where $E = \{ t \mid \mathcal{F}g(t) \neq 0 \}$.

Corollary 22. With A and g as in Theorem 21, suppose there exists H in $C^\infty(A)$ such that for some $s < 1$,

$$|\mathcal{F}H(t)| \leq t^s |\mathcal{F}g(t)| \quad \text{a.e.}$$

Then g is not a vector of uniqueness for \mathcal{F}.

Corollary 23. If g has a zero of infinite order, then g is not a vector of uniqueness for id/dx on $L^2(\mathbb{R})$.

Corollary 24. If h is not a vector of uniqueness for id/dx on $L^2(\mathbb{R})$ and $|\mathcal{F}g(t)| \geq |\mathcal{F}h(t)|$, for almost all t, then g is not a vector of uniqueness.

Corollary 25. If h is a vector of uniqueness for id/dx on $L^2(\mathbb{R})$ and $|\mathcal{F}g(t)| \leq |\mathcal{F}h(t)|$, for almost all t, then g is a vector of uniqueness.

Theorem 26. Let $E = \{ t \mid \mathcal{F}g(t) \neq 0 \}$, where g and A are as in Theorem 21. Then $\mathcal{D}(g, A) = \{ f \in L^2(\mathbb{R}) \mid \mathcal{F}f(t) = 0 \text{ whenever } t \notin E \}$, is a vector of uniqueness for A.

Proof. Suppose that n is the smallest integer having this property. Hence there exists $\xi_0 \in X$ such that $\mathcal{D}(\xi_0, T\xi_0, \ldots, T^{n-1}\xi_0)$ is linearly independent but $\xi_0, T\xi_0, \ldots, T^n\xi_0$ are not. Then there exists a monic polynomial P_0 of degree n such that $P_0(T)\xi_0 = 0$ and if p is another monic polynomial of degree n such that $p(T)\xi_0 = 0$ then $p = P_0$. Let $\eta \in X$ be an arbitrary fixed vector. We now prove that $P_0(T)\eta = 0$. Let F be the linear subspace generated by $\xi_0, T\xi_0, \ldots, T^n\xi_0$. Then $\dim F \leq 2n$. For $\lambda \in C$ we set

$$f_0(\lambda) = \xi_0 + \lambda\eta \in F, \quad f_1(\lambda) = Tf_0(\lambda) \in F, \quad \ldots, \quad f_{n-1}(\lambda) = T^{n-1}f_0(\lambda) \in F, \quad g(\lambda) = T^n f_0(\lambda) \in F.$$
functionals on F, denoted by $\varphi_0, \ldots, \varphi_{n-1}$, such that

$$\varphi_i(f)(0) = \delta_{ij} \quad \text{for} \quad 0 \leq i, j \leq n-1.$$

We define

$$A(\lambda) = \begin{bmatrix} \varphi_0(f_0(\lambda)) & \ldots & \varphi_0(f_{n-1}(\lambda)) \\ \varphi_1(f_0(\lambda)) & \ldots & \varphi_1(f_{n-1}(\lambda)) \\ \vdots & \ddots & \vdots \\ \varphi_{n-1}(f_0(\lambda)) & \ldots & \varphi_{n-1}(f_{n-1}(\lambda)) \end{bmatrix}$$

which is a polynomial of degree $\leq n$, satisfying $A(0) = 1$. Let E be the finite set of its zeros. From the hypothesis we conclude that for $\lambda \notin E$ there exist $a_0(\lambda), \ldots, a_{n-1}(\lambda) \in C$ such that

$$g(\lambda) = a_0(\lambda)f_0(\lambda) + \ldots + a_{n-1}(\lambda)f_{n-1}(\lambda)$$

so we have

$$\varphi_0(g(\lambda)) = a_0(\lambda)\varphi_0(f_0(\lambda)) + \ldots + a_{n-1}(\lambda)\varphi_0(f_{n-1}(\lambda)),$$

$$\varphi_1(g(\lambda)) = a_0(\lambda)\varphi_1(f_0(\lambda)) + \ldots + a_{n-1}(\lambda)\varphi_1(f_{n-1}(\lambda)).$$

By Cramer’s formulas the α_i coincide on $C \setminus E$ with rational functions. Relation (2) can be written as

$$p_2(T)f_0(\lambda) = 0 \quad \text{for} \quad \lambda \notin E,$$

$$p_3(T)f_0(\lambda) = T^*a_{n-1}(\lambda)T^{n-1} - a_0(\lambda)I.$$

Denote by $\beta_1(\lambda), \ldots, \beta_n(\lambda)$ the roots of the polynomial p_3. We have

$$(T - \beta_1(\lambda)I) \ldots (T - \beta_n(\lambda)I)f_0(\lambda) = 0 \quad \text{for} \quad \lambda \notin E$$

and obviously $(T - \beta_1(\lambda)I) \ldots (T - \beta_n(\lambda)I)f_0(\lambda) \neq 0$ for $\lambda \notin E$, by the definition of E. So (5) implies that $\beta_i(\lambda)$ is in the spectrum of T. A similar argument implies that $\beta_1(\lambda), \ldots, \beta_n(\lambda)$ are also in the spectrum of T. Consequently $|\beta_i(\lambda)| = \|T\|$ for $i = 1, \ldots, n$ and $\lambda \notin E$, where $\|T\|$ is a norm on the invariant subspace F. So the symmetric functions $a_0(\lambda), \ldots, a_{n-1}(\lambda)$ are also bounded on $C \setminus E$. Because the α_i coincide with rational functions on $C \setminus E$ we conclude from Liouville’s Theorem that there are constant numbers $\gamma_0, \ldots, \gamma_{n-1} \in C$ such that $a_i(\lambda) = \gamma_i$ for $\lambda \notin E$. Let $p(\lambda) = z^n - \gamma_0z^{n-1} - \ldots - \gamma_n$. Then $p(T)f_0(\lambda) = 0$ on $C \setminus E$, but also on C by continuity of λ. In particular, $p(T)f_0(\lambda) = 0$ on $C \setminus E$, and so on C. Let $\lambda \in C$ be a complex number. Then $p(\lambda) = 0$. Consequently $p_0(T)f_0(\lambda) = 0$ for all $\eta \in X$. Hence $p_0(T) = 0$, so T is algebraic of degree $\leq n$.

A slight modification of the argument now gives

Theorem 2. Let X and Y be two complex vector space vectors, and let T_1, \ldots, T_n be linear operators from X into Y. Suppose that for every $\xi \in X$ the vectors $T_1\xi, \ldots, T_n\xi$ are linearly dependent. Then there exist $\lambda_1, \ldots, \lambda_n \in C$, not all zero, such that $Q = \lambda_1T_1 + \ldots + \lambda_nT_n$ has finite rank $\leq n-1$. Moreover, if $X = Y$ and the T_i commute, then $Q^2 = 0$.

Proof. If for all $\xi \in X$, the vectors $T_1\xi, \ldots, T_{n-1}\xi$ are linearly dependent, it is enough to prove the result with T_1, \ldots, T_n. So suppose that there exists $\xi \in X$ such that $T_1\xi, \ldots, T_{n-1}\xi$ are linearly independent and $T_n\xi$ are not. Then there exist $\lambda_1, \ldots, \lambda_n \in C$ such that

$$(\lambda_n + a_{n-1}T_{n-1} + \ldots + a_1T_1)\xi = 0.$$

Let $\eta \in X$ be an arbitrary fixed vector and let F be the linear subspace of Y generated by $T_1\eta, \ldots, T_{n-1}\eta, T_n\eta$. Then $F \leq 2(n-1)$. For $\lambda \in C$ we set

$$f_0(\lambda) = \xi + \lambda\eta, \quad f_1(\lambda) = T_1f_0(\lambda) \in F, \quad \ldots, \quad f_{n-1}(\lambda) = T_{n-1}f_0(\lambda) \in F.$$

$$g(\lambda) = T_nf_0(\lambda) \in F.$$

Because $f_1(0), \ldots, f_{n-1}(0)$ are linearly independent in F there exist $n-1$ linear functionals on F, denoted by $\varphi_1, \ldots, \varphi_{n-1}$, such that

$$\varphi_i(f_j(0)) = \delta_{ij} \quad \text{for} \quad 1 \leq i, j \leq n-1.$$

We define

$$A(\lambda) = \begin{bmatrix} \varphi_1(f_1(\lambda)) & \ldots & \varphi_1(f_{n-1}(\lambda)) \\ \varphi_2(f_1(\lambda)) & \ldots & \varphi_2(f_{n-1}(\lambda)) \\ \vdots & \ddots & \vdots \\ \varphi_{n-1}(f_1(\lambda)) & \ldots & \varphi_{n-1}(f_{n-1}(\lambda)) \end{bmatrix}$$

which is a polynomial of degree $\leq n-1$, satisfying $A(0) = 1$, and

$$A(\lambda) = \begin{bmatrix} \varphi_1(f_1(\lambda)) & \ldots & \varphi_1(f_{n-1}(\lambda)) \\ \varphi_2(f_1(\lambda)) & \ldots & \varphi_2(f_{n-1}(\lambda)) \\ \vdots & \ddots & \vdots \\ \varphi_{n-1}(f_1(\lambda)) & \ldots & \varphi_{n-1}(f_{n-1}(\lambda)) \end{bmatrix}$$

which is also a polynomial of degree $\leq n-1$, satisfying $A(0) = \alpha_n$, and $A(0) = 0$. If F denotes the set of zeros of A then, arguing as in the proof of Theorem 1, we conclude that

$$A(\lambda)T_n - A_{n-1}(\lambda)T_{n-1} - \ldots - A_1(\lambda)T_1f_0(\lambda) = 0$$

on $C \setminus E$, and so, by continuity, on all C. Let $\alpha_1 = 1$ and let β_1, \ldots, β_n be the coefficients of λ respectively in $-A_1(\lambda), \ldots, -A_{n-1}(\lambda), A_1(\lambda)$. Setting $Q = \alpha_1T_1 + \ldots + \alpha_nT_n$ (which does not depend on η) and looking at the coefficients of degree 0 and 1 in λ, from (9) we obtain

$$Qf_0 = 0, \quad Q\eta + R\xi = 0.$$

6. **End.**
Consequently $Q\eta$ is in the linear subspace generated by $T_1 \xi_0, \ldots, T_{n-1} \xi_0$. So Q has a finite rank $\leq n-1$. If moreover the T_i commute, then Q and R commute, so $Q^2 \eta = -QR\xi_0 = -RQ\xi_0 = 0$. Hence $Q^2 = 0$.

Remark. Let P and Q be two different projections having the same range of dimension 1, defined on a complex vector space X. For every $\xi \in X$, the vectors $P\xi$ and $Q\xi$ are dependent and obviously there are linear combinations of P and Q having rank one. But $\alpha P + \beta Q \neq 0$ for any $\alpha, \beta \in C$. So in general it is impossible to have $Q = 0$ in Theorem 2.

References

UNIVERSITÉ LÉVAL
MATHEMATIQUES
Québec, PQ, G1K 7P4 Canada

Received December 5, 1986

STUDIA MATHEMATICA, T. LXXVIII. (1988)

Extension of C^∞ functions from sets with polynomial cusps

by

WIESŁAW PAWLUCKI and WIESŁAW PLEŚNIAK (Kraków)

Abstract. We give a simple construction of a continuous linear operator extending C^∞ functions from compact subsets of R^n with polynomial cusps including fat subanalytic sets.

1. Introduction. Whitney's extension theorem [15] yields a continuous linear operator extending C^k functions (k finite) defined on closed subsets X of R^n. For C^∞ functions such an operator does not in general exist (see e.g. [12, p. 79]). However, Mityagin [4] and Seeley [7] proved the existence of an extension operator if X is a half-space of R^n. Stein [9] showed that such an operator exists if X is the closure of a Lipschitz domain in R^n of class Lip1. Stein's result was then extended by Bierstone [1] to the case of a domain with boundary which is Lipschitz of any order. By the main result of Bierstone [1] involving Hironaka's desingularization theorem, an extension operator exists if X is a fat (i.e. int $X \neq X$) closed subanalytic subset of R^n. If X is Nash subanalytic (not necessarily fat) the existence problem was solved by Bierstone and Schwarz [3]. Recently Wacht [14] has constructed an extension operator for fat closed subanalytic sets in R^n without making use of the Hironaka desingularization theorem. For closed subsets of R^n admitting some polynomial cusps, the existence of an extension operator was shown by Tidten [10].

In this paper we construct an extension operator for the family of compact uniformly polynomially cuspidal (briefly, UPC) subsets of R^n (see Theorem 4.1). The UPC sets were introduced in [6] as follows.

Definition 1.1. A subset X of R^n is said to be UPC if there exist positive constants M and m, and a positive integer d such that for each point x in X, one may choose a polynomial map $h_x: R \rightarrow R^d$ of degree at most d satisfying the following conditions:

(i) $h_x(0,0) \in X$ and $h_x(0) = x$;

(ii) $\text{dist}(h(a), R^n-X) \geq M^m$ for all $x \in X$ and $t \in (0,1)$.

Every bounded convex domain in R^n and every bounded Lipschitz domain are UPC. More generally, every subset of R^n with a parallelepiped