $(x_{i_l})$  is nonshrinking.

Hence, in particular, we have proved that there exists a nonshrinking basic sequence  $(x_n)$  with basis constant near to  $\chi(E)^{-1}$ .

(c) We will suppose  $||T_n|| \le 1$  and  $||T_n^{-1}|| \le 1 + \varepsilon_0$ . Then

$$\begin{split} \left\| \sum_{i=1}^{n} a_{i}(x_{l_{i}} - x_{l_{i+1}}) \right\| &= \|a_{1}(x_{l_{1}} - x_{l_{2}}) + \dots + a_{n}(x_{l_{n}} - x_{l_{n+1}}) \| \\ &= \|T_{l_{n+1}} [a_{1}(x_{l_{1}} - x_{l_{2}}) + \dots + a_{n}(x_{l_{n}} - x_{1}^{**})] \| \\ &\leq \|a_{1}(x_{l_{1}} - x_{l_{2}}) + \dots + a_{n}(x_{l_{n}} - x_{1}^{**}) \|. \end{split}$$

Since  $x_{l_{n-1}} - x_{l_n} = (x_{l_{n-1}} - x_1^{**}) - (x_{l_n} - x_1^{**})$  and  $(x_{l_i} - x_1^{**})$  is a basic sequence, we have

$$\begin{split} & \left\| \sum_{i=1}^{n} a_{i}(x_{l_{i}} - x_{l_{i+1}}) \right\| \\ & \leq (1 - \varepsilon_{0})^{-1} \left\| a_{1}(x_{l_{1}} - x_{l_{2}}) + \ldots + a_{n-1}(x_{l_{n-1}} - x_{l_{n}}) + a_{n}(x_{l_{n}} - x_{1}^{***}) \right. \\ & + (a_{n+1} - a_{n})(x_{l_{n+1}} - x_{1}^{***}) + (a_{n+2} - a_{n+1})(x_{l_{n+2}} - x_{1}^{***}) + \ldots \\ & \qquad \ldots + (a_{n+p} - a_{n+p-1})(x_{l_{n+p}} - x_{1}^{***}) \right\| \\ & \leq (1 - \varepsilon_{0})^{-1} \left\| a_{1}(x_{l_{1}} - x_{l_{2}}) + \ldots + a_{n}(x_{l_{n}} - x_{l_{n+1}}) + \ldots + a_{n+p}(x_{l_{n+p}} - x_{1}^{***}) \right\| \\ & \leq (1 - \varepsilon_{0})^{-1} \left\| T_{l_{n+p+1}}^{-1} \right\| \left\| T_{l_{n+p+1}}^{-1} \left[ a_{1}(x_{l_{1}} - x_{l_{2}}) + \ldots + a_{n+p}(x_{l_{n+p}} - x_{1}^{***}) \right] \right\| \\ & \leq (1 - \varepsilon_{0})^{-1} (1 + \varepsilon_{0}) \left\| \sum_{i=1}^{n+p} a_{i}(x_{l_{i}} - x_{l_{i+1}}) \right\|, \end{split}$$

and so  $(x_{l_i} - x_{l_{i+1}})$  is a basic sequence with basis constant near to 1.

We are ready to finish the proof of the second assertion of the theorem. We first assume that E contains an isomorphic copy of  $l_1$ . Then E contains almost isometric copies of  $l_1$  [11]. Let  $(e_i)$  be the usual basis of  $l_1$ . Consider the sequence  $(x_n) = (e_1, e_2 - e_1, \ldots, e_n - e_{n-1}, \ldots)$ . Then  $(x_n)$  is a non-boundedly complete basis of  $l_1$  with basis constant equal to 1.

Suppose now that E does not contain a copy of  $l_1$ . There is no loss of generality in assuming that E is separable. Then our sequence  $(x_n)$  has a subsequence  $(x_{n_l})$  which is  $\sigma(E^{**}, E^*)$ -convergent. But  $(x_{n_l})$  does not converge to a point of E, since 0 is the only possible limit point of a basic sequence, but for all n,  $f_1(x_n) \ge 1 - \varepsilon_1$ .

We have

$$\sum_{i=1}^{p} (x_{n_i} - x_{n_{i-1}}) = -x_{n_0} + x_{n_p}.$$

icm

Therefore  $\sup_{p}\left\|\sum_{i=1}^{p}(x_{n_{i}}-x_{n_{i-1}})\right\|$  is finite, but the series  $\sum_{i=1}^{\infty}(x_{n_{i}}-x_{n_{i-1}})$  does not converge in E. Moreover,  $(x_{n_{i}}-x_{n_{i-1}})$  is basic with basis constant near to 1.

Let us mention some applications. We define  $\gamma'(E)$  for a Banach space E by

$$\chi'(E) = \inf \{ \chi(F)^{-1} \colon F \subseteq E \}.$$

 $\chi'(E)$  can be considered as the "shrinking basic sequences index" because of the following corollary:

COROLLARY 1.2. Let E be a Banach space. Then

 $\chi'(E) = \sup \{\lambda : \text{ every basic sequence } (x_n) \text{ with } K(x_n) < \lambda \text{ is shrinking} \}.$ 

Corollary 1.3. If E is a separable Banach space with  $\chi'(E) > 1$ , then  $E^*$  is separable.

Proof. Since E is separable, there exists a  $\sigma(E^*, E)$ -dense sequence  $(x_n)$  in  $B(E^*)$ . So  $r[x_n] = 1$  and  $[x_n] = E^*$ .

The above corollary should be compared with the following result: if E is a separable space such that  $[e_n]^*$  is separable for every basic sequence  $(e_n)$  then  $E^*$  is separable [10].

Remark. Let E be a Banach space which is an M-ideal of its bidual. Then  $\chi(E) = 1/2$  [7]. This class is stable under subspaces. Hence  $\chi'(E) = 2$ .

We now give an isomorphic version of the following result of G. Godefroy and P. Saphar [7]. Let E be a Banach space such that  $E^*$  contains no proper 1-norming subspace and let  $(T_n)$  be a sequence of contractions on E such that for every  $x \in E$ ,  $\lim_n ||T_n x - x|| = 0$ . Then we have  $\lim_n ||T_n^* x^* - x^*|| = 0$  for every  $x^* \in E^*$ .

We will replace the metric assumption (the  $T_n$  are contractions) by an algebraic one (the  $T_n$  commute).

Our next result is

(\*)

Corollary 1.4. Let E be a separable Banach space such that  $(\exists \alpha > 1, \forall (x_n) \text{ basic sequence: } K(x_n) < \alpha \Rightarrow (x_n) \text{ shrinking)}.$  Then  $\forall X \subseteq E, \ \forall T_n \colon X \to X$  with

$$\operatorname{rank}(T_n) < \infty, \quad \sup_{n} ||T_n|| < \alpha,$$

$$T_n T_k = T_k T_n, \quad \forall k, n, \quad ||T_n x - x|| \to 0, \quad \forall x \in X,$$

we have  $||T_n^* x^* - x^*|| \to 0$ ,  $\forall x^* \in X^*$ .

Proof. Let  $(T_n)_{n\geq 1}$  be a sequence of operators on X satisfying (\*). Then

 $\lim_n \|T_n^* x^* - x^*\| = 0$  for every  $x^*$  in the norm-closed subspace  $\Gamma$  of  $X^*$  generated by  $\bigcup_{n=1}^{\infty} T_n^*(X^*)$  [16]. But it is easy to check that  $r(\Gamma) \ge (\sup \|T_n\|)^{-1}$  and thus  $r(\Gamma) > \alpha^{-1}$ , and this implies that  $\Gamma = X^*$ .

Let us note that under the same assumptions on E, the projections associated with a basic sequence satisfy the conclusion of Corollary 1.4. We get here the result  $(\lim_n ||T_n^* x^* - x^*|| = 0$  for every  $x^* \in X^*$ ) for any sequence  $T_n$  satisfying (\*).

2. A smoothness condition. Examples. Let us introduce a condition of uniform smoothness which is close to the one given in [4], [5]. We use the same terminology. Let E be a Banach space.  $\mathcal{D}(E)$  is the set of points of the unit sphere where the norm is Fréchet-smooth; for every  $x \in \mathcal{D}(E)$ , we denote by  $f_x$  the differential of this norm at x.

DEFINITION 2.1. We say that E is almost uniformly smooth (a.u.s.) if there exists a family  $(A_s)_{0 \le s \le 1}$  of subsets of  $\mathcal{D}(E)$  such that:

(a)  $\forall \varepsilon \in ]0, 1[, \exists \delta(\varepsilon) > 0$ :

$$y \in B(E^*), x \in A_{\varepsilon}, y(x) \ge 1 - \delta(\varepsilon) \Rightarrow ||y - f_x|| \le \varepsilon.$$

(b) 
$$\forall \varepsilon \colon B(E^*) = \overline{\text{conv}} \{ f_x \colon x \in A_{\varepsilon} \} + \varepsilon B(E^*).$$

Examples.  $c_0(\Gamma)$  is a.u.s. for any  $\Gamma$ . Every superreflexive Banach space is a.u.s. for every equivalent norm [5]. A nontrivial class of new examples is provided by our next result:

Proposition 2.2. If X, Y are superreflexive Banach spaces then K(X, Y) is a.u.s.

Proof. The proof follows the method of [4], [7]; we only give the main ideas. The following facts are known. Let  $x \in S(X)$  (resp.  $y \in S(Y)$ ) and assume that x (resp. y) is strongly exposed in B(X) (resp. B(Y)) by  $f_x \in X^*$  (resp.  $f_y \in Y^*$ ). Then  $x \otimes y$  is strongly exposed in  $B(X \otimes Y)$  by  $f_x \otimes f_y$  [7]. Moreover, if there is a uniformity in the strong exposition of x and y then there is also a uniformity in the strong exposition of  $x \otimes y$  [4]. Since a superreflexive Banach space is a.u.s., the unit ball of X and the unit ball of  $X^*$  are of type (b) from Definition 2.1. Using the technique of [7], we conclude that the unit ball of  $X^* \otimes_{\varepsilon} Y$  is also of type (b).

Of course, the proposition is not true in general for reflexive Banach spaces. If  $X=\bigoplus_{l_2}l_{\infty}^n$  and Y=R then  $K(X,Y)=\bigoplus_{l_2}l_1^n$  and K(X,Y) is not a.u.s. [4]. J. Partington has shown that every Banach space may be equivalently renormed to have property  $\beta$  ([13], see also [15]). For a reflexive Banach space it is easy to see that property  $\beta$  implies almost uniform smoothness. Therefore if X and Y are reflexive Banach spaces then K(X,Y) admits an equivalent almost uniformly smooth norm.

We use the technique of [4] in the proof of the main result of this chapter.

THEOREM 2.3. If E is a.u.s. then  $\chi(E)$  is strictly less than 1.

Proof. Suppose  $\chi(E)=1$ . There are a sequence  $(y_n)$  in  $S(E^{**}\setminus E)$  and a sequence of projections  $(\pi_n)$  such that  $\pi_n$  is the projection of  $E\oplus Ry_n$  onto E with kernel  $Ry_n$  and  $1 \le ||\pi_n|| \le 1 + 1/n^2$ . Therefore

(1) 
$$||e|| \le (1+1/n^2)||e+y_n||$$
 for any  $e \in E$ .

By using a technique similar to that in [4] we show that  $\ker y_n \cap B(E^*)$  is "almost"  $\sigma(E^*, E)$ -dense in  $B(E^*)$ . More precisely, there is an integer N such that for every  $n \ge N$  and every  $h \in S(E)$ , one has

$$\ker y_n \cap B(E^*) \subset \{x \in B(E^*): |h(x)| \le 1 - 1/n\}.$$

The idea is the following. Suppose this is not true. Let N be an integer such that there are  $n \ge N$  and  $h \in S(E)$  satisfying

$$\ker y_n \cap B(E^*) \subset \{x \in B(E^*): |h(x)| \le 1 - 1/n\}.$$

Then for  $u = (n+1/n)h \in E$  it can be shown as in [4] that  $||u|| > (1+1/n^2)||u - y_n||$ , a contradiction with (1).

Therefore

$$\exists N, \ \forall n \geqslant N, \ \forall x \in A_{\varepsilon}, \ \exists y_{(x)}^{(n)} \in \ker y_n \cap B(E^*): \quad y_{(x)}^{(n)}(x) > 1 - 1/n.$$

Let  $M \ge \max\{N, 1/\delta(\varepsilon)\}$ ; then for  $n \ge M$  we get  $||y_{(x)}^{(n)} - f_x|| \le \varepsilon$ . Now,

$$|y_n(f_x)| \le |y_n(f_x - y_{(x)}^{(n)})| + |y_n(y_{(x)}^{(n)})|.$$

Since  $y_{(x)}^{(n)} \in \ker y_n$ , one has

$$\forall \varepsilon > 0, \exists M, \ \forall n \geqslant M: \quad \sup_{x \in A_{\varepsilon}} |y_n(f_x)| \leqslant \varepsilon.$$

By Definition 2.1(b), this implies  $||y_n|| \to 0$  as  $n \to \infty$ , a contradiction.

COROLLARY 2.4. If X and Y are superreflexive Banach spaces then  $\chi(K(X,Y))$  is strictly less than 1.

We now mention two questions.

QUESTION 2.5. Let X, Y be superreflexive Banach spaces. Does there exist  $\alpha > 1$  such that if  $(x_n)$  is a basic sequence in K(X, Y) with  $K(x_n) < \alpha$  then  $(x_n)$  is shrinking? Of course, Theorem 2.3 does not imply the existence of  $\alpha$  since the property  $\chi(E) < 1$  is not hereditary (L. V. Gladun and A. M. Plichko have constructed [6] an example of a Banach space X which contains a norm-one complemented hyperplane Y with  $\chi(Y) = 1$ ,  $\chi(X) \le 2/3$ ).



The second question concerns a renorming problem:

QUESTION 2.6. Is it possible to renorm a Banach space E with separable dual so that  $\chi(E) < 1$ ? (see [2]). The answer is affirmative whenever E is a quasi-reflexive Banach space: if E is a quasi-reflexive Banach space then there exists on E an equivalent norm such that  $\chi(E) = 1/2$  [8].

## References

- [1] J. Diestel, Sequences and Series in Banach Spaces, Graduate Texts in Math. 92, Springer, 1984.
- [2] D. van Dulst and I. Singer, On Kadec-Klee norms on Banach spaces, Studia Math. 54 (1975), 205-211.
- [3] M. Feder and P. D. Saphar, Spaces of compact operators and their dual spaces, Israel J. Math. 21 (1975), 38-49.
- [4] C. Finet, Une classe d'espaces de Banach à prédual unique, Quart. J. Math. Oxford 35 (1984), 403-414.
- [5] -, Uniform convexity properties of norms on a superreflexive Banach space, Israel J. Math. 53 (1986), 81-92.
- [6] L. V. Gladun and A. N. Plichko, Normalizing and strongly normalizing subspaces of a conjugate Banach space, Ukrain. Mat. Zh. 36 (1984), 427-433 (in Russian).
- [7] G. Godefroy and P. Saphar, Duality in spaces of operators and smooth norms on Banach spaces, to appear.
- [8] B. V. Godun, Equivalent norms on nonreflexive Banach spaces, Dokl. Akad. Nauk SSSR 265 (1982), 20-23 (in Russian).
- [9] B. V. Godun and M. I. Kadets, Norming subspaces, biorthogonal systems and predual Banach spaces, Sibirsk. Mat. Zh. 23 (1982), 44-48 (in Russian).
- [10] J. N. Hagler, to appear.
- [11] R. C. James, Uniformly non-square Banach spaces, Ann. of Math. 80 (1964), 542-550.
- [12] J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces I. Sequence Spaces, Springer, 1977.
- [13] J. R. Partington, Norm attaining operators, Israel J. Math. 43 (1982), 273-276.
- [14] A. Pełczyński, A note on the paper of I. Singer "Basic sequences and reflexivity of Banach spaces", Studia Math. 21 (1962), 371-374.
- [15] W. Schachermayer, Norm attaining operators and renormings of Banach spaces, Israel J. Math. 44 (1983), 201-212.
- [16] I. Singer, Bases in Banach Spaces, vol. I, II, Springer, 1970, 1981.
- [17] M. Zippin, A remark on bases and reflexivity in Banach spaces, Israel J. Math. 6 (1968), 74-79.

INSTITUT DE MATHÉMATIQUES UNIVERSITÉ DE L'ÉTAT À MONS 15, av. Maistriau, 7000 Mons, Belgium

Received August 15, 1986

(2205)