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convex set in R" of volume | then for every 1-codimensional subspace H of
R, |HNC| > 6.

3) There is a constant M such that if C is an isotropic symmetric convey
set in R" of volume 1 then

m(C A B(M /n) > 1,

where B(M \/ﬁ) is the Euclidean ball of radius M N .
4) There is a constant M such that for every symmetric convex set (' in
R" of volume 1 there is an ellipsoid & of volume at most M" such that

60 >4

We may remark that such bounds do hold uniformly for the unit balls
of spaces with a l-unconditional basis. This follows from the observation
that such a space can be represented on R” with an isotropic unit ball C, say,
and with the unconditional basis vectors orthogonal. In this situation the
section of C perpendicular to a basis vector is also the projection of €' onto
the orthogonal complement of that vector.

4 Acknowledgement. This work will form part of a doctoral thesis being
written under the supervision of Dr. B. Bollobds whose advice and encoura-
gement have been invaluable.
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On the strong maximal function and rearrangements
by
TERRY R. McCONNELL* (Syracuse, N.Y,)

Abstract. We provide sufficient conditions for almost everywhere finiteness, integrability
and membership in weak L' of the strong maximal function on T2, These are the weakest
possible conditions which are invariant under all measure-preserving transformations of T2
which preserve the product structure. We also give examples showing that the conditions are not
necessary.

1. Introduction. There are many points of contact between probability
theory and harmonic analysis.  One of the more striking concerns the
connections between the Hardy-Littlewood maximal operator and its proba-
bilistic counterpart. In this paper we explore similar connections between the
strong maximal operator and a two-parameter probabilistic maximal opera-
tor. The differences between the two maximal operators are related to their
behavior relative to rearrangements which preserve the product structure.

Let X, X,, ... be independent and identically distributed (i.i.d.) random
variables on some probability space (@, &, P). Suppose also each X; has a
uniform on [0, 1) (U(0, 1)) distribution. For Borel functions f on [0, 1) let

n
se(f)= 2 (XD, s*(f)= sup (s.(f)/n).

i=1 1€n<w
Then by classical results of Khinchin and Kolmogorov and of Marcinkiewicz
and Zygmund we have

(L.1) §*(f) <00 as.  if and only if || f]l, < o0,
and

, r 1/ (x)
(1.2) Esg* (/) ~ r,/llei-)»L M= Al/ (x)| (] +10g+ ”f(;{)—l—':)dx
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AMS (1980) Subject Classification: Primary 42B25, Secondary 28A15.

Key words and phrases: strong maximal function, differentiation of integrals, Fourier
analysis on product domains.
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(Here, and throughout the rest of this paper, two extended real quantities 4
and B are related by ~ and said to be comparable provided A is finite if and
only if B is, in which case their ratio is bounded below and above by positive
absolute constants. The expression | [y, is not a norm, but it is easily
shown to be comparable to any Orlicz-type norm on the Zygmund class
Llogs L))

These are analogous to the results of Hardy and Littlewood [3] and
Stein [11] for the Hardy-Littlewood maximal function m(f):

(1.3) m(f) <o ae. if and only if  [Iffl} < oo,
and
(14) ll (M = 1S Liogy 2o

Here, to be precise, we assume that f is a function on the circle S', which we
identify as usual with [0, 1). One may complete the analogy suggested by
these inequalities by viewing the strong law of large numbers as a counter-
part of the Lebesgue differentiation theorem.

Recently there has been some progress in understanding a probabilistic
analogue of the two-parameter strong maximal function. Let [¥}} be an
independent copy of {X;} and for f Borel on [0, 1)* let

Sup (’Su,m (f)[/(”m))

1€nm<m

Sn.m(f) = Z Z f(Xi» Y])’

i=1j=1

()=

The classical conditions ||f|l; < 00 and ||y, < 0 are no longer sufficient
for finiteness and integrability of *S*(f). Let

111 . ) )
] = T+ et st dx dy,
o= LT » B TR TIVON) ¥ it
A1l 11, )
N , log? ________._.,T_,,___.___, s
e I [ N TACN Mt
where l|f|1L10g+L=IF{Llog+L+|G|Llng+L and F —lf X, )lLluuH’ G(,V)

= £, Ylrrog,r- Then [6]

(1.5) *S*¥(f) < oo as. if and only if  Jo(f) < o0,
and
(1.6) E*S*(f) = A(/).

The quantities do and 4 are scalar homogeneous but they are not norms.

They are, however, quasi-norms, i.e. satisfy

S0 (f+9) < ado (f)+ado(g),

(17
A(f+9) < ad(f)+ad(g),

for some a = 1.

icm
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(See [8, Section 2] for a proof.) The two terms in the definition of 4 are not
comparable.

One remarkable property of s* not shared by *S* is that s*(f) finite a.e.
already implies that s*(f) belongs to weak L'. Weak I! (WL') is the space of
random variables Z having ||Z]|, , <o where the quasi-norm || ||, is
defined by

121y, = JSup AP(|Z] > 4).

Indeed, one has

(1.8) Is* Mo = 111l = (1,00

In contrast, we may have *$*(f) < co as, and yet |[|*$*(f)|l;, = + 0. In
[8] we found a neccssary and sufficient condition to have *$*(f) in WL'. Let

) =1L A =1f(x, Wy, A=]lfll;. and
_ r |f (x, y)| 4
0. (f) = sgpgglf(x, ] <1+log+ AERRIIOR) l))dxdy.
Then [8]
(1.9 I*S* (N1 = 64 ()

The counterpart of *S*(f) in harmonic analysis is the strong maximal
function M (f) defined by

(1.10)

M (f)(x0, yo) = supr——r

T {1 G lday,
(x0» yoye T* = [0, 1) x [0, 1), where the supremum extends over all intervals I
containing x, and J containing y,. While all the results of this paper are
phrased in the context of functions on T? or doubly periodic functions, they
easily yield results concerning almost everywhere finiteness, local integrabili-
ty, and local membership in WL! for the strong maximal function on R? as it
is usually defined. (For integrability properties of this and related maximal
functions over general sets of finite measure see [1].) We should also mention
that the strong maximal function is sometimes defined with the additional
requirement that the intervals I and J in (1.10) be centered at x, and y,. The
same results below hold with either definition,

The main result of this paper is that conditions (/) < 00, 4(f) <
and d, (f) < oo are sufficient, respectively, for almost everywhere finiteness of
M(f), and for its membership in L and in WL'. Unfortunately, while each of
these conditions is strictly weaker than any previously known sufficient
condition, apparently none of them are necessary conditions. (We thank Carl
Mueller for pointing this out. An example, based on his sketch, is given in
Section 3 below.) On the other hand, they do come very close to being
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necessary. Indeed, we make precise below the statement that the conditions
given are the weakest for their respective conclusions which are invariant
under measure-preserving rearrangements of T* which preserve the factors,
(The classical one-parameter conditions are invariant under all measure-
preserving rearrangements.)

We now turn to the precise statements.

Let &, be the nth dyadic o-field of subsets of [0, 1), i.e, &, is generated
by I, =[k27" (k+1)27"), k=0,1,...,2"=1. We denote by [§] the
collection of all the I ,.

Let D denote the class of all one-to-one measure-preserving maps of
[0. 1) onto itself which, for all sufficiently large n, induce a permutation of
[&.). For a pair T,Se® we denote by foT, S the composite function
J(T(x). S(v).

THEOREM 1.1. Let f belong to L' (T?). Then d4(f) < cv implies M(f) < o0
ae. Indeed, given ¢ >0 there is § >0 such that

(L11) So(f) <8 = |IM(f) >}l <.
Also, we have

(1.12) (1M ()1, < €0y (),
(1.13) A 1M (Nl < ed(f)

for some constant c.

In [5] (see also [9]) it is shown that dyadic functions are dense in the
space determined by &, (f) < co. We give a simple proof below in Section 3.
Combining this with (1.11), standard arguments yield

CoroLLArY 1.1. The condition 3o (f) < co is sufficient for strong differen-
tiability of [, f(x, y)dxdy.

(See [2] for background on differentiation of integrals.)

THeEOREM 1.2. For each A >0 we have

(1.14) P(*$*(f)> 1) < sup |{M(fo T, ) > A}].
T.S¢«7

Also,

(1.13) cd(f) <supliM(foT, Sy,
T8

(1.16) 05*(f)<S;JEIIM(foTI S, e

Throughout the paper the letter ¢ denotes a constant which may change
from line to line.
We shall prove Theorems 1.1 and 1.2 in Section 2. In Section 3 we

present examples which show that the suprema in (1.14) and (1.15) cannot be
omitted. "
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We currently have the means to extend results (1.11) and (1.14) to 3
parameters. The analogue of the condition d¢(f) < co is the condition given
in [7] for triple integrability of f with respect to the symmetric Cauchy
process. (Take o =1 in Theorem 1.1 of [7]. See Section 2 of [6] and the
references quoted there for connections between maximal functions and
Cauchy processes.) Unfortunately, this condition is vastly more complicated
than (/) < oo and so it appears to be very difficult, if not impossible, to
extend the results of the present paper to n parameters.

2. Proofs. To prove Theorem 1.1 we shall need some further one-
parameter results. These are summarized in the following lemma (see [3,
Section 2] for proofs or references).

LemMA 2.1, For each Borel function f on [0, 1) we have sup;(f (X,)I/i)
< if and only if ||f|ly < . Moreover,.

(2.1) HS‘-}p(‘.I.(Xi)l/i)Hl = |f|1.10g+1,~

For A > 6| f]|, we have
(22) FE(/ (X £ (XDl > 4) S AP(s*(f) > 4)
< 2eiP(su_p(|f(Xﬂ|/i) > )

< 4eE(f (XI5 |f (X0l > 4/2).
Finally,
23) Plsup(lf (Xl > £ 711) > 4.

Now let f be a function such that 8,(f) < co. Then *$*(|f) <o as.,
and hence, by Fubini’s theorem and the strong law of large numbers,

1
[sup(lf(X;, ylfi)dy <o as.

o i

Thus, from (1.3) and an obvious pointwise inequality we conclude
sup[ma(f(Xi, )il <o as, ae,
i

where my (f (x, ) denotes the Hardy-Littlewood maximal function (one-
dimensional) of /' considered as a function of its second variable. Repeating
this argument, we conclude, in turn,

1

[ma(f(x, ))dx <0 ae,

4]
my (my(f)) < co a.e., and hence M(f) <co ae. The inequality (1.11) is now
casily proved by an indirect argument as in [8].
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The proof of (1.13) is similar, using (1.2) in place of (1.1), etc. One merely
trades, twice, a probabilistic for a Hardy-Littlewood maximal function.
The weak-type inequality (1.12) is somewhat more difficult to obtain. We
combine (2.2) and (2.3) with the Hardy-Littlewood inequality,
(24) MmN >4} <2 | If]
Uf1>4/2)
We have

1
25 |Imy (m2a (N1, < 12||£m2 (f (x, 9)dx||1,0

t L
+ sup /l(j;l{x: my (mg [)(x, y) > AHT{A > 12 [ma (f (%', y))dx'}dy.
0

O0<i<oo

For the first term we estimate, using (2.3),

1
Ay gmz(f(x, y)dx > 2} < 2/1EHy: supm, (M> >EH

i 4
< 20E I{y: m, (supI&X—B«XH> > %H
i 1
Thus we obtain
1 1
(2.6) ”gmz(f(x, N dx]|;, < 48 j"sup'—[gf'i-&ldy
[ l 1,0
i 1f (X3, y)l " X,y
+8 OETEwiE Hy m, (sep~~7—— >4, 4> 6ils1‘;pu—(—~_‘i~}ill—dy’H.
For the first term here, we have by (2.3),
1
X .
up L eI | gl i 1)
0 i i Lo I ij 1w
Thus we obtain
1 .
LS (X, p
(2.7) g sgp-w;'wl'-dy < ¢y (f)
1,0

by applying the equivalence

(2.8) ”supl.f(){,»_, Y)l

RIX%

of [8]. What remains is to obtain an inequality similar t t
terms of (25) s (05 quality similar to (2.7) for the second

Combining (2.4) with (2.2) we see that the second term in (2.5) is

iom°
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bounded by a multiple of

mz(f(Xh }’)) < Lf (X5, y)
ot S R A S A ALY
H“?p N A L W
1 (X, )
<12 [sup”( ,~y-)~|~dy + sup AE Hy: m, (supl—f—(}—('——ﬂ) > A,
0 i I 1,00 (&<1<m i 1

1 l
25 12 fsupld Ee ) dy,H
0 ! !

which is essentially the same as (2.6), so all that remains is to estimate the
second term here. For this, we again combine (2.4) and (2.2) and apply (2.8)
as previously. The proof of Theorem 1.1 is complete.

Remark 2.1. An examination of the proof shows that we have actually
proved a stronger theorem with the strong maximal function M being
replaced by the iterated maximal function my (my (/). Thus the methods of
this paper cannot distinguish amongst mym,, mym, and M. Since these
operators do behave differently (see Remark 3.1), it is an open problem to
devise function space quasi-norms which can make these distinctions.

We now turn to the proof of Theorem 1.2. It will be convenient to
replace M here by a somewhat more tractable object. Recall that the nth
dyadic o-field &, is generated by the collection [ &,] of 2" intervals I, each
having length 27" Define marginal conditional expectations by

2n-1

ESI®I = % (@ [ /&, 0dx)ly, )

=0 Iy
with an analogous expression for E(f| %2). Then
E(E(fI )] &) =E(f] $:®Fn-
The family
(29) fum =E(f1] H1® )
is a two-parameter martingale. lts maximal function, the dyadic maximal

function M(f) (no underscore), is closely related to M (f). We will need the
following technical result about M. (Note that M dominates M pointwise.)

Limma 2.2, Suppose || fllo < co. Then there exists a sequence £, of dyadic
functions such that f, converges to [ d.e. M(f,) converges to M(f) ae.,
(2.10) sup M (f,0T, S)=M(fo T, S)lls,0 = 0

STeD
as n-+ oo, and

(2.11) sup | IM(f,oT, S)~M(foT, S)—0

7.8 r2
as n— .
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Proof. In the notation (2.9) above we take f, = f,, and note that, by
the martingale convergence theorem, f, — f a.e. and in each L”, 0 < p < 0.
Thus f,0T, S— foT, S almost everywhere for each pair T, S in D and in all
such I7.

Now for each Borel g we have [4]
(fM(@H)'* < Clgll,.
But, for any A>¢>0, and T, S in D,
M (S0 T =M (fo T, S| > A} <& IM(fyo T, $)=M (/o T, )3
<e ! M=No T SE <™ =)o T SI3 = ce™ ' I fu=~S 113
Taking the supremum over such 1 > ¢ T and S we obtain

im sup|[M(f,0 T, $)~M(foT, Sy, <.

n-cw T,S
This implies (2.10). The proof of (2.11) is similar.
The next proposition is an analogue of Fatou’s lemma for the quasi-
norms Jy, 0, and 4. The sequence f, is that of Lemma 2.2.
ProposiTioN 2.1. We have

(212) 8,(f) < lim d,(f), A(f) < Lim 4(f),

n=ron n=ron

(213) 5*(f)<13i_m5.~(lf|/\N), A(f) < lim 4(lf] A N),
o0 N

-t

8o(f) < lim do(1f] A N).

il
N-—ren
Proof. We have ||j;,|.|1 = |11y and | fulrrog, £ = |fLiog, 2 @8 extended real
numbers, thus, by Fubini’s theorem and Fatou’s lemma,

faCe, My = IIF G, Ny and

for almost every x, with a similar result for the other variable. All the

statements of the lemma are now easy consequences of these observations
and Fatou’s lemma.

[fu(x, Netog,z = Lf (%, ‘)|ng+1,

Recall that a one-to-one, onto, measure-preserving map o: [0, 1)
— [0, 1) is called a dyadic map if, for all sufficiently large n, ¢ induces a
permutation of [§,]. The collection of all such maps is denoted by .

The next result is the main step in the proof of Theorem 1.2.

Lemma 2.3. For each fixed pair of integers N and M there is a dyadic
map ¢ such that for each f measurable T ® Ty

1 n,m )
(2.14)P( max —| Y f(x, Yj)j>x)<|{M(fo(;“1,a"‘1)>m, 1>0.
Lj=1

1<nmsNIM !

icm®
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We shall prove Lemma 2.3 below after having first shown how Theorem
1.2 follows.

First note that we may assurae f nonnegative, and that it is enough to
prove (1.14) (1.16) with M replacing M since the latter is pointwise larger.
Inequality (1.14) for dyadic f now follows from (2.14) after passage to the
limit as N — . Suppose that f'is bounded and let f, be as in Lemma 2.2. It
follows easily from Fatou’s lemma that
(2.15) P(*$*(f) > A) < lim P(*S*(f,) > 4)

L el )

(*S*(f) s Lhe as. limit of the *$*(f,)--use the L* maximal inequality, for

example.) To complete the proof of (1.14) for bounded f'it is enough to show
that
(2.16) lim sup|iM(f, 0T, 8) > A}l € STU?I{M(‘/'OT, Sy > Al.
novn 1S oy
Fix a A>0. We may assume (Prop. 3.1) 8q(|f,—f|)—0 after, perhapsz
passing to a subsequence. Given & > 0 choose & as in (1.11) so that d,(g) <0
implies
sup |{M(goT, 8)>¢e}| <e.
T.SeD
(The estimate of (1.11) is independent of T, S because the family
IT(X)), S(Y))} has the same distribution as the family (X, Y;}. See the proof
of Theorem I[.1) The desired result now follows easily from
sup|iM ([0 T, §) > 4}l <sup|iM(foT, 8} > it
TS 7.5 ‘ _
+sup|{M((f,=f)oT, S)> el
TS

The passage from bounded f to general f is easily effected since, for f
nonnegative, M(f A N) < M(/).

The proofs of (1.15) and (1.16) follow the same pattern and use the
remaining conclusions of Lemma 2.2 and Proposition 2.1. (They do not,
unfortunately, follow directly from (1.14).)

Remark 2.2. An examination of the argument just given shows that one
may replace the supremum over T, SeD with a supremum over T, Te D
This is apparently related to the recently discovered “decoupling phenome-
na” (see [107).

We now turn to the proof of Lemma 2.3. [t will be convenient to work
with an explicit realization of the variables X; and Y, on [0, 1). Let [ 1
denote the greatest integer function and define 6: [0, 1) — [0, 1) by 0(x)
= 2x—[2x]. Fix M in the statement of Lemma 2.3. It is then easy to
construct inductively a sequence of integers n; such that ny = 0, n; < 4, and

such that for each g measurable &, the sequence g (0" () is iid. Let Ui(x)


GUEST


94 T. R. McConnell

=" (x). (Note that Uy(x) = x.) The U; each have a U(0, 1) distribution.
They are not independent, but we may treat them as if they were, for given
any fe Fu® Ty, the family {f(U:(x), U;(y))} has the same distribution as
the family {f(X,, Y))}.

For our purposes below it is necessary to consider Banach-valued
functions.

LEMMA 2.4. For each pair of integers M and N there is a dyadic map o
such that

(2.17)
sup [0 Y f(Ui(0)|e <  Sup IE(foo™ ! Fle(e(x), xel0,1),
i=1 s w

1SN
for every Banach space E and E-valued functions f measurable §&,.. (It is vital
that o be independent of E and f)

Proof. We shall use the [*-valued function

2M -1

G(x) = Z x111,.'M(x),

where x; =2y, . (x and 1 denote characteristic functions on distinct
copies of [0, 1)) Set
k

1
S (%) = P Z G(U;(x)

=0

for 0Kk N-1,

1
s_y(x)=G:= [G(x)dx' (constant).
o

Then the sequence (s_y,
we need:

..., 5-1, 8p) is a martingale. To complete the proof,

Lemma 2.5. For each pair of integers M and N there are an integer
k(M, N), a dyadic function He Ty y), and positive integers ki < ... < ky
=k(M, N) such that
(2.18) (5. i=N,...,0)=(G, E(H| ®)i=1,.... N).

Proof. It is easy to check that there is a large enough L such that each
s_; is measurable §,, by considering the slopes of the U,.

We prove more generally that for any martingale f,, f;, ..., fy With f,
constant and each f; measurable with respect to §, for some L, there is a
dyadic function F measurable with respect to &,y such that

(2.19) Jos 1 = F, (E(F| s

icm®
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This we do by induction on N.

For N = 1 we may take F = f,. Suppose the result has been proved for
N—120. Note the following property of 6: For any E and E-valued
function h on [0, 1), and any set Ae ., the conditional distribution of
1,:(ho6") given A is the same as the (unconditional) distribution of h.

Now let Foe ¥y~ be as constructed for N—1. Let x4, ..., x; be the
distinct values assumed by (Fo, E(Fo| &), ..., Fo) and 4, ..., 4, the res-
pective sets (in §yy-,) where these values are assumed. Then we have

|4l = P((for -, f-1) = x1)-

Let b, be . -measurable functions on [0, 1) such that h has distribution
equal to that of fy—fy-, given the event {(fq, ..., n-1) = X;}. Let

k
F=Fo+ Y 1, ho0"E,
i=1

Then it is easy to check that F has the required properties.

We now return to the proof of Lemma 2.4. An immediate consequence
of (2.18) is that the atoms of the o-field generated by the martingale on the
left have the same measure as the corresponding atoms generated by the
martingale on the right. Noting that both these martingales are measurable
Sr,ny We may then easily construct a dyadic map ¢ inducing a permutation
of [ Fum,m] such that

(220) (S=p> o> ) (x) = (G, E(H| &), -, E(H| Fiey)) (o (x)).
In particular, equality of the last components gives
E(H| Fy)(o(x) = G(Uo(x)) = G(x),

so by the iteration property of conditional expectation and &y = T,y We
obtain

(221)  (5_y»--» S0)(¥) = (G, E(Goo™?| By +oon Goo (o (x)).

Now let fe Fuy(E) and define T;: L'(S')— E by

Tr(h) = [ f(x)h(x)dx.
s1
Thus
M-

GO =T 10 00 by = T i) a0 = 769

=0

2M—y

Applying Tf to both sides of (2.21) and using the operator linearity of
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Bochner-conditional expectations we obtain
N—i
(F(N=i+D)" Y, f(U;x), i=1,..., N)=(], E(foa™ | F,)(o(x),
Jj=0

i=1,..,N)

The desired conclusion (2.17) follows by comparing the maxima of these
sequences and using the inequality

max {|E(foo™!| F et 1 SIS N)< Sup [E(foo™ '] &g-
Sn<o
The proof of Lemma 2.4 is complete.

Now we return to the proof of (2.14). For this purpose, fix M and
choose fe F® Fy. Fix y and introduce the finite-dimensional Banach
space

E, = \(ag, ..., a,1_,): w€R}
with norm
2M -y
lars oo agpe Jy=m( T a,)0)
(dyadic maximal function evaluated at y). Denote by ¢; the standard basis of
E,. Define y: S' - E, by
2M_yq

909 =" T 17Cx, Y2er

Let o be as in Lemma 2.4 (for M and the given N). The point of these
definitions is that we have

M(fos™!, (o (x), y) = ,up [E(goa” | &), (0 (),

where I denotes the identity. Thus, by Lemma 24 we have

i
M(foo™', )(o(x), y)> sup |i™* Zg(Ua(x))lny

1€isN

i

2M .
= sup m( ,§ P30 12 T O)0)

1<iSN

a=1

sup m(¥(x, )(y), say (defining V}).

1<isN

Now fix x and allow ) to vary. The B-space E, is no longer relevant. From
now on everything is real-valued. Apply Lemma 2.4, this time with E = R to
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show

[

m(V}(x, o-~1(.)))(o'(y)) = 1ZL}1<DNJ 2 (x, Ug()-

Combining this with the above, we conclude

M(foo ", oY (a(x), rr(y))> sup A ! Z |/ (Ua(0), Up(»)))-

The desired inequality (2.14) follows, and hence the proof of Theorem 1.2 is
complete.

3. Complements. C, Mueller has shown us an example of a function f
having 8o (f) = 00, but with M (f) < w0 ae. Expanding, somewhat, on his
idea we present such am example here and at the same time construct a
function f having 4(f) = co but M(f) in L',

ExampLe 3.1, Let h be an even nonnegative integrable function of period
1 which is nonincreasing on (0, 1/2]. We begin by proving that if
~1/2 € xo € 1/2, X # 0, and if I is a finite interval of any length containing
xo then

—(h(t)d —"*‘l Ih dt
3 t)dt < 4 .

To see this, let I* =TI U(—1I). Then

IJ'Ij"h(t)dt\lmjh (t)de.

We may assume 0 < xo < 1/2 and that x, belongs to the interior of I. Now
let J denote the set (xq, 1 —x,) together with all translates of this interval by
integers. Since

sup (h(?): teJ} <inf{h(1): tel*\J}
we easily deduce
[ h@)adr.
|1*\J| g

Now the set I*\J consists of a symumetric subset of [—x,, xo] containing xo,
together with translates of this set. From the form of this set and of h we
clearly have

I*Ij"h t)dt € —

1 1 ¥
h(dt <=— | h(t)dt.
T AT %0 70T gy <20 L

The desired inequality follows easily from this. We may easily extend the

7 - Studia Mathematica (. 88 z. 1
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inequality for any noninteger x, as

1 4 flxolt
2 —(h@)dt €~ | h(t)dt,
G2 qirod <y |

where {|xo|} denotes the fractional part of [xql, {lxol} = [xol — [I%0l].
Now define f(x, y) by f(x, y) = h(x—y).
LemMa 3.1. For any (xo, yo) With Xo # yo we have
1 {ixo=volt

M (/) (X0 Yo) € = | h()dt.

Uxo=yol} @

Proof. Let R be any rectangle containing the point (xo, yo) in its

interior (by a limiting argument we need only’ consider this case). Let L be

the line x—y = xg—yo and z, and z_ the points where this line meets the

boundary of R. Also let L, and L. be lines perpendicular to L through z..

and z_ respectively. The lines L, and L_ divide R into 3 pieces. We denote

by T the part between the lines, by T, the part above L., and by T_ the

remaining part. These last two may lie either above or below the line L,

depending on the location of (Xo, yo). We will estimate each of the integrals

[ fdxdy, jfdxdy.

Ty

(3.3)

To estimate [r_ fdxdy we suppose that T. lies above L (the other case

being similar) and choose a polar coordinate system centered at z.. Then
there is a continuous, piecewise linear function ¢ such that

T_={r,0): 3n/d<0<m 0<r< ).

Thus
T eO)/vZ
[ faxdy= | [ h(xo—yo+r(cos 0 —sin 0))rdrd
T_ Inf4a 0

@O (cvs0 ~sin0)/ 2

=— [ (cos@—sing)~? h(xg=yo-+t)tdtdd

3n/4 i)
r o y2Zo(0)
< [ [ hlxo—yo—1t)tdtdo.
a4 0

By the second mean value theorem there is a function &(0) satisfying
0 < £(0) < ~/20(0) such that

VZo(®)

[ h(xg—yo—tytdt =&(6)
0

VZ0(0)

[ h(xo—yo—t)dt.
0

icm
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Thus, using (3.2), we obtain

dlxo~yol}

f fdxdy<(3j134\/§<p(0)§(0)d0)-——§——— [

- h(tydt.
7. “XO")’oi} 0 ®

But

[ V2o0c0do <4 j 19 (0)d0 = 4|T_|.
3nja 3n/4

A similar estimate applies to T... Hence

- 16|T,| "o7rol

| fdxdy< T---w-'w-%»'«,» [ h@ar.
) Ty Uxo—Yol} o

To estimate |p fdxdy we make the change of variables u = (x+y)/2, v = (x

—y)/2 and find constants a <(xo+Ye)/2 <b and piecewise linear functions

@ (u) and ¥ (u) such that ¢ () < (Xo—yo)/2 < ¥ (u) and

T = {((u+v)/2, u—v)/2): o) Sv<Y(u), a<u< b}

(G4

Then, by (3.2),

o b yr(u) b. l//(u)—-(p(u) 2y (u)

dxdy = | | h(2)dvdu = [=—— h(v)d
’,’|../ xdy }!.wifu) (2v)dv du IJ,Z*//(u)—J(P(u)z,,;f(u) (v) dvdu
{lxo=volt

81T]
= Ixo=vol} & hde
Combining this with (3.4) yields (3.3) since R was arbitrary.

Now choose & to have all the above properties and in addition such that
{hlziog, 2 = +o0. Defining f as above, we have for each x or y in [0, 1),
I1Lf(x, 9 = IIF ¢, wlly = ||A)l;- Thus the normalizing factors in the denomina-
tor of the logarithm in &, (f) are constant. Since h¢ Llog, L we conclude
3o(f) = 0. But, by (3.3), we have M(f) <co ae.

To obtain an example of a function f having ‘4 (f) = co but M(f)e L',
we may proceed as above by taking h¢ Llogs L (which gives 4(f) = o) and
he Llog, L. The latter condition, together with (3.3) and Lemma 3.2 below,
yields M (f)eL".

Lemma 3.2. Let h be nondecreasing and nonnegative on (0, 1]. Then

1 x
%\h\LleuL < ifxml ,fh(t)d’ dx < 2+1In2)|Alyop, 1
0 0

This result (with possibly different constants) is known, but we will
present an elementary proof here for the reader’s convenience.
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Proof We may assume ||hfj, < co. For each 4 >0 we have [t h(r)
> A <||Hl|,/4 Putting A =h(x) and using the fact that h is nonincreasing
we have the estimate
&

h(x) < [Iklly/x.
Now
1 x x 1
[x1 [ h(y)dydx = lim log (1/x) [ h(y)dy+ [log(1/x) h(x)dx
0 0 *—0 5} 0
S0
1 x 1. 1
[x~t [h()dydx > [logs (1/%) h(x)dx > [h(x)log. ((x)/IHl];)dx,
0 0 0 0
which yields the left-hand inequality of the lemma.
For the right-hand inequality we may assume |h| g, . < 00. For A>0

let E(A) = {y: \/;h(y) > 1}. Then by separate estimates on and off E(1) we
have

log(1/x) gh(y)dy <2./xlog(1/x)+2 [h(y)log., h(y)dy.
0

Thus, integration by parts yields

1

x 1
[x" ' [h(y)dydx = [log(1/x) h(x)dx = [+
0 0 0 EQ) gy

1
< 2 [h(x)log. (r(x)/A)dx+4A.
0

Taking A = ||h||;/2 yields the desired inequality.

Remark 3.1. It is now easy to give an example of a function f for which
the iterated maximal functions m, (m, (1)) and m, (m, (f)) are infinite a.., and
yet M(f) < co ae. In fact, the function f of Example 3.1 will work. To see
this, fix (xg. vo) With xq # yo and 0 <|xo~yel < 1. Then

Ix0~yol [xg ol
—_— h(xg—X—yo)dx = —r—mm
X0~ yol g ° ol |0 = Yol EE
Since |Alz0g, 1 = 0, Lemma 3.1 implies that my (f)(xo, yo) is not integrable
as a function of yo. Thus my(m (f)) = +c0 ae.

We conclude by showing that dyadic step functions are dense in the
quasi-normed function space determined by &,. This fact was used above to
deduce Corollary 1.1 from Theorem 1.1,

ProvposiTioN 3.1. Let f satisfy 8o(f) < o0. Then there exists a sequence f,
of dyadic functions satisfving do(f—f) — 0 and f, —f ae.

my (f)(xq, Yo 2 h(x)dx.
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Proof. The following elementary inequalities, valid for A >0 and
B >0, are useful in the analysis of d,:
(3.5) log. (AB) < log, A+log. B,
(3.6) Alog, (B/A) < Bfe (e=2718..).

For example, using (3.5) to split the log,. expression into 4 terms, performing
the obvious integrations and then applying (3.6) yields the estimate

do(f) < \f|Llou+L+(23“1+10E+ AU NA

Since dyadic step functions are dense in the Orlicz spaces L} and Llog. L,
the result of the proposition holds whenever f'is, say, bounded. Thus, by the
quasi-norm property of dq, it is enough to prove the following:

Let g = {if(x)h 1G> N,

0, otherwise
Now, by (3.5), we have for each & >0,

. 11 o . )
oo < vt ) (1108 G SR Yoo

Then 6¢(gy) — 0.

+£||9N(x: )Ny log+ (c||f(x, M/lgn (x, 1) dx

1
+£|Ign(-, Wl logs (211 ¢, W/llgn (s Yila)dy

+lgnlly log+ ™2 llgall N1 F1l0)-

The desired result follows easily since the first term tends to O by the
Dominated Convergence Theorem and, by (3.6), the second and third terms
are each bounded by (¢/e) || f|l;-

Remark 3.2. Similar estimates show that dyadic step functions are
dense in the spaces determined by 4 and J,.
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