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An algebra associated with the
generalized sublaplacian

by
KRZYSZTOF STEMPAK (Wroclaw)

Abstract. We construct and investigate a commutative Banach algebra associated with the

differential operator
L (61+2a—15+262
= o | e X2 ),
xr x ox &t
> 1, acting on R, xR. The construction has been inspired by the existence of the well-known
algebras of integrable radial functions on the Heisenberg groups. In consequence we also

describe an example of Urbanik’s generalized convolution which lives on the semigroup R,
xRU{(0, 0)!.

1. The Heisenberg group case. For m=1, 2, ... consider the (2m+1)-
dimensional Heisenberg group H,, = R™ x R™ x R with the multiplication law

(6, y, (X, ¥ 1) = (x4, y+y, 48+ Y (4 yi—x{y)-
i=1
The Lie algebra of the left-invariant vector fields on H,, is then generated by
X, Y. Ti=1,..., m where
0 0 0 7
(] Y;:——-.+xi_’ T=—
0x; Yo &y, ot o
and the only nontrivial commutators are [X;, ¥] =T i=1,..., m. We say
that a function f on H,, is radial if (&, t) = f(AE, 1) for every AeSO(R®™),
& =(x, y)e R* and te R. It is well known that the space of radial integrable
functions (with respect to the Haar measure dxdydr) forms a commutative
Banach algebra under convolution. Various properties of this algebra and of
the second order differential operator :

L=-3 (Xj+1),
j=1
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called the sublaplacian, have recently been intensively studied by many
authors (cf. [2], [4]).
By introducing polar coordinates in R*” it is easy to check that the
radial part of the operator % is given by

Lo <62+2m 13_”222_
T\ o w at)

This means that £f (x, ¥, t) = Lfy ((x, y)ll, t} for every radial function f with
radial part fp, ie. f(x,y; ) = fo(ll(x, Y, t), where || || denotes the Eucli-
dean norm in R*™

The aim of this paper is to investigate the operator

L= (52 +g_0_+r2ﬁ
T\t ra at)

o > 1 being an arbitrary real number, which is positive and symmetric in
I*(X, p) where X =R, xR and du(r, t) =r*drdt. In order to do this we
construct a commutative convolution structure in ! (X, p) modelled on the
Heisenberg group radial case.

2. The operator and the transform. Let o> 1 be an arbitrary fixed
parameter. We equip the space X =R, xR with the measure du(x, 1)
= x¥*~1dxdt and denote by I7(w), I < p < oo, the classical Lebesgue spaces
with respect to the measure u endowed with the norm || [|,. The operator

L (az+2a~1a+ . &
T T\ x Ox a2

is positive, symmetric in I?(y) and homogeneous of degree 2 if X is endowed
with the family of dilations (5,),»0, 4,(X, t) = (rx, r%?).

Let Ii(x), n=0,1, ..., be the Laguerre polynomials of order a > —1
defined in terms of the generating function by

2.1)

S mraey 1 xt
2,0 = e (T—T>
For A# 0 and n=0, 1, ... we put
n! F(zx

22 Panlx, 1) = et g™ A2 px=1 (1)) x2).

T'(n+a)

By using the differential identity

xdzL“-f- +1 dL‘ I =0
dxz n (a _"x)a; n+n n =
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it may be easily verified that ¢;, is an eigenfunction for the operator L,
more precisely,

Lo;w =414 (/2+n) @3,

Moreover (cf. [7]), |@;..(x, D] < 1 for (x, t)e X.
On the other hand, the functions

'I:x—- 1 (xr)
(x,l.)a— 1

7 2 0, where J, denotes the ordinary Bessel function of order g, form the
second series of eigenfunctions for L, namely

Llpf = 12 wf‘ ‘

One can easily verify this using the differential identity
2

(2.3) Y. (x, ) =2"1T(a)

d d
2 ) 2-a?J,=0.
x dle,,-}—xdx A x*—a?)J, =0
As before, we also have |y (x, 1)) <1 (cf. [1]).
Now, for any function fe L' (1) we define its transform f by putting, for
A#0and n=0,1,...,

fG,n= }I{f (%, ) @anlx, Hdu(x, 1),

and for 7 >0,

fly= If(x, D (x, ) du(x, 1).

3. The generalized translations. We are now in a posmon to associate
with the operator L a family of generalized translations T*%, y > 0, uc R. For
an appropriate function f on X and y >0, ue R we put: for a > 1,

B Tf(x,1)
o—1"
= —“f((x + y*—2xy cos 6)"/%, t—u+xycos ¢ sin 6)
00
x(sin )2*~3(sin 8)**~ 2 d¢ 46,

and for o =1,
2n
(31 Tf(x, 9 =2m)"" [ f((x*+y*—2xycos )"/, t—u—xysin6)df.
0.

Denoting by 4(x, y, ), x, y, z = 0, the area of a triangle with sides x, y, z if
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such a triangle exists and 0 otherwise, we define for o > 1 the family of
probability measures W, ,, x, y >0, on X by

a—1 A(x, y, 23

(62 Wyl 9 = 27 = S (1, ),

where 1, =max {0, A}. It may be éasily checked that by the change of
variables x>+ y?~2xycosf = z%, cosp =3, we can write

x+y 1

(3.3) ™f(x, )= [ [ flz t—u+2sd(x,y, 2))dW,,(z, 5)
fx~y| ~1

when a > 1, and in a similar way

N x+y

(3.3) ™f(x, ) =@m)™" | {f(z t~u—24(x, y, 2))

fx=yl

+f(z, t~u+24(x, y, z))}.mx.._q._

when o = 1.

Without loss of generality in the sequel we will consider the case o > 1
only. For a =1 the proofs of all results proceed in the same way with
necessary changes.

We now come to the following results.

LemMma 3.1, We have (T*)* = T ie. for all appropriate functions
figon X

34 [T gdu=[f T *gdpu.
X X
Proof. It is easy to see that (3.4) is a consequence of the following
identity: '
(3.5) AW, ,(z, ) x>~ Vdx = dW, ,(x, )z ' dz
which follows from the definition (3.2).

ProrosimioN 3.2. For every p, 1 < p < oo, and Y20, ueR, the general-
ized translation T™" is a submarkovian contraction, i.e. 0 < T"*f < 1 whenever
O< /< tand T, <],

. Proof. The submarkovian property follows promptly from the defini-
tion of T%*. In order to prove the inequality || 71|, < [I£1l, it suffices to use
(3.3), (3.5) and the fact that the W, are probability measures.

ProrosiTioN 3.3. Let fel?(u), 1< p <. Then the mapping

(3.6) Xa(y, )T e IP (1)
is continuous.

icm®
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Proof. It suffices to verify the continuity of the mapping defined by
(3.6) for a dense class of functions in I?(u), say, for the continuous functions
with compact support. Let f be such a function. Fix (y,, ug)e X. By the
definition (3.1) there exists a constant K > 0 such that if (y, uye X satisfies
[y=Yol <1, lu—ug| <1 then

supp T**f = [0, K] x[~K. K] = Uy.
On the other hand, from (3.1) it follows that the mapping
X xXa((x, 1), (v, ) T"f(x, t)
is continuous. Since
1 7>f~ T fll, < p(UQY? sup | TS (x, 0)=T"""f (x, 1),
(x.Nely
we then get the desired result.
4. The convolution. For appropriate functions f, g on X we set
@D frgle, ) = [Tf(x, 1) 9(y, w)dp(y, u).
X .
Let us note that for « =2m—1, m=1,2, ..., the formula (4.1) gives the

radial part of the convolution on H,, of two functions with radial parts f and
g respectively. The result then is

Lemma 4.1, Let felP(y), L <p< oo and ge L' (). Then f*g is a well
defined element of LF(y) and

(42 Lf =gl < LA, 191l
Moreover, f+g =g=xf, i.e. the convolution is commutative.

Proof. The inequality (4.2) follows easily from the fact that the general-
ized translations are contractions. In the proof of the commutativity Lemma
3.1 is used.

In 1939 Watson (cf. [7]) established a formula concerning Laguerre
polynomials which may be rewritten in the following form: for o > 1

22732 (n+w)
@3) LTG0 =
Ju=3/2(xysinb)

372~ Lot (x®+ % —2xy cos 0) (sin 6)>*~ 2 6.

p xycosd
x g € (xysinf)*~

When o =1 this formula takes the form (we write L, instead of L)

43y L,(x)L,(yH) =" [ cos (xysin ) L, (x*+ y*>—2xy cos §) df.
[4]
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This gives rise to the following result.

LemMA 4.2, The functions ¢, , and Y, defined by (2.2) and (2.3) satisfy
the following formulas:

(44) qoi.,n(xs t) (Pi.,rf (y= u) = Ty’—“ (pl,n(x’ t)’
(4.5) Yo (e, DY, ) = T 7 (x, 1),

Proof. To verify (4.4) it suffices, by homogeneity, to. consider the case 1
=1 only. By the identity

E[cos(acos(p)(sir)(/))2°"3d(p = nl/220~ 32 [ (g~1) :1“3'32/(2“),

which is valid for o > 1, the formula (4.4) follows directly from (4.3). Similar-
ly, (4.5) is a consequence of Watson’s other formula concerning Bessel
functions (cf. [1], p. 351).

As a corollary of (4.4) and (4.5) we obtain the following

Lemma 4.3. Let either £ =(A, n) for some 1#0and n=0,1,..., or ¢
=1 for a ©=0. Then for any f, ge L} (1) we have

(f *9) (&) = f(B§(©®).

The convolution of two functions given by (4.1) may be readily extended
to the convolution of two measures. In fact, setting for o > 1

aama®—1 A(x, y, 27 4( _('u+s—r 2\~ 2
250, 0, e, 9) = 22 D I (1 (= ) ,

for two measures A;, 1, on X we define their convolution Ay * Ay by

4.6)  Ayx A, (E) {Ef‘ﬁ(x 1), (> w), (2, ) dp(x, t)}dil v, wdds (z, ),

for every Borel subset E < X, Clearly, (4.6) agrees with (4.1) in the case when
A and 1, have densities f and g with respect to u.
The following lemma generalizes the result in [5].

LemMA 44. Suppose a>1 and A, L, are measures on X. Then
Ay e IM(w).

Proof. Let ESX be a set of measure zero, u(E)=0. Then the
innermost integral in (4.6) is zero for every (y, u) and (z, s), and so Ay %25 (E)
=0 which completes the proof.

icm®
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5. The heat kernel associated with L. The operator L defined by (2.1) is
clearly hypoelliptic on X, and so is the heat operator associated to L,

)
L+ 6, = L(x.x)""gs"

defined on X xR.

Repeating, in a suitable way, the arguments from the proof of Hunt’s
famous theorem (cf. e.g. the proof of Theorem 3.4, [3]) it is not difficult to
establish the existence of a unique semigroup, in the sense of our convolu-
tion, of probability measures {v},..o, on X with infinitesimal generator L; this
means that we have

(5.1 VekV, =Vgyy, S, 1 >0,
(5.2 Oy (uxvy) = —(Lu) x vy,
for every ue Cy(X).
The hypoellipticity of the heat operator implies in the standard way

that, in fact, the measures v,, t > 0, have smooth densities. Moreover, we
have

ProrosiTioN 5.1. There is a unique C™function p((x, t), s) = py(x, t) on
x (0, c0) with the following properties:
(i) (o,+L)p=0 on X x(0, ).
() p((x, 0,820, plx, =) =p,(x, 1), [xpdu=1.
(iii) ps, *Ps, = D5y 455> S15 52> 0.
(V) p,2,(8.(x, ) =r~ "D p(x, 1).
Proof. The proposition is proved by a well-known technique (cf. e.g.

[2], p- 56), but for the sake of completeness we include here the suitable
argument just tdken from there. Define the distribution p on X x(0, c0) by

(o, u®vy = | [ux, () dvy(x, 0ds,
. 0X

where ue Co(X), ve Co(0, o0) and {v}s>0 is the unique semigroup of meas-
ures which satisfies (5.1) and (5.2). So we get

{p, Lu®v> [ Lu(x, )v(s)dvs(x, t)ds = _[Lu*vs(O O)U(S)ds

I
O3

X
= })Bx(u*vs)(o 0)v(s)ds = ju*v 0, 0) 6, v(s)ds
0

[
O 8

fu(x, 1) o, v(s)dvy(x, ) ds = {p, u®,v).
X
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But this clearly means that p is a distribution solution of (L+8,)p =0 and,
by the hypoellipticity of L+ d,, p is a C*-function on X x(0, o). Obviously
dv(x, 1) = py(x, t)du(x, 1) and therefore the properties (ii), (iii) follow from
the corresponding properties of v,. Finally, (iv) follows from the fact that L is
homogeneous of degree 2 with respect to the dilations §,, r >0. This
completes the proof of the proposition.

Now, for a function felI’(u) we can define its Gauss—Weierstrass
integral F by

(53) F((X, t): S) = f*ps(x) t)i
and we then get

ProposiTioN 5.2. Let felf(u), 1 < p< co. Then the function F defined
by (5.3) satisfies the following:

() F is a C*-function on X x(0, co) and (8, +L)F =0,

(i) 1F (-, )—fll,~ 0 as s~ 0 if p < co.

(iii) If p=co and feCo(X) then |F(:, )~f|lo—0 as s— 0.

Proof. Using Proposition 5.1 it is not difficult to show that G+ L)F
=0 in distribution sense and so, once again by hypoellipticity, F is a C*-
function. This gives (i). The verification of (i) and (iii) is routine.

The transform of the heat kernel p,, s> 0, is now described by the
following

Lemma 5.3. For any s >0 and 10, 1 # 0, n=0,1,...,
(54) Bs(7) = exp(—s),  py(4, n) = exp(—414] (/24 n)s).

Proof The equalities 9,(p,*u) = ~Luxp, and (Lu) (v) =12ii(1),
(Lu) (2, n) = 4]A|(0/2+n)di(4, n) show that the functions ps(r) and p,(4, n)
satisfy the differential equations (d/ds)w = —72w and (d/ds)w = — 43| (2/2
+n)w respectively. Clearly, this completes the proof.

6. The Gelfand space of the Banach algebra L} (w). As we have shown,
L'() equipped with the convolution (4.1) forms a commutative Banach
algebra. Moreover, if ¢ =(4, n) for some A #0and n=0, |, vy Or & =1 for
some 7 2> 0 then f-f(£) is a multiplicative functional on I} (4). Now we
show the converse. )

PropostTion 6.1. Every multiplicative Junctional on L' (1) is of the form
S f (L), where either & = (A, n) for some A #0and n=0,1,..., or ¢ =1
Jfor some = 0.

Proof. Suppose & is a nontrivial multiplicative functional on L!(y).
Clearly, & is of the form &(f) = [ fody for a function ¢, | (x, t)| € 1, which
X
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satisfies
(6.1) o, ) @y, w)=T"""p(x, 1)
ux p-almost everywhere. We will show that ¢ is an eigenfunction for L, ie.
(6.2) Lo = ko

for a keR. Indeed, take the Gauss—Weierstrass integral of ¢: u((x, t), s)
= @ * py(x, t). Since (6.1) easily implies
(6.3) oxps = *p(0,0)- ¢
and Lu = — d,u, we obtain
9*0,(0,0Lp = —9-3,(@*p,(0, 0).

But by (6.3), ¢ is continuous on X and therefore lim,_, ¢ * p,(0, 0) = ¢ (0, Q)
as well as lim, o &, (¢ * p, (0, 0)) exist. Thus L = k* ¢ for a k > 0. By (6.1) it
also follows that ¢ has separated variables:

P(x, ) =T (x, ) = T* " o(x, 0) = @(x, 0 9(0, ) = g () h(t).

Consequently, the above, the fact that ||h]l, =1 and (6.2) show that, first,
h(t) = ¥ for a ieR. Next, when A =0, we have

20—1
" /__,__kz
g +_x g = g

and thus, since ||glle = 1, g(¥) = 2271 I'(@)J,— (xk) (xk)* = In the case A # 0,
g satisfies the equation

g”+—~2°‘_1g’+(k2—x2</12)g =0,
x

which implies that ke N and, since [jgl, =1,

_ KIT@) \as22 ya-1 2
0= Frrge I .

This completes the proof of the proposition.

7. An example of a generalized convolution. K. U}'banik in his papers (qf.
[6] for references) developed the theory of generahzgd convolut_lons. T@s
theory treats measures which live on the positive half-line R, equipped v.v1th
the usual family of dilations. Here we present an example of a.generahz‘ed
convolution living on the semigroup R, x Ru {(0, 0)} endowed with a family
of dilations, which satisfies all the axioms of Urbanik’s theory. )

Consider the semigroup X = R, x Ru {(0, 0)} endowed with the family
of dilations (8),»0, 0,(x, 1) =(rx,r*f). We denote by 2 the set of all
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probability measures defined on the Borel subsets of X and we equip £ with

the topology of weak convergence. For Pe# and r> 0 we define the
measure T, P by

TP(E)=P(5,-,(E),
for every Borel subset E < X.
Let us write, for xe R and f§ > 0,
x® = sgn x-|x|’.

' For arbitrary but fixed « > 1 and § > 0, define the generalized convolu-
tion Po,;Q of two measures P,Qe? by means of the functional

L( Fd(Po,;Q) (F a bounded continuous function on X):
X

;F(-}Q t)d(Poa,ll Q)(x: T)

a—1

p J I TTF((x* + y*# — 2x# y* cos 6)12P,
XXo00

P+ 1?4 x" y* cos ¢ sin )7

x(sin @) 3 (sin6)**~2dep dOdP(x, 1)dQ (y, w) for o > 1,
2n
=@ [ [ F((x*+ y? —2x? 8 cos )1/,
XX0
(U® + 1D — xP yP sin @) VP) d@ dP(x, t)dQ (y, u) for o = 1.

The result then is (we write o instead of o, ):

ProrosrTion 7.1. The operation © is a commutative and associative -
valued binary operation satisfying the following conditions:
(i) do.0 is the unit element. :
(ii) (aP+bQ)oR =a(PoR)+b(Q0oR), a+b=1, a,b>0, P, Q, Re P
(iii) T(PoQ)=(TP)o(T,Q), r>0, P,QeP
(v) If P,— P then P,oQ—PoQ, P, P Qe

In order to introduce the notion of characteristic function let us first
define two kinds of kernels by

(7.1) Q(p) =227 T (@) oo () P09,
and for n=0,1, ...,

n! I ()

7.2 Q = iu®) exp (- y*#/2) I (y*

2 a0 W) = o sexp () exp (~ /) Iy (%),

Then for 120, 4#0, n=0,1,..., and Pe# define the characteristic

icm
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functions P(x), P(4, n) by
(7.3) P(t) = [2,(xx)dP(x, 1),

X
(74) P, n) = [Q5,(M"2x, A)dP(x, 1).

X

Now, it may be checked, by using Lemma 4.2, that the characteristic
functions satisfy the following properties:

(1.5) (cP+(1=0)Q) (&) = cP(B)+(1-) 0 (&),

(1.6) (PoQ) (&)= P(®)0(),

where 0< ¢ <1, P,Qe? and ¢ =t or ¢ =(4, n). Furthermore,
() (TP @) =P(1), (LP) (A n)=P@*4n.

Now we are in a position to prove the central limit theorem for the
convolution o, 4. We denote by E,, the probability measure concentrated at
the point (x, f)e X. The power P°", Pe 2, will be taken here in the sense of
the operation o, 4, and p,, s > 0, will denote the beat kernel associated with
the operator L defined by (2.1), as in Section 5.

ProposiioN 7.2. Let ¢, =m~ Y2 Then for every a>0
(7.8) L, (Eao) — ¥

weakly as m— o, where y is the probability measure on X defined by

7(A) = B [ Prjian) (%P, @) x28 =1 (B D dx dr.
4

Proof. To simplify the calculations we consider the case § = 1 and a
=1 only. Clearly

79) lim (T, BT (1) = exp(—1%/4).

m=r o
Similarly, since

WI@ i g o
I‘(n+a)exp( VYL () = 1=+ n/a) y* +0(0?),
we get

(7.10) ' lim (7, EZ%) (2, n) = exp(— |4 G+ n/a). ,

m
m

Thus, in virtue of Lemma 5.3, the identities (7.9) and (7.10) imply (7.8) in the
standard- way, which completes the proof of the proposition.
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Measures on groups with given projections
by
R. M, SHORTT (Middletown, Conn.)

Abstract. A theorem of Lindenstrauss asserts that every extreme doubly stochastic measure
is singular. This result is extended to the case of locally compact groups.

§ 0. Introduction, Let A be the Lebesgue measure on I = [0, 1]. A Borel
measure u on IxI is said to be doubly stochastic if u(A xI) = u(I x A)
= A(4) for each Borel set A =I. The collection of all doubly stochastic
measures forms a convex, weakly compact set whose. extreme points have
been the subject of much study: [1]-[3], [6]-[8]. It was shown by Linden-
strauss [6] that every extreme doubly stochastic measure is singular with
respect to the planar measure A®A. In [8], this result was generalized.

Let Ly, ..., L, be nontrivial linear subspaces of R". Suppose that v is a
probability measure on R" and let E be the convex set of probabilities on R"
whose projections onto Ly, ..., L, agree with those of v. In [8], it is proved
that the extreme points of E are singular with respect to the n-dimensional
Lebesgue measure on R" The fact that homotheties of R" by a scalar r
change the Lebesgue measure by a factor of r" was an important feature of
the proof.

We further generalize this result to the context of a locally compact
group. An appropriate convex set is the collection of all measures on the
group whose projections onto various quotient groups are prescribed. Under
suitable hypotheses, the extreme points of this set will be singular with
respect to the Haar measure. For the proof, one must compensate for the
fact that homotheties are not available in the context of groups. As in almost
all work in such problems, the following result of Douglas and Lindenstrauss
is crucial. ‘

Let (X, v) be a finite measure space and let F be a linear space of v-
integrable functions containing all constant functions. Let E(v) be the
(convex) set of all finite measures ¢ on X such that

[fdv=[fde
for each feF.
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