STUDIA MATHEMATICA, T. LXXXVII. (1988) lm

On infinitely small orbits
by
J. BOIDOL, J. LUDWIG and D. MULLER (Bielefeld)

Abstract. In this paper we begin the study of infinitely small representations of a nilpotent
Lie group G, ie. the representations which cannot be Hausdorf-separated from the identity
representation, We show that, in the case where G is a semidirect product of R with R", the
cortex, i.e. the totality of all those representations, considered as a subset. of the dual vector
space g* of the Lie algebra g of G, is the set of the common zeros of the G-invariant
polynomials on g*.

1. Infinitely small orbits and invariants. Let G be a locally compact group
and IT a continuous representation of G on a finite-dimensional (real) vector
space V. '

We say that a point ve V (resp. its G-orbit w = I1(G)v) is infinitely small
with respect to the action of G if there exist no disjoint G-invariant
neighborhoods of 0eV and v. If we provide the orbit space V/II(G) of V
under IT(G) with the canonical quotient topology, then v is infinitely small if
and only if @ =I(G)v and w, = {0} cannot be Hausdorff-separated in
VI (G).

The set of all infinitely small elements of V with respect to the action of
G will be called the IT-cortex of 0 or simply the IT-cortex, and denoted by
Cy ().

Obviously, v is in Cy(IT) if and only if there are sequences {+®}, = V
and {g,}, =G such that limv® =0 and LimII(g,)v® = .

In [4] the cortex of a general locally compact group G was defined as
the set of points in the dual G of G which cannot be Hausdorff-separated
from the identity representation. If G is a connected, simply connected
nilpotent Lie group, then by the results of Kirillov [3] and Brown [1] Gis
homeomorphic to g*/Ad*(G), where Ad* denotes the coadjoint representa-
tion of G on the dual g* of its Lie algebra g. So in this case our definition of
a cortex extends the definition from [4], whereas in the case of general
groups the two definitions are not so easily related.

However, in this paper we shall only deal with nilpotent groups G,
mainly with G = R.

In the case that IT is a unipotent representation of a nilpotent Lie group
G, we define the cortex of invariants of Il as

ICy(IT) = {ve V: p(0) = p%r;ﬁ;ﬁnvariant polynomials p on V}.
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Clearly one has the inclusion
0y Cy () = IC, (ID),

and the results which will follow support the conjecture that in fact Cy (I1)
= ICy (IT). However, in the last example presented in this paper we were not
able to prove that C, (II) = ICy(II), especially we could not determine
IC, (IT). This may be a test case for our conjecture.

Since in general it is troublesome to prove the G-invariance of a
polynomial on V directly, it is better to use the derived representation dIT of
the Lie algebra g of G.

Let IT* denote the IT-contragredient representation of G on the dual
space V* of V, ie. IT*(g) =II(g™')* and let 7 (V*) denote the tensor
algebra of V*, There is a canonical epimorphism y from Z (V*) onto the
algebra 2(V) of polynomials on ¥, and y factorizes to an isomorphism y
from F,(V*) =7 (V*/kery onto 2(V). T,(V*) is of course isomorphic
under the symmetrization mapping to the subspace of symmetric tensors in
T(V*).

If we let G operate on #(V) by

g p() = p(ll{g~"v),

and on Z(V*) by extending each IT*(g) to an algebra homomorphism of
Z(V*) and then factorizing by kery, then y commutes with the two actions
of G. The representation of G on Z,(V*) will for simplicity also be denoted
by IT*. However, an element ae J,(V*) is G-invariant if and only if we have
for the derived representation dII of the Lie algebra g of G

@ dlT*(g)a = 0.

Note that dIT*(X) is a derivation of J(V*) for every Xeg.
In the next sections we shall concentrate on the case G = R. In this case
we may write

3) (@) =é*, teR,

where A is a linear endomorphism of V. Sometimes we shall write Cy (A)
resp. ICy (4) for Cy (II) resp. ICy (IT), and if W is a IT-invariant subspace of
V, we denote the cortices of the action of IT restricted to W also by Cy (A)
resp. ICy (A). ‘

We start with a special unipotent action, which is in some sense the
most interesting case since all other cases can be reduced to it.

2. The cortex of the “thread” operation. Let A =N be a nilpotent
endomorphism of ¥, and assume that ¥ =V, has a basis {b,, ..., b,} such
that

N (bj) = bj+l

for j=1, ...,n'-l, N, =0.
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For é———§ f,b eV we then have
=1 J

nQ@=e¢"¢= 3 &b,

where
i-1
L) =Y t& k!
k=0

Let {X,,..., X,} denote the basis of V* dual to {b,,..., b,}. Then clearly
the adjoint operator N* of N is given by .

@ N*(Xj)=Xj—1
With regard to the considerations in the preceding section, we consider N*
as a derivation of 7 (V*) resp. ,(V*). We have shown that a polynomial

p(,,..., &) on V is H-invariant if and only if the corresponding element
p(Xq, ..., X,) of T,(V*) satisfies

(5) N*(p(Xl’s Xn))=0
The next lemma provides us with “sufficiently many” invariants to determine

the cortex of II. In combination with the following technical lemma it
permits the determination of the cortex of IT.

LemMA 1. For n 22 and k=2, ..., [(n+1)/2] the polynomials

for j=2,...,n, N¥*(X{)=0.

n k-1
pe( X fib})ziél%“" Zl (—1¥ & jans
i=1 j=

are Il-invariant.

Proof. Consider
k-1

Pe=3X, X+ Y (= 1Y Xij Xt
j=1

as an element of Z,(V*). Then we have
k=2
N¥(P) =3 X, Xpo 1 +3 Xy Xt 2, (=Y Xpe ot Ko
i=1
k-2
+ 3 (—1)ij—ij+j—1+("'1)k_lX1X2k-—21
j=1

hence, since X; X, ., = Xk_;Xk in Z,(V*),
k-2 k-3 '
N*(P) =X Xyo1+ 2 (=1 Xymjmy Xy — Z (1Y Xy o1 X
j=1 j=0
+(—D X X
zXka~1+(—1)k_ZX1XZk—Z_Xk—lXk+('—1)k—1X1X2k—2

=0. =
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LemMma 2. The n xn-matrix

1 12 LY
ARV . Y+
Unl Y1) 12—

is regular.
Proof. We multiply the jth row of M by (n+j—1)! and obtain the
matrix

23...n 3:4-...'n |
| 374 D) 4-5-...-(n+1) N
n+1)(n+2)...2n—1) @+d@+3)...2n=1) ... 1

For n> 2 let A(K, n) be the matrix

[K+1, K+n—2+1]

[K+1, K+n—2]
[K+2, K+n—2+1]

[K+n—1, K+n—2+n—1] [K+1+n—1, K+n=24n—1] ...

... [K+n—2,K+n-2]
... [K+n—2+1, K+n—-2+1] 1

... [K+n—2+n—-1, K4+n~2+n—1] 1

where [K, ] = K-(K+1)-...-1 for 1 > K. Then' M’ = A(2, n). Therefore in
order to prove the regularity of M it is sufficient to prove (by induction on n)
the regularity of the matrices A(K, n), n> 2.

K 1
For n=2, AK,2)= [K+1 J is regular. Assume that A(K,j) is
regular for 2 <j<'n—1, Consider the matrix 4(K, n). Subtraction of the
(i—1th row from the ith row for i > 2 gives the following matrix:

A'(n, K)
[K,K+n—2] [K+1,K+n—2] [K+n—2, K+n—2] 1
0

A
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where A™=[(n—1)8; (n—2)@, ... 3,~,] and the & are column vectors in
R""!. Furthermore, [@, d; ... d,—;] = A(K+1, n), which is regular by the
induction hypothesis. Hence A~ and then also A (n, K) are regular. m

If vy, ..., v are vectors in ¥ then let (v, ..., v;> denote their linear
span in V.

ProposiTioN 1. If n=0 or n=1 then Cy (II) =ICy (II) = {0}, and if
nz=2 then

CVn(H) = ICV,,(H) = (bt 1))2]+1a b+ 121425 -+ b,>.
Proof. The cases n =0 and n=1 are trivial. Therefore assume n = 2.
Set M, = b+ 1yz1+1> --+» bap. Lemma 1 easily implies
ICy (II) = fveV,: p(@) =0 for k=2,..., [(n+1)/2]} = M,,
so we have

CV,,(H) < ICV,,(H) <M,

and it remains to prove that M, = Cy, (II).

Assume first that n=2m, m>1, is even, and let 1= Ayy1bpsst+ -
+4,b, be an arbitrary element of M,. We seek for a sequence {¢®™} in W,
and sequence {f}, of real numbers such that im¢® =0 and HmI7(z) ¢®
= A

Actually, we may choose for {t;}, any sequence with lim ;| = oo, for
example t, = —k. Assume {f}, is fixed. We then determine {£8), by the
conditions ’

(6 E® = Wb+ .+ EWbye Brs ooy b
(M P (t) =4
For fixed & = ¢® and t =t,, (7) means

for j=m+1,..., n.

m

t* t ,
tém+7€m—1+ +;‘—'51 =A‘m+1a

t2 t3 m+1

— =& i tr——=&, =4 ,
2£m+3!‘:m 1t +(m+1)!fl m+2

m ‘tm+1 t2m—1

— et it e =—& = Ao
ml €m+(m+ 1)' 6m - 1+ +(2m__1)! él 2m

Since, by Lemma 2, the matrix 4 = {1/(i+j+ 1!}~ is regular, this may be
written as

(8) [fmﬁ tfm*-la ree tm—1£1]T = A-1 [t—l/lm-l'h t—zlm+27 (s} t”mAZMJT'
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So it remains to prove that the sequence {¢®}, defined by (8) satisfies
lim¢&® = 0 and limIT(4) &% = 1. But the first equality is obvious from 8),
and for the second it remains by (7) to show that

im éPE)=0 forj=1,..., m.
k-0

But, if je {1, ..., m], then

j—~ll‘l (k)
kSj=1 j- -
&)=Y = and 5P =g gmImh el o
=0 I
as k — oo, since (8) implies that for r=1,..., m
lim 1~ &M = 0,
k=

and since j—m < 0.

So we are left with the case of odd n, n > 3. Conside~r the IT-invariant
subspace V,_, = <(b,, ..., b,> of V,. The action of IT on ¥,_, is a “thread”
action on an even-dimensional vector space, so by the preceding result we
have

CV,,El(H) = <b[n/2]+2y
Since [(n+1)/2]+1 = [n/2]+2, this implies
M,=Cp,_ () =Cy (). w

3. General one-parameter actions. Proposition 1 admits the following
easy extension:

» bad.

CoroLLARY 1. Let N be a nilpotent endomiorphism of an n-dimensional
space V and let I1 be the associated linear action. Then Cy(Il) = ICy(IT) = C, (IT)
= C_({Il), where

C.(II) = {ve V: there exist sequences {v™}, {t,} such

that lim o™ =0, lim t, = + oo and lim T (t,) o™ = v},
ko0 k—oa k=0
C_(IT) = [veV: there exist sequences (v}, (t,) such
that lim v =0, lim t, = —co and lim T (t,) o = v}.

k~ w0 koo

Proof Let V=V, ®...®V, be an N-invariant direct decomposition of
V such that the V, i=1,..., L are indecomposable with respect to N. Then
the action of N on the ¥ is as in Proposition 1, and we obtain

® ¢, = ICy,(N) = {y;€V;: there exists a sequence v}

such that lim v =0 and lim I7 (k) o = )
k— o

k~x
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= {y;e ¥j: there exists a sequence {wi¥},

such that lim w{® =0 and lim IT(—k)w® = v}

k=0 k=0
where the last two equalities follow from the proof of the theorem. Since it is
clear that

Cy(N) = {v;+ ... +v;: there are sequences {v{¥},, i=1,..., ],
and a sequence {r,}, independent of i, such that

lim o =0 and km O (t)of =v, for i=1,...,1},
k= k—+c0

we obtain

(10) Cy(N)=Cy (N)+ ... +Cy,(N) = ICy (N)+ ... +ICy (N).

However, any invariant polynomial p; on ¥ extends to an invariant polyno-
mial on V by p(v) =p(vs+... +v) = p;(v;). Therefore IC,(N) < ICy (N)
+ ... +ICy,(N) = Cy (N). Because one has always Cy(N) = IC,(N), one
obtains Cy (N) = ICy (N). This, together with the description of the Cy,(N) in
(9), proves the equalities stated in the corollary. m

The next lemma deals with skew-symmetric “perturbations” of a nilpo-
tent endomorphism.

Lemma 3. Let A be an endomorphism of an n-dimensional real vector space
V such that all eigenvalues of A are purely imaginary. Let A = S+N be the
additive Jordan decomposition of A, where S is the semisimple and N the
nilpotent part. Then Cy(4) = Cy,(N).

Proof. Let ve Cy(A). Then there exist a sequence {v,} in ¥V and a
sequence {f,} in R such that limv, =0 and limIT(t,)v, = v. Put w, = & Uy,
Then we have limw,=0 and lime™" w, = limIT(t,)v, =v. Therefore
ve Cy(N).

Conversely, let ve Cy (N). Then there exist a sequence {w,} in ¥ and a
sequence {z,} in R such that limw, =0 and lim ™ w, =v. Let {tn} be a
subsequence of {r,} such that lime™ = A,. Then for v, = A;'w, we have
limv,, = 0 and

. A : IS~ t N
hmem U = llm (em Aol)em Wy = 1.

m-roo m—o0

Therefore ve Cy (A4). »
Let now 4 be an arbitrary endomorphism of V. Let ¥V =V, @V_ @V, be
the A-invariant direct decomposition of V such that

ReA>0 for all ea(4ly,),
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Red <0 for all Aea(4ly_),
Rei=0 for all Aea(dly,),

where o (E) denotes the spectrum of the endomorphism E.
THEOREM 1.
Cy(l) = Cy(A) = (V, UV)®Cy, (N),

where N is the nilpotent part in the additive Jordan decompositi =
N o A ‘ position Al = §

' Proof. First we prove Cy (4) =V, u V.)®Cy,(A). In general, for every
A-invariant  decomposition V = Vi®V; of V we have Cr(4) =
Cy (A)®Cy, (A). Therefore Cy(4) = Cy,ev_ (ABCy (A).

Let v =04+ +0-€Cy, gp_(A). Then there exist sequences {v,} in V. ®
V. and {t,,+} in R such that im I (t,) v, = v and limy, = 0. Also v, = +ov;,
and limv, = limo, = 0, imII(t,) v} =v,, limII(t,)v; =v_. But for t,
-+ vx;e ha\{e mI(t,)v; =0 implying v_ = 0, and for t,~ —o0,
imII(t,) v =0 implying v, = 0. Therefore veV,uV..

Now assume ve(V, U V_)@&Cy,(A). Then v=v,+v, or v=0. +0g.
Choqse a sequence {13} in ¥, such that limvl = 0 and {t,} in R such that
lim 17 (1) v} = v,. Put

Vi =I(~t)v,., v =I(-t)v_, Wi o=0vl+0p, WL =" o,
Then‘we have

lim IT(t,) w". = v, + lim H{t)vg =v,+0v, =,

n—+ow n—o
lim IT(t,) w2 =v_ + lim IT(t,) 0% = v_ +vy = .
n-+og n-+oo

Acdgrding to Corollary 1 we can choose t, — + a0 if p = v; +v, and t,
— —o0 if v=v_+v, and obtain

lim wi = lim v} = lim II(—t,)v, =0

"o ner oo n=o0

lim wZ = lim v". = lim o(-t)v. =0.
n=o0 n—+oo n=au
This proves that ve Cy(A).
COROLLARY 2. Let G be a nilpotent Lie group with Lie algebra g such that

G = Rix R*. ‘The cortex of G is then equal to the image under the Kirillov
homeomorphism of the cortex of the Ad*-invariant polynomials.

Proof. Let us write g = Rx®}h where b is a k-dimensional abelian ideal
of g Let 0 velC,(Ad%). We must show that ve Cp(Ad¥).

vy =]y is then an element of IC,,(4), where A = (ad (x)|,)*. Hence, if
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vy # 0, there exists by Corollary 1 a sequence {w,}, in g* such that
w,, x>=0, limw,=0,
n=+oQ
and a sequence {r,}, = R with
limt,=co0, lLmw, =v;, w,= eip(ad* (£, X)) Wy
Now, as v; # 0, w, is not G-fixed for (almost) all n. Thus
ad*(h)w, = w,+bh* for all n

and so we find for every n a u,e H =exph with

lim Ad* (u,)w, = v.
If o, =0, then g is not abelian (as 0 # velC(Ad*)). Hence there exists
we g* with Ad*(H)w = w+b*, whence Ad*(H)(tw) =tw+h*, teR, and so

vehltc C,(Ad¥). =

From Corollary 2 we can deduce the following characterization of the
cortex of G = R x R" in terms of its C*-algebra C*(G). We denote by Z () the
center of the enveloping algebra U(g) of the Lie algebra g of G.

Considering the elements X e g as left- (or right-) invariant vector fields
on G we form the subspace

Z+D(G) = {x*f|xeZ(9,feD(G)}

of the space D(G) of test functions on G. )

It is clear that Z % D (G) is right- and left-translation-invariant. Hence the
closure of Z xD(G) in C*(G), denoted by .Z-C*(G), is a two-sided ideal in
C*(G). S ,

THEOREM 2. Let G be a nilpotent Lie group with Lie algebra g sich that
G = R xR*. The cortex of G is then,equal to the hull in G of the ideal Z - C*(G)
of C*(G). : .,

Proof. There exists an algebra isomorphism ¢ of Z(g) onto the space
IP of G-invariant polynomials on ¢* such that . .

AT =0,
for xe Z (g), every I G and every | in the Kirillov orbit corresponding to IT

(see [2], 104.5). Hence the hull in G of Z-C*(G) corresponds to the subset
IC,,(Ad*) of g* and the theorem follows from Corollary 2.

Two further examples. Let g be the nilpotent Lie algebra spanned by the
basis :

B={X,, X,, X3, H,, Hy, H;, Hy, Z}
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with the following commutators:
[X1, X3]=H,, [X:, Hi]=2,
[X5, X,]=H,, [X2, X3] = Hj,
[Xs, H,]=H,, [H H1=2Z, [H; X;]1=2.

In this example no element ve g* with (v, Z) 3 0 has a polarization which is
an ideal in g

Denote by {X¥, X%, X%, Hf, H%, H%, H¥, Z*} = B* the basis dual to
B in g*.

The Pukdnszky parametrization of the orbit space g*/Ad*(G) gives us
the following two G-invariant polynomials g, and ¢,:

qy (g XT+Xo X +x3 X3+ hy Hf + hy HY + by HY + by HY 4+ 22%) 1 =2,
2 (e XE 4%y X5+ X3 X5+ hy HY +hy HE +hy HE + hy H +22%)
i=2zX3—hyhy—hy h,.

An easy computation shows that in this case we also have

I

Cp(Ad¥) = IC,,(Ad¥) = {ve g*| ¢, (v) = ¢, (v) = 0]
ey XF+xp X3+ x5 X3 +hy HY + hy HY + by HY

+hyHY+2Z*| 2 =0, hyhy +hy hy =0}

Let us finish this article with a problem.
Consider the real 6-dimensional vector space

V=<by, ..., bgd =R,
the nilpotent endomorphisms S and T of V where
Sb)=b;i-y, i=2,...,6, S§b)=0, T=§2

and the unipotent group G = exp(RS+ RT).

It is possible here to determine the cortex Cy(G) with respect to the
natural action of G on V. In fact, Cy (G) = (b, bs, bg>. But we were not able
to determine the cortex ICy(G) of invariants. The Pukdnszky parametriza-
tion of V gives us 4 invariant polynomials:

ay = Ay Ai =23 Ay hy +343,
qz =445 A3 —422 Ay Ay +44, A2 Ay—2A22% 18,
4y = = e+ As A2 A1 A A3 23+ 1, A3 A3 =23 A A3+ Ag A3 A3 — 413,
qa=14y.
It follows immediately that ICy (G) < (b3, by, bs, bg>.

icm
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In order to show that ICy(G) = C,(G) we need an invariant polynomial
of the form

Alg‘g‘}‘zlji pj(lh Ty )“6)+Z'q"2’lpm(}'1: )'3’ ey j'15)
j m

for some k # 0. There does not exist such a polynomial of degree < 8. So we
may have here an example of a group where the conjecture C,(Ad*)
=IC,,(Ad*) fails.
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