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Measures on orthomodular vector space lattices
by

HANS A. KELLER (Santiago)

Abstract. The problem of classifying the measures on an orthomodular lattice % has its source
in the lattice-theoretical approach to quantum mechanics. Here we give a solution in the following
case: & = £ (V) is the lattice of all subspaces of a finite-dimensional vector space V over the field
R((r)) and the orthocomplementation is implemented by a bilinear form ¥ ~ diag(1, ..., 1, ¢, ..., o).
We prove that every measure on % (V) can be obtained by lifting measures from the residual space of
(¥, ¥). The measures being lifted are known by Gleason’s theorem. From the classification we deduce,
among other things, that the set of all measures on (V) is not separating.

Introduction. Let V be a finite-dimensional vector space (over any field) and
&£ (V) the lattice of all linear subspaces of V. We suppose that V carries an
anisotropic Hermitian form ¥'; then the operation U - U * of taking orthogonals
turns % (V) into an orthomodular lattice. A function u from (V) into the
nonnegative reals R* is called a (finitely additive) measure if Uy, Use £(V),
U, L U,implies that u(U+ U,) = pu(U,)+ u(U,). The task is to describe the set
A (V) of all measures on % (¥). This mathematical problem has its origin in the
lattice-theoretical approach to quantum mechanics (cf. [17, [5], [6]).

The case where (¥, ') is a real or complex inner product space 1s classical
and is settled by the famous theorem of Gleason. It says thatif V = R"or V = C",
n > 3,then every measure u: % (V) — R™ arises from a selfadjoint positive linear
operator V' — V through the trace formula. This result generalizes immediately to
infinite-dimensional separable Hilbert spaces. However, Gleason’s line of
thought fails when the base field is different from R, C.

In this paper we deal with spaces V over the field R((¢)) of formal power
series, endowed with forms ¥ = diag(l, ..., 1, ¢t,.... t). In § 2 we construct
measures on &£ (V) by lifting measures from the (first and second) residual space.
The latter are known, for the residual spaces are Euclidean, Our main result states
that this construction by lifting produces all of .# (V). The proof, given in § 3, is
based on an analysis of measures by means of certain geometrical configurations.
In § 4 we consider applications, in particular we obtain a description of the
ue M (V) in terms of real matrices.

We mention that the geometrical methods of § 3 are an efficacious tool for
studying the (countably additive) measures on infinite-dimensional, nonclassical
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orthomodular spaces (see [3], [7]). We will not enter into these generalizations
here in order to avoid complications.

1. The quadratic space (V, ¥).

1.1. Let K := R((?)) be the field of formal power series in the indeterminate ¢
with coefficients in R, and let w: K —Z u {oo} be the usual exponential
valuation. Thus for a typical ¢=),  at' in K we have w()
=min{ieZ: a;# 0} if £#0, w(§) =0 1ff 0. We order K as follows:
if E=3, aiti;éO and w(é) =1 then ¢ >0 iff @, >0. The ordering < on
K is compauble with the valuation w. in the sense that

() 0<i<e = w(2>w(S)

Let K*:= {¢cK: £+ 0} be the multiplicative group of K and K** its
subgroup of squares. The valued ﬁeld (K, w) is henselian (cf. [8], Ch. 2); in
partlcular ifw(§) > Othenl+¢éeK *2 It follows that K* has four classes modulo
K** represented by +1, +t.

1.2. We fix two integers n, mwithn > 3,1 < m < n— 1. Consider the vector
space V:= K" over K and let {ey, ..., ¢,} be the canonical basis. We define the
symmetric bilinear form ¥: VxV — K by

Vg, e):=1 for 1<i<m, Y e) =t
Ve, e):=0 for ij.
The form ¥ is positive-detinite. We say that x, ye V are orthogonal, written

x L1y if ¥(x,y) =0, and for U = V we let U* denote the orthogonal space
of U, Ut={xeV: x Lu for all ueU}. The set

ZL(V)

is a modular lattice under N, + . Since ¥ is anisotropic the operation U U+ is
an orthocomplementation in % (V). The lattice . (V) is atomistic, the set of
atoms is 4(V):= {Ge £(V): dimG =1}.

For xeV, x# 0, we let (x> be the straight line spanned by x.

for m+1<ign,
V):={U: U is a linear subspace of V}

1.3. Let x be a nonzero vector in V. The type of x, denoted by T(x), is
if w(¥(x, x)) is even,

defined to be
0
T(x)'={1 if w(¥(x, %) is odd.

Clearly T'(x) = T(¢x) for all 0 e K. Hence there is a type attached to
every straight line G; we denote it by T(G).

Remark. The above terminology is suggested by a much more general
and elaborate concept. of “type of a nonzero vector”, which plays a crucial
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role in the construction of nonclassical 1nhn1te dimensional orthomodular
spaces. We refer to [3].

Since ¥ is positive we have ¥(x, X) eK* ut-K** for 0% xeV. It is
plain that

2 TE=0e ¥(x ek, TH=1< P et K*

Hence a straight line G has type 0 [type 1] if and only if G contains a vector
x with W(x, x) =1 [resp. ¥(x, x) = t].

14. Our constructions of measures will be based on the (first and
second) residual space of (V, W) (cf. [9]). We need

Limma 1. For all x, ye V we have

i) ('I’(x+y x-+y)) = min fw (P (x, x)),
(i) w(% (x, y)) = min {w(¥(x, x)),
(iii) x Ly=w(¥(x+y, x+y) =

w(¥ (. »)}.

w(¥ (0, Y)}-
min {w(¥(x, x)), w(¥(, y)}.

Proof. This follows from (1) and the fact that ¥ is positive.

The valuation ring belonging to wis § = {¢e K: w(£) > 0} Let J be the
maximal ideal of S, K := $/J the residue field and 8: S — K the canonical
map Of course, K =R and we shall identify K with R. Consider M
c= xe Vi W(x, x)e8}. It follows from Lemma 1 that M is a module over
S and that W(x,y)eS whenever x, yeM. Furthermore, = {xgV:
¥(x, x)eJ] is a submodule of M. Since N =J- M the quotient V M/N is
a vector space over K. Let n: M — ¥ be the canonical map. Using Lemma 1
one verifies that a bilinear form ¥: Vx V— K can be defined by

P(n(x), n(y):=0(¥(x, ) (x,yeM).
(V, @) is Ccllled the (first) residual space of (V, ¥). There is a canonical map
. L V)~ L2(V), given by Ul = L7r(x) xe U nM)}.

Lemma 2. (i) Let Uy, Use L(V). If Uy LU, then n(U,) L= (U,) and
ﬂ(Ulj‘Uz)gﬂ(Uo"‘ﬂ(Uz)- R
(i) Let G be a straight line. Then n(G) =10 if and only if T(G) =1,

Proof. (i) Suppose U, .L U,. Then n(U,) L7 (U,) by the definition of ¥.
Clearly n(U,)+n(U,) & n(Uy+U,). To prove the other inclusion let xe(U,
+U) M, x=x;+x3 with x;eUy, x,6U,. Then

< w(W(x, x) = min {w(¥(x;, x1)), w(¥ (%2, X3))}

by Lemma 1(iii). Thus x,, x,& M, hence n(x) = n(x,) +r(x;)en(U,)+n(U,)
as desired. Claim (i) follows from (2).

CoroLLARY 1. (V, P) is isometric to the Euclidean space R™.
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Proof. Lemma 2 entails that {m(e,), ..., z(e,)} is an orthonormal basis
of V.

CoroLLARY 2. Let Ue £ (V). All orthogonal bases of U contain the same
number of vectors of type 0.

Proof. The number in question is equal to dimz(U).

2. Measures on % (V). We continue with the notation of § 1.

2.1. Recall that a measure on £(V) is a function p: (V) — R* with
the property that U, L U, implies u(U;+ U,) = u(U,)+p(U,). If, addition-
ally, u(V) =1 then u is called a probability measure. The collection of all
probability measures on #(V), denoted by #(V), is a convex subset of the
product space R, The set of all measures on &£ (V), denoted by #(V), is
the cone in RZ"™ generated by (V).

Every pe (V) is uniquely determined by its values on the straight lines
Ge %(V). We observe that given aq, a; € R* there exists a ue 4 (V) such that
for all Ge 4(V),

(G =a, if TG =0, uG=a, if TG)=1.
Indeed; define p: #(V)— R* by
p(U):= (dim=n (V)" ao+(dim U—dimn (U))- a,.
Then p is a measure by Lemma 2(i).

2.2. The main tool for constructing measures on .Z(V) is given by

LemMA 3. Every measure v: (V)= R™ can be lifted to a measure
u: Z(V)— R* by putting p(U):=v(n (V) (Ue L(V)).

Proof. This follows immediately from Lemma 2(i).

Since ¥ = R™ (by Cor. 1) the measures v on (V) are easily described:

(a) The case m =1 is trivial.

(b) Suppose m = 2. The set of all straight lines in #(V) is partitioned
into orthogonal pairs, and measures on & (V) are simply functions v: £ (V)
~ R* such that v(0) =0, v(G)+v(G') = v(V) for each of these orthogonal
pairs G, G'.

(c) In case m>3 we have

Tueorem (Gleason [2]). Let m > 3. For every measure v: £ (R™ — R*
there is a selfadjoint positive linear operator Q: R™— R™ such that

v(U) = trace(Q o Py) = trace(Py 0 Q)
Sfor all Ue ZL(R™), where Py is the orthogonal projection of R™ onto U.
We put M,(V):= {ue #(V): p is obtained by lifting some ve #(V)}.
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23. The above construction can be varied as follows. Replace ¥ b);
¥, :=(1/t): ¥. This does not affect the relation of orthogonality, hence the
ortholattice % (V) remains unchanged. But we obtain a new residual space
and a new assignment of types. Let (¥, ¥,) be the residual space of (V, ¥,)
and write T (x) for the type of x with respect to ¥,. From (2) we infer that
T, (x) = 0 iff T(x) = 1; consequently, by the analogue of Lemma 2, (V,, ¥, is
isometric to R"™™. Again every measure v: % (V,) » R* can be lifted, and we
set

My (V):= {ue M(V): pis obtained by lifting some ve .#(¥;)}.
24. We can now state our main result.

TueoreM 1. Let (V, W) be asin § 1. Every measure p: (V) — R* can be
written uniquely as = po+p; where poe My(V), u e 4 (V).

We first observe that the decomposition u = po+ 4, is unique because
every pge Mo (V) is identically zero on {Ge%(V): T(G) =1}, and similarly
for pye.#(V).

3. Proof of Theorem 1.

3.1. We may assume that m > 2, for otherwise we replace (v, ¥) by
(V, ¥1). We consider an arbitrary, but fixed 3-dimensional subspace W of V
with dimz (W) = 2. Let 4(W):= {Ge £ (W): dim G = 1}. Our aim is to first
establish

TueoreM 2. Every measure yu: #(W)-— R* is constant on
{Geg(W): T(G) =1}

The proof of Th. 2 is divided into several steps; it will cover the next
five sections.

A triple (Gy, G,, G;) of pairwise orthogonal straight lines in %(W) will
be called a frame. Every frame contains exactly two members of type 0 (cf.
Cor. 2).

3.2. Suppose we are given two straight lines G, H in %(W) such that
T(G)=1, T(H)=0, G is not orthogonal to H.

Let F, Ee %(W) be determined by F LG, F.LH and E LG, E LF. Notice
that T(E) = T'(F) = 0. Let & be the set of all frames (4, B, C) which satisfy
the conditions

(i) A.LG, BLH,

(i) A E, AsF.
We ask: for which (4, B; C)e  does there exist a (4*, B*, C*)e # such that
C L.C*? In other words, we are looking for configurations made up by two
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frames (4, B, C), (4*, B*, C*) in # linked by the condition that C L C*,
Pick ecE, feF, geG with P(e, &) = Y(f,f) =1, ¥(g,9) =t (cf. 1.3). It

is belpful to introduce the “translated plane” X:= {e+&f +ng: &, ne K} and

to project from the origin onto Z. We indicate orthogonality between lines

by connecting the corresponding points in X and get a picture like this:

8

Fig. 1. A typical configuration

Here the straight line D with D L C, D L C* has been added for reference
later on.

LeMMA 4. Let (A, B, C)e & and let A = {e+of)> where 0 # acK. For
the existence of a frame (A*, B*, C*¥)e # with C L C* it is sufficient that
©)] w(a) =
Proof. There is a unique #e K such that K = {e+#ng)>. We have n # 0
as H. X G, and the hypothesis T(H) =0 implies
“ w(n?t) > 0.

Consider any frame (4* B* C*) in #. Then A* = {e+a*f)> for some
0 #a*e K. A routine computation shows that C and C* are spanned by

c=e—o"'f—(L+a"Yng, T a* Py

respectively. The reqmremcnt that ¢ .Lc* is equivalent to 1-4+a™!a*"
+o~ (1 +o* Yyt =0, or

(5) (@*+(1 +a?)n?
This is an equation of second degree in a* with discriminant

4 =0a*(1—-4g) where o= (1+a®)(1+(1+a"H)n*1)n>t,

c*=e—o*

Y+

£)-a*’ +a-a*+(1+a?)p?t = 0.

icm
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Using (3), (4) we see that w(g) > 0. Hence 4 is a square in K, so equation (5)
has a solution. The lemma is proved.

We put o= {A = {e+of >:  satisfies (3)}.

33. Remarks. (i) Let Ae.oZ. Let A'e ¥(W) be such that 4' LG, 4’ L A.
Then A'eof. For if A= {e+af) then A' = (e—a~'f) and w(~o"!) =
—w() =0.

(ii) Let (4, B, C)e & with Aes/. Note that T'(A) = 0. Using (3), (4) we
see that ¢ =e—a"1f~(1+a"%ng has type 0. Thus T(C)=0 and conse-
quently T(B) = 1.

(iii) It is readily verified that for one of the solutions of eq. (5),
say af, we have w(a}) =w(~a"")s Thus of satisfies (3). We have
therefore shown that every Ae.o/ gives rise to a configuration consisting
of (4, B, C), (4*, B*, C*)e F with C.LC* such that, additionally, 4* is
also in .

34. For a measure 4 on (W) we put
s():=sup {u(L): Le9(W), T(L)=j} (j=0,1)
ry(:=inf {u(L): Le %(W), T(L)=j} (=0,1).
The claim of Th. 2 is that s; (1) =r(4) for all pe J(W). We first prove
LEMMA 5. Let u be a measure on (W) and suppose that ro (@) = ry (1)
= 0. Then s, (1) = 2(u(W) =50 ().
Proof. We write s; = s;(1),j =0, 1.

(a) To show that s, > 2(u(W)—s,) let eeR, & > 0. By hypothesis there
are G, He 9(W) with T(G) =1, T(H) =0, such that

wG) <, u(H) <e.

Suppose G L H. We complete G, H to a frame (G, H, L) and note that
T(L) =0, thus sq2 p(L) = wu(W)—u(G)—u(H) > u(W)—2 and therefore
81 2 0> 2(u(W)~s0)— 4.

Now suppose that G and H are not orthogonal Let &, & be defined
as in 3.2. Put

q:=sup{u(d): Ade )}
and pick Ae.o such that
(6)

The line 4 gives rise to a configuration (4, B, C), (4*, B, C:")eﬁ«‘ with
C L C*; by 3.3(iii) we may assume that A*e o/, Let De %(W) be such that -

#(A) > g—e.
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D 1LC, D LC* (see Fig. 1). Now
H(W) = p(A)+ p(B)+ p(C) = p(A*)+ p(B*)+ u(C*)

, = u(C)+p(C*)+u(D),
from® which
™) #(D) = p(A)+p(A*)+ p(B)+ u(B*) — u(W).
We have T(D) =1 since T(C)= T(C*) =0 (cf. 3.3(ii)), hence
®) 51 > p(D).

By 3.3() the line 4’ with A’ LG, A’ LA* is in &, so u(d’) <gq. Since
(G, A*, A') is a frame we obtain

) w(4*) > p(W)—q—e.

Since B_LH, B* L H there are frames (B, H, L) and (B* H, L*). Here
T(L)=0=T(L* as T(B)=T(B* =1 (cf 3.3(ii)). Thus u(L), u(L*) <s,
and therefore

(10) B(B) > u(W)—so—&,  u(B¥) > p(W)—so~e¢.

Substituting (6), (8), (9), (10) into (7) we get s, > 2(u(W)—so)—Se. We
conclude that s; > 2(u(W)—so).

(b) The reverse inequality is proved in a similar way. This time one
starts with lines G, H satisfying u(G) > s, —¢, p(H) > so—e.

35. Let G be any line in (W) with T(G) = 1. Pick 0 # ge G and extend
{g} to an orthogonal basis {g, x, y} of W with ¥(x, x) = ¥(y, y) = 1. The
linear transformation W — W defined by grrg, xmy, yrs—x is an
isometry (“rotation with axis G through a right angle”) and therefore it
induces an orthoautomorphism Q: % (W)— % (W) with the properties

(1 (6 =G,
(12) L1G = Q(LyLL for all Le 9(W).
Note also that £ does not change types.

3.6. We are now ready to prove Th. 2.

(2) Suppose, indirectly, that there exists a measure u* on .Z(W) with
$1(#*) > ry (u*). Put

8= (53 (1) —ry ()/26
and pick Ge (W) with T(G) =1 such that

¥ (G) > 5, (1) ~e.

©
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Let Q be the automorphism of £ (W) induced by the rotation with axis G
through an angle 90° (cf. 3.5). Define y'c .# (W) by
KU):=4(*(U)+p* Q)  (UeLW).

According to the observation in 2.1 there exists a u”e .# (W) such that, for
all Le 4(W), w'(L) =r;(w) if T(L)=j (j =0, 1). Clearly pr=p =y is a
measure. Using (11), (12) one verifies that u has these properties:

(13) ro(p) =ry (1) =0,

(14) W is constant on {Le %(W): L LG},
(15) #(G) > 5y (1) —¢,

(16) 81 (1) > 122,

From now on we write s, instead of s;(u), j =0, 1. In view of (13) we have
5y = 2(u(W)—so) by Lemma 3.
(b) Pick He %(W) with T(H) = 0 such that
wW(H) > so—¢.

If we had H .LG then (14) would entail u(W)= u(G)+ u(H)+ u(H), thus
H(W) > 81+ 280 —3e. But 54 = 2(u(W)—s,), hence u(W) < 3¢ which is impos-
sible because of (16).

Therefore G and H are not orthogonal and we are in the situation of
3.2, Consider any configuration (4, B, C), (4%, B*, C*)e & with C 1.C* and
A, A*ed. Let D LC,D L C* (see Fig. 1). Then, as in 3.4, we have

™ #(D) = p(A)+ pu(4%)+ p(B)+ u(B*) ~ p(W).
Since B LH, B* L H and pu(H) > sp,—¢ we have

an H(B) < p(W)~so+e, u(B*) < u(W)+so+e.
Next, from (14) we infer u(A) = p(4*) =4(u(W)—u(G), thus
(18) 1(A)+ pu(A%) < p(W)—s +e.

Combining (17), (18) and (7) and recalling that s, = 2(u(W)—s,) we get the
inequalities

(19) H(D) < 3e,

(20) J(B) > (W) —s0—2.

(¢) We determine successively L, M, B’ in 4(W) by LLH, LLD and
MLL MLD and B'LL, B'LH. The line B’ belongs to a unique frame
(4, B, ") in & (see Fig. 2; to obtain a full picture of the situation one
should superpose Fig. 1 and Fig. 2).
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It is not difficult to verify that the configuration (4, B, C), (4*, B*, Cc
from which we started can be so chosen that the resulting line A’ falls into
& Indeed, if A= (e+af) then a straightforward (but somewhat lengthy)
computation shows that A'e o/ provided that w(a—1)=0=w(a+1). We
therefore assume that 4’ . Note that in order to derive (20) we only used
the fact that A4 is in /. Hence, correspondingly, u(B') > u(W)— s, —2¢ holds
true. Looking at the frame (H, L, B') we get

(21) u() < 3.
Substituting (19), (21) into u(W) = u(D)+ pu(L)+ u(M) yields
(22) #(M) > p(W)—~6e.

Now T(D) =1, so T(M) = 0. Thus (22) implies that So-> (W) —6¢. Hence
51 = 2(u(W)—so) < 12¢. But this contradicts (16). The proof of Th. 2 is
complete.

3.7. We are going to derive Th. 1 from Th. 2.

CorOLLARY 3. Let Pe # (V) be a plane that contains vectors of both types.
Every measure p: £ (V)— R is constant on {Ge %(V): G < P, T(G) =1}
hence also on {Ge %(V): G =P, T(G) = O}.

»

Proof. P is contained in a subspace W of V with the specifications of
3.1. Apply Th. 2 to the restriction u|.#(W).

CoROLLARY 4. If n—m=1 then every ue. #(V) is constant on
{Ge%(V): T(G)=1)}.

We are now able to establish a connection between measures pue (V)
and the reduction map n: £ (V) — 2(P).

Lemma 6. Let pe #(V). Let H,H'e%(V), T(H)=T(H)=0. If
n(H) = n (H') then u(H) = p(H). .
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Proof. We may assume that H ¢ H' and that the plane P:= H+H'
contains only vectors of type 0, for otherwise the assertion follows from
Cor. 3. Let F be the line in P orthogonal to H. We choose a Ge %(V) such
that G L P and T(G) = 1. Pick heH, feF, geG with ¥ (h, h=%(1=1,
¥(g,9)=t. We have H' = (h+nf) for some neK. The hypothesis n(H)
=n(H') implies that w(n) >0, so w(y/t)=0. Consequently, the lines
E:= (h+nf+g) and L:= {f—(n/t)g)> have type 0. Clearly E L L From
Theorem 2, applied to W:=P+G and u|Z (W), we infer that

W(E)+ p(l) = p(H)+ pu(F).

Both the planes Py:=H'+E and P;:=F+L satisfy the hypothesis of
Cor. 3, hence u(E) = p(H'), u(L) = u(F), and the assertion follows.

CoroLLARY 5. Let pe M(V). Let U, U'e (V) and suppose that U, U’
contain only vectors of type 0, If n(U) =n(U") then u(U) = u(U").

Proof. By induction on k:=dimU (= dimU") it is easily shown that
we can write U = Hy+...+H,, U = Hy+...+H; where H, LH,, H, LH)}
for 1<€i<j<kand n(H)=mn(H) for 1 <i <k The claim then follows
from Lemma 6.

3.8. Consider now any measure u; .%(V)— R". We define a fanction
v #L(Py- R" as follows. Every element of % (V) can be written in the form
n(U) for some Ue.2(V) which contains only vectors of type 0; we put
v(n(U)):= u(U). Corollary 5 ensures that v is well defined. It is easily
checked that v is a measure. Let uge #,(V) be obtained by lifting v.
By construction, o coincides with 4 on {Ge%(V): T(G) =0} and p, is
identically zero on {Ge % (V): T(G) = 1}. It is obvious that we can also find
a yy&.#;(V) such that u; coincides with  on {G: T;(G) =0} = {G: T(G)
=1}, In fact, in case n—m > 2 we repeat the above arguments with (V, ¥,)
in place of (V, ¥); if n—m =1 then u is constant on {G: T(G) =1} (by Cor.
4) and the claim is trivial. Now u and pg+ u; take the same values on all
Ge % (V). We conclude that p = po+uy. The proof of Th. 1 is complete.

4, Some applications. We retain the notation of §§ 1, 2.

4.1. We begin with a remark on the set 22(V) of probability measures on
LV) Pul 2 (V)iw 2 (V) o MHG(V), | =0, 1. Theorem 1 implies that every
ue (V) can be expressed uniquely as = agpo+day 4y where poe My (V),
wee .t (VY and ay, a,eR*, ag+a, = 1. We conclude that #,(V) and
(V) are faces of the convex set #(V).

4.2, As a consequence of Th, 1 we have the following rather unexpected
result,

LimMa 7. The set of all measures on £(V) is not separating (cf. [1],
p. 116).
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Proof. Take any two different straight lines H, H' with T'(H) = T(H)
=0, n(H) = n(H’). By construction, uo(H) = uo(H') and p, (H) = 0 = pu, (H
for all uoe Mo (V), uy € My (V). Now Th. 1 implies that u(H) = u(H) for all
ue M (V).

CoROLLARY 6. Let E be any real or complex inner product space. The
lattice ¥ (V) cannot be orthoisomorphically embedded into % (E).

Proof. The set of all measures on .#(E) is separating, but .# (V) is not,
Hence the assertion.

This corollary illustrates that an insight into measures can provide an
answer to purely lattice-theoretical problems (compare Problem C in [4]).

4.3. We now assume that m > 3 and n—m > 3. We write ¥, instead of ¥,
Consider an arbitrary pe .# (V) and decompose p = po+fi; where y; results
from lifting a measure v;e JI{(V}), j=0,1 Recall that V, = R" and 14
= R"™™. By Gleason’s theorem, v; arises from a selfadjoint positive operator
Q;: Vi— V. Let A,y be the matrix of Q, with respect to the orthonormal
basis {n(ey), ..., m(e,)} of ¥, and define the matrix A, similarly. We then
associate p with the matrix

A, 0

(* A= [0 A1]
where Ao, A, are real symmetric positive matrices of size m xm and (n—m)
X (n—m) respectively. The correspondence u— 4 between .# (V) and the set
of all matrices of shape (%) is bijective and compatible with convex linear
combinations.

Denote the entries of 4 by a; (i,j=1,...,n) and define the linear
operator Q: V-V by Q(e):= Z‘L , @je. It is then easy to check that u and
Q are interrelated by the formula

p(U) =08(trace(Qo Py)) (Ue L(V)),

where Py is the orthogonal projection onto U and 0: §— K =R the
canonical map. We have thereby reached a description of the measures on
# (V) which is remarkably resembling the classical case.
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