

## On infinitely small orbits

by

## J. BOIDOL, J. LUDWIG and D. MULLER (Bielefeld)

Abstract. In this paper we begin the study of infinitely small representations of a nilpotent Lie group G, i.e. the representations which cannot be Hausdorff-separated from the identity representation. We show that, in the case where G is a semidirect product of R with  $R^n$ , the cortex, i.e. the totality of all those representations, considered as a subset of the dual vector space  $g^*$  of the Lie algebra g of G, is the set of the common zeros of the G-invariant polynomials on  $g^*$ .

1. Infinitely small orbits and invariants. Let G be a locally compact group and  $\Pi$  a continuous representation of G on a finite-dimensional (real) vector space V.

We say that a point  $v \in V$  (resp. its G-orbit  $\omega = \Pi(G)v$ ) is infinitely small with respect to the action of G if there exist no disjoint G-invariant neighborhoods of  $0 \in V$  and v. If we provide the orbit space  $V/\Pi(G)$  of V under  $\Pi(G)$  with the canonical quotient topology, then v is infinitely small if and only if  $\omega = \Pi(G)v$  and  $\omega_0 = \{0\}$  cannot be Hausdorff-separated in  $V/\Pi(G)$ .

The set of all infinitely small elements of V with respect to the action of G will be called the  $\Pi$ -cortex of 0 or simply the  $\Pi$ -cortex, and denoted by  $C_V(\Pi)$ .

Obviously, v is in  $C_V(\Pi)$  if and only if there are sequences  $\{v^{(k)}\}_k \subset V$  and  $\{g_k\}_k \subset G$  such that  $\lim v^{(k)} = 0$  and  $\lim \Pi(g_k) v^{(k)} = v$ .

In [4] the cortex of a general locally compact group G was defined as the set of points in the dual  $\hat{G}$  of G which cannot be Hausdorff-separated from the identity representation. If G is a connected, simply connected nilpotent Lie group, then by the results of Kirillov [3] and Brown [1]  $\hat{G}$  is homeomorphic to  $g^*/Ad^*(G)$ , where Ad\* denotes the coadjoint representation of G on the dual  $g^*$  of its Lie algebra g. So in this case our definition of a cortex extends the definition from [4], whereas in the case of general groups the two definitions are not so easily related.

However, in this paper we shall only deal with nilpotent groups G, mainly with G = R.

In the case that  $\Pi$  is a unipotent representation of a nilpotent Lie group G, we define the *cortex of invariants* of  $\Pi$  as

 $IC_V(\Pi) = \{v \in V: p(0) = p(v) \text{ for all } G \text{ invariant polynomials } p \text{ on } V\}.$ 

Clearly one has the inclusion

$$(1) C_{\nu}(\Pi) \subset IC_{\nu}(\Pi),$$

and the results which will follow support the conjecture that in fact  $C_V(\Pi) = IC_V(\Pi)$ . However, in the last example presented in this paper we were not able to prove that  $C_V(\Pi) = IC_V(\Pi)$ , especially we could not determine  $IC_V(\Pi)$ . This may be a test case for our conjecture.

Since in general it is troublesome to prove the G-invariance of a polynomial on V directly, it is better to use the derived representation  $d\Pi$  of the Lie algebra  $\mathfrak q$  of G.

Let  $\Pi^*$  denote the  $\Pi$ -contragredient representation of G on the dual space  $V^*$  of V, i.e.  $\Pi^*(g) = \Pi(g^{-1})^*$ , and let  $\mathcal{F}(V^*)$  denote the tensor algebra of  $V^*$ . There is a canonical epimorphism  $\gamma$  from  $\mathcal{F}(V^*)$  onto the algebra  $\mathcal{P}(V)$  of polynomials on V, and  $\gamma$  factorizes to an isomorphism  $\gamma$  from  $\mathcal{F}_s(V^*) = \mathcal{F}(V^*)/\ker \gamma$  onto  $\mathcal{P}(V)$ .  $\mathcal{F}_s(V^*)$  is of course isomorphic under the symmetrization mapping to the subspace of symmetric tensors in  $\mathcal{F}(V^*)$ .

If we let G operate on  $\mathcal{P}(V)$  by

$$g \cdot p(v) = p(\Pi(g^{-1})v),$$

and on  $\mathcal{T}_s(V^*)$  by extending each  $\Pi^*(g)$  to an algebra homomorphism of  $\mathcal{T}(V^*)$  and then factorizing by  $\ker \gamma$ , then  $\gamma$  commutes with the two actions of G. The representation of G on  $\mathcal{T}_s(V^*)$  will for simplicity also be denoted by  $\Pi^*$ . However, an element  $a \in \mathcal{T}_s(V^*)$  is G-invariant if and only if we have for the derived representation  $d\Pi$  of the Lie algebra g of G

$$d\Pi^*(\mathfrak{g}) a = 0.$$

Note that  $d\Pi^*(X)$  is a derivation of  $\mathscr{T}_s(V^*)$  for every  $X \in \mathfrak{g}$ .

In the next sections we shall concentrate on the case G = R. In this case we may write

(3) 
$$\Pi(t) = e^{tA}, \quad t \in \mathbf{R},$$

where A is a linear endomorphism of V. Sometimes we shall write  $C_V(A)$  resp.  $IC_V(A)$  for  $C_V(\Pi)$  resp.  $IC_V(\Pi)$ , and if W is a  $\Pi$ -invariant subspace of V, we denote the cortices of the action of  $\Pi$  restricted to W also by  $C_W(A)$  resp.  $IC_W(A)$ .

We start with a special unipotent action, which is in some sense the most interesting case since all other cases can be reduced to it.

2. The cortex of the "thread" operation. Let A = N be a nilpotent endomorphism of V, and assume that  $V = V_n$  has a basis  $\{b_1, \ldots, b_n\}$  such that

$$N(b_j) = b_{j+1}$$
 for  $j = 1, ..., n-1, N(b_n) = 0$ .

For  $\xi = \sum_{j=1}^{n} \xi_j b_j \in V$  we then have

$$\Pi(t)(\xi) = e^{tN} \xi = \sum_{j=1}^{n} \xi_{j}(t) b_{j},$$

where

$$\xi_{j}(t) = \sum_{k=0}^{j-1} t^{k} \, \xi_{j-k}/k!.$$

Let  $\{X_1, \ldots, X_n\}$  denote the basis of  $V^*$  dual to  $\{b_1, \ldots, b_n\}$ . Then clearly the adjoint operator  $N^*$  of N is given by

(4) 
$$N^*(X_i) = X_{i-1}$$
 for  $j = 2, ..., n, N^*(X_1) = 0$ .

With regard to the considerations in the preceding section, we consider  $N^*$  as a derivation of  $\mathcal{T}(V^*)$  resp.  $\mathcal{T}_s(V^*)$ . We have shown that a polynomial  $p(\xi_1, \ldots, \xi_n)$  on V is  $\Pi$ -invariant if and only if the corresponding element  $p(X_1, \ldots, X_n)$  of  $\mathcal{T}_s(V^*)$  satisfies

(5) 
$$N^*(p(X_1, ..., X_n)) = 0$$

The next lemma provides us with "sufficiently many" invariants to determine the cortex of  $\Pi$ . In combination with the following technical lemma it permits the determination of the cortex of  $\Pi$ .

LEMMA 1. For  $n \ge 2$  and  $k = 2, ..., \lfloor (n+1)/2 \rfloor$  the polynomials

$$p_{k}\left(\sum_{j=1}^{n} \xi_{j} b_{j}\right) = \frac{1}{2} \xi_{k}^{2} + \sum_{j=1}^{k-1} (-1)^{j} \xi_{k-j} \xi_{k+j}$$

are  $\Pi$ -invariant.

Proof. Consider

$$P_{k} = \frac{1}{2} X_{k} X_{k} + \sum_{j=1}^{k-1} (-1)^{j} X_{k-j} X_{k+j}$$

as an element of  $\mathcal{T}_{s}(V^{*})$ . Then we have

$$N^*(P_k) = \frac{1}{2} X_k X_{k-1} + \frac{1}{2} X_{k-1} X_k + \sum_{j=1}^{k-2} (-1)^j X_{k-j-1} X_{k+j} + \sum_{j=1}^{k-2} (-1)^j X_{k-j} X_{k+j-1} + (-1)^{k-1} X_1 X_{2k-2},$$

hence, since  $X_k X_{k-1} = X_{k-1} X_k$  in  $\mathcal{F}_s(V^*)$ ,

$$N^*(P_k) = X_k X_{k-1} + \sum_{j=1}^{k-2} (-1)^j X_{k-j-1} X_{k+j} - \sum_{j=0}^{k-3} (-1)^j X_{k-j-1} X_{k+j}$$

$$+ (-1)^{k-1} X_1 X_{2k-2}$$

$$= X_k X_{k-1} + (-1)^{k-2} X_1 X_{2k-2} - X_{k-1} X_k + (-1)^{k-1} X_1 X_{2k-2}$$

$$= 0. \quad \blacksquare$$

Lemma 2. The  $n \times n$ -matrix

$$M = \begin{bmatrix} 1 & 1/2! & \dots & 1/n! \\ 1/2! & 1/3! & \dots & 1/(n+1)! \\ \dots & \dots & \dots & \dots \\ 1/n! & 1/(n+1)! & \dots & 1/(2n-1)! \end{bmatrix}$$

is regular.

**Proof.** We multiply the *j*th row of M by (n+j-1)! and obtain the matrix

For  $n \ge 2$  let A(K, n) be the matrix

$$\begin{bmatrix} [K, K+n-2] & [K+1, K+n-2] \\ [K+1, K+n-2+1] & [K+2, K+n-2+1] \\ \vdots & \vdots & \vdots \\ [K+n-1, K+n-2+n-1] & [K+1+n-1, K+n-2+n-1] & \vdots \\ \vdots & \vdots & \vdots & \vdots \\ [K+n-2, K+n-2] & 1 \\ \vdots & \vdots & \vdots \\ [K+n-2+1, K+n-2+1] & 1 \\ \vdots & \vdots & \vdots \\ [K+n-2+n-1, K+n-2+n-1] & 1 \end{bmatrix}$$

where  $[K, l] = K \cdot (K+1) \cdot ... \cdot l$  for  $l \ge K$ . Then M' = A(2, n). Therefore in order to prove the regularity of M it is sufficient to prove (by induction on n) the regularity of the matrices A(K, n),  $n \ge 2$ .

For n=2,  $A(K, 2) = \begin{bmatrix} K & 1 \\ K+1 & 1 \end{bmatrix}$  is regular. Assume that A(K, j) is regular for  $2 \le j \le n-1$ . Consider the matrix A(K, n). Subtraction of the (i-1)th row from the ith row for  $i \ge 2$  gives the following matrix:

$$= \begin{bmatrix} [K, K+n-2] & [K+1, K+n-2] & \dots & [K+n-2, K+n-2] & 1 \\ & & & & 0 \\ & & & & \vdots \\ & & & & 0 \end{bmatrix}$$



where  $A = [(n-1)\tilde{a}_1 \ (n-2)\tilde{a}_2 \ \dots \ \tilde{a}_{n-1}]$  and the  $\tilde{a}_i$  are column vectors in  $R^{n-1}$ . Furthermore,  $[\tilde{a}_1 \ \tilde{a}_2 \ \dots \ \tilde{a}_{n-1}] = A(K+1, n)$ , which is regular by the induction hypothesis. Hence A and then also A(n, K) are regular.

If  $v_1, \ldots, v_k$  are vectors in V, then let  $\langle v_1, \ldots, v_k \rangle$  denote their linear span in V.

PROPOSITION 1. If n=0 or n=1 then  $C_{V_n}(\Pi)=IC_{V_n}(\Pi)=\{0\}$ , and if  $n\geqslant 2$  then

$$C_{V_n}(\Pi) = IC_{V_n}(\Pi) = \langle b_{\lfloor (n+1)/2 \rfloor + 1}, b_{\lfloor (n+1)/2 \rfloor + 2}, \dots, b_n \rangle.$$

Proof. The cases n=0 and n=1 are trivial. Therefore assume  $n \ge 2$ . Set  $M_n = \langle b_{\lceil (n+1)/2 \rceil + 1}, \ldots, b_n \rangle$ . Lemma 1 easily implies

$$IC_{V_n}(\Pi) \subset \{v \in V_n: p_k(v) = 0 \text{ for } k = 2, ..., [(n+1)/2]\} = M_n,$$

so we have

$$C_{V_n}(\Pi) \subset IC_{V_n}(\Pi) \subset M_n$$

and it remains to prove that  $M_n \subset C_{V_n}(\Pi)$ .

Assume first that n=2m,  $m \ge 1$ , is even, and let  $\lambda = \lambda_{m+1} b_{m+1} + \dots + \lambda_n b_n$  be an arbitrary element of  $M_n$ . We seek for a sequence  $\{\xi^{(k)}\}_k$  in  $V_n$  and sequence  $\{t_k\}_k$  of real numbers such that  $\lim \xi^{(k)} = 0$  and  $\lim \Pi(t_k) \xi^{(k)} = \lambda$ .

Actually, we may choose for  $\{t_k\}_k$  any sequence with  $\lim |t_k| = \infty$ , for example  $t_k = -k$ . Assume  $\{t_k\}_k$  is fixed. We then determine  $\{\xi^{(k)}\}_k$  by the conditions

(6) 
$$\xi^{(k)} = \xi_1^{(k)} b_1 + \ldots + \xi_m^{(k)} b_m \in \langle b_1, \ldots, b_m \rangle,$$

(7) 
$$\xi_j^{(k)}(t_k) = \lambda_j \quad \text{for } j = m+1, ..., n.$$

For fixed  $\xi = \xi^{(k)}$  and  $t = t_k$ , (7) means

$$t\xi_{m} + \frac{t^{2}}{2}\xi_{m-1} + \dots + \frac{t^{m}}{m!}\xi_{1} = \lambda_{m+1},$$

$$\frac{t^{2}}{2}\xi_{m} + \frac{t^{3}}{3!}\xi_{m-1} + \dots + \frac{t^{m+1}}{(m+1)!}\xi_{1} = \lambda_{m+2},$$

$$\frac{t^m}{m!}\,\xi_m+\frac{t^{m+1}}{(m+1)!}\,\xi_{m-1}+\ldots+\frac{t^{2m-1}}{(2m-1)!}\,\xi_1=\lambda_{2m}.$$

Since, by Lemma 2, the matrix  $A = \{1/(i+j+1)!\}_{i,j=0}^{m-1}$  is regular, this may be written as

(8) 
$$\begin{bmatrix} \xi_m, t\xi_{m-1}, \dots, t^{m-1}\xi_1 \end{bmatrix}^T = A^{-1} \begin{bmatrix} t^{-1}\lambda_{m+1}, t^{-2}\lambda_{m+2}, \dots, t^{-m}\lambda_{2m} \end{bmatrix}^T$$

Infinitely small orbits

So it remains to prove that the sequence  $\{\xi^{(k)}\}_k$  defined by (8) satisfies  $\lim \xi^{(k)} = 0$  and  $\lim \Pi(t_k) \xi^{(k)} = \lambda$ . But the first equality is obvious from (8), and for the second it remains by (7) to show that

$$\lim_{k\to\infty}\xi_j^{(k)}(t_k)=0 \quad \text{for } j=1,\ldots,m.$$

But, if  $j \in \{1, ..., m\}$ , then

$$\xi_j^{(k)}(t_k) = \sum_{l=0}^{j-1} \frac{t_k^l \, \xi_{j-l}^{(k)}}{l!}, \quad \text{and} \quad |t_k^l \, \xi_{j-l}^{(k)}| = |t_k|^{j-m} |t_k^{m-(j-1)} \, \xi_{j-l}^{(k)}| \to 0$$

as  $k \to \infty$ , since (8) implies that for r = 1, ..., m

$$\lim_{k\to\infty}t_k^{m-r}\,\xi_r^{(k)}=0,$$

and since  $j-m \leq 0$ .

So we are left with the case of odd  $n, n \ge 3$ . Consider the  $\Pi$ -invariant subspace  $\widetilde{V}_{n-1} = \langle h_2, \ldots, h_n \rangle$  of  $V_n$ . The action of  $\Pi$  on  $\widetilde{V}_{n-1}$  is a "thread" action on an even-dimensional vector space, so by the preceding result we have

$$C_{\tilde{V}_{n-1}}(\Pi) = \langle b_{\lfloor n/2 \rfloor+2}, \ldots, b_n \rangle.$$

Since [(n+1)/2]+1 = [n/2]+2, this implies

$$M_n = C_{\tilde{V}_{n-1}}(\Pi) \subset C_V(\Pi)$$
.

3. General one-parameter actions. Proposition 1 admits the following easy extension:

COROLLARY 1. Let N be a nilpotent endomorphism of an n-dimensional space V and let  $\Pi$  be the associated linear action. Then  $C_V(\Pi) = IC_V(\Pi) = C_+(\Pi)$  =  $C_-(\Pi)$ , where

 $C_{+}(\Pi) = \{v \in V: \text{ there exist sequences } \{v^{(k)}\}, \{t_k\} \text{ such }$ 

that 
$$\lim_{k\to\infty} v^{(k)} = 0$$
,  $\lim_{k\to\infty} t_k = +\infty$  and  $\lim_{k\to\infty} \Pi(t_k) v^{(k)} = v$ ,

 $C_{-}(\Pi) = \{v \in V: \text{ there exist sequences } \{v^{(k)}\}, \{t_k\} \text{ such }$ 

that 
$$\lim_{k\to\infty} v^{(k)} = 0$$
,  $\lim_{k\to\infty} t_k = -\infty$  and  $\lim \Pi(t_k) v^{(k)} = v$ .

Proof. Let  $V = V_1 \oplus \ldots \oplus V_l$  be an N-invariant direct decomposition of V such that the  $V_i$ ,  $i = 1, \ldots, l$ , are indecomposable with respect to N. Then the action of N on the  $V_i$  is as in Proposition 1, and we obtain

(9) 
$$C_{V_i}(N) = IC_{V_i}(N) = \{v_i \in V_i: \text{ there exists a sequence } \{v_i^{(k)}\}_k$$
 such that  $\lim_{k \to \alpha} v_i^{(k)} = 0$  and  $\lim_{k \to \alpha} \Pi(k) v_i^{(k)} = v_i\}$ 

= 
$$\{v_i \in V_i$$
: there exists a sequence  $\{w_i^{(k)}\}_k$   
such that  $\lim_{k \to \infty} w_i^{(k)} = 0$  and  $\lim_{k \to \infty} \Pi(-k) w_i^{(k)} = v_i\}$ 

where the last two equalities follow from the proof of the theorem. Since it is clear that

$$C_{V}(N) = \{v_{1} + \ldots + v_{l}: \text{ there are sequences } \{v_{i}^{(k)}\}_{k}, i = 1, \ldots, l,$$
 and a sequence  $\{t_{k}\}_{k}, \text{ independent of } i, \text{ such that}$  
$$\lim_{k \to \infty} v_{i}^{(k)} = 0 \text{ and } \lim_{k \to \infty} \Pi(t_{k}) v_{i}^{(k)} = v_{i} \text{ for } i = 1, \ldots, l\},$$

we obtain

(10) 
$$C_{\nu}(N) = C_{\nu_1}(N) + \dots + C_{\nu_{\ell}}(N) = IC_{\nu_1}(N) + \dots + IC_{\nu_{\ell}}(N).$$

However, any invariant polynomial  $p_i$  on  $V_i$  extends to an invariant polynomial on V by  $p(v) = p(v_1 + \ldots + v_k) = p_i(v_i)$ . Therefore  $IC_V(N) \subseteq IC_{V_1}(N) + \ldots + IC_{V_l}(N) = C_V(N)$ . Because one has always  $C_V(N) \subseteq IC_V(N)$ , one obtains  $C_V(N) = IC_V(N)$ . This, together with the description of the  $C_{V_i}(N)$  in (9), proves the equalities stated in the corollary.

The next lemma deals with skew-symmetric "perturbations" of a nilpotent endomorphism.

Lemma 3. Let A be an endomorphism of an n-dimensional real vector space V such that all eigenvalues of A are purely imaginary. Let A = S + N be the additive Jordan decomposition of A, where S is the semisimple and N the nilpotent part. Then  $C_V(A) = C_V(N)$ .

Proof. Let  $v \in C_V(A)$ . Then there exist a sequence  $\{v_n\}$  in V and a sequence  $\{t_n\}$  in R such that  $\lim v_n = 0$  and  $\lim \Pi(t_n)v_n = v$ . Put  $w_n = e^{t_n S}v_n$ . Then we have  $\lim w_n = 0$  and  $\lim e^{t_n N}w_n = \lim \Pi(t_n)v_n = v$ . Therefore  $v \in C_V(N)$ .

Conversely, let  $v \in C_V(N)$ . Then there exist a sequence  $\{w_n\}$  in V and a sequence  $\{t_n\}$  in R such that  $\lim w_n = 0$  and  $\lim e^{t_n N} w_n = v$ . Let  $\{t_m\}$  be a subsequence of  $\{t_n\}$  such that  $\lim e^{t_m S} = A_0$ . Then for  $v_m = A_0^{-1} w_m$  we have  $\lim v_m = 0$  and

$$\lim_{m \to \infty} e^{t_m A} v_m = \lim_{m \to \infty} (e^{t_m S} A_0^{-1}) e^{t_m N} w_m = v.$$

Therefore  $v \in C_V(A)$ .

Let now A be an arbitrary endomorphism of V. Let  $V=V_+\oplus V_-\oplus V_0$  be the A-invariant direct decomposition of V such that

Re 
$$\lambda > 0$$
 for all  $\lambda \in \sigma(A|_{V_{\perp}})$ ,



 $\operatorname{Re} \lambda < 0$  for all  $\lambda \in \sigma(A|_{V_{-}})$ ,

 $\operatorname{Re} \lambda = 0$  for all  $\lambda \in \sigma(A|_{V_0})$ ,

where  $\sigma(E)$  denotes the spectrum of the endomorphism E. THEOREM 1.

$$C_V(\Pi) = C_V(A) = (V_+ \cup V_-) \oplus C_{V_0}(N),$$

where N is the nilpotent part in the additive Jordan decomposition  $A|_{V_0}=S+N$  of  $A|_{V_0}$ .

Proof. First we prove  $C_{V}(A) \subset (V_{+} \cup V_{-}) \oplus C_{V_{0}}(A)$ . In general, for every A-invariant decomposition  $V = V_{1} \oplus V_{2}$  of V we have  $C_{V}(A) \subset C_{V_{1}}(A) \oplus C_{V_{2}}(A)$ . Therefore  $C_{V}(A) \subset C_{V_{+} \oplus V_{-}}(A) \oplus C_{V_{0}}(A)$ .

Let  $v = v_+ + v_- \in C_{V_+ \oplus V_-}(A)$ . Then there exist sequences  $\{v_n\}$  in  $V_+ \oplus V_-$  and  $\{t_n\}$  in R such that  $\lim \Pi(t_n)v_n = v$  and  $\lim v_n = 0$ . Also  $v_n = v_n^+ + v_n^-$ , and  $\lim v_n^+ = \lim v_n^- = 0$ ,  $\lim \Pi(t_n)v_n^+ = v_+$ ,  $\lim \Pi(t_n)v_n^- = v_-$ . But for  $t_n \to +\infty$  we have  $\lim \Pi(t_n)v_n^- = 0$  implying  $v_- = 0$ , and for  $t_n \to -\infty$ ,  $\lim \Pi(t_n)v_n^+ = 0$  implying  $v_+ = 0$ . Therefore  $v \in V_+ \cup V_-$ .

Now assume  $v \in (V_+ \cup V_-) \oplus C_{V_0}(A)$ . Then  $v = v_+ + v_0$  or  $v = v_- + v_0$ . Choose a sequence  $\{v_0^n\}$  in  $V_0$  such that  $\lim v_0^n = 0$  and  $\{t_n\}$  in R such that  $\lim \Pi(t_n) v_0^n = v_0$ . Put

$$v_+^n = \Pi(-t_n)v_+, \quad v_-^n = \Pi(-t_n)v_-, \quad w_+^n = v_+^n + v_0^n, \quad w_-^n = v_-^n + v_0^n.$$

Then we have

$$\lim_{n \to \infty} \Pi(t_n) w_+^n = v_+ + \lim_{n \to \infty} \Pi(t_n) v_0^n = v_+ + v_0 = v_+$$

$$\lim_{n\to\infty} \Pi(t_n) w_-^n = v_- + \lim_{n\to\infty} \Pi(t_n) v_0^n = v_- + v_0 = v.$$

According to Corollary 1 we can choose  $t_n \to +\infty$  if  $v=v_++v_0$  and  $t_n\to -\infty$  if  $v=v_-+v_0$  and obtain

$$\lim_{n\to\infty}w_+^n=\lim_{n\to\infty}v_+^n=\lim_{n\to\infty}\Pi(-t_n)v_+=0,$$

$$\lim_{n\to\infty}w_-^n=\lim_{n\to\infty}v_-^n=\lim_{n\to\infty}\Pi(-t_n)v_-=0.$$

This proves that  $v \in C_V(A)$ .

Corollary 2. Let G be a nilpotent Lie group with Lie algebra g such that  $G = \mathbf{R} \ltimes \mathbf{R}^{\mathbf{k}}$ . The cortex of G is then equal to the image under the Kirillov homeomorphism of the cortex of the Ad\*-invariant polynomials.

Proof. Let us write  $g = Rx \oplus h$  where h is a k-dimensional abelian ideal of g. Let  $0 \neq v \in IC_{g^*}(Ad^*)$ . We must show that  $v \in C_{g^*}(Ad^*)$ .

 $v_1 = v|_{\mathfrak{h}}$  is then an element of  $IC_{\mathfrak{h}^*}(A)$ , where  $A = (\operatorname{ad}(x)|_{\mathfrak{h}})^*$ . Hence, if

 $v_1 \neq 0$ , there exists by Corollary 1 a sequence  $\{w_n\}_n$  in  $g^*$  such that

$$\langle w_n, x \rangle = 0, \quad \lim_{n \to \infty} w_n = 0,$$

and a sequence  $\{t_n\}_n \subset \mathbf{R}$  with

$$\lim_{n\to\infty} t_n = \infty, \quad \lim_{n\to\infty} w'_n|_{i_1} = v_1, \quad w'_n = \exp(\operatorname{ad}^*(t_n x))w_n.$$

Now, as  $v_1 \neq 0$ ,  $w_n$  is not G-fixed for (almost) all n. Thus

$$ad^*(h) w_n = w_n + h^{\perp}$$
 for all  $n$ 

and so we find for every n a  $u_n \in H = \exp \mathfrak{h}$  with

$$\lim \operatorname{Ad}^*(u_n) w_n' = v.$$

If  $v|_{\mathfrak{h}}=0$ , then g is not abelian (as  $0 \neq v \in IC_{\mathfrak{g}^*}(\mathrm{Ad}^*)$ ). Hence there exists  $w \in \mathfrak{g}^*$  with  $\mathrm{Ad}^*(H)w = w + \mathfrak{h}^{\perp}$ , whence  $\mathrm{Ad}^*(H)(tw) = tw + \mathfrak{h}^{\perp}$ ,  $t \in R$ , and so

$$v \in \mathfrak{h}^{\perp} \subset C_{\mathfrak{g}^*}(\mathrm{Ad}^*). \blacksquare$$

From Corollary 2 we can deduce the following characterization of the cortex of  $G = \mathbf{R} \ltimes \mathbf{R}^n$  in terms of its  $C^*$ -algebra  $C^*(G)$ . We denote by  $Z(\mathfrak{q})$  the center of the enveloping algebra  $U(\mathfrak{q})$  of the Lie algebra  $\mathfrak{q}$  of G.

Considering the elements  $X \in g$  as left- (or right-) invariant vector fields on G we form the subspace

$$Z * D(G) = \{x * f \mid x \in Z(g), f \in D(G)\}$$

of the space D(G) of test functions on G.

It is clear that Z\*D(G) is right- and left-translation-invariant. Hence the closure of Z\*D(G) in  $C^*(G)$ , denoted by  $Z\cdot C^*(G)$ , is a two-sided ideal in  $C^*(G)$ .

Theorem 2. Let G be a nilpotent Lie group with Lie algebra g such that  $G = \mathbf{R} \ltimes \mathbf{R}^k$ . The cortex of G is then equal to the hull in  $\hat{G}$  of the ideal  $Z \cdot C^*(G)$  of  $C^*(G)$ .

Proof. There exists an algebra isomorphism  $\varphi$  of  $Z(\mathfrak{g})$  onto the space IP of G-invariant polynomials on  $\mathfrak{g}^*$  such that

$$d\Pi(x) = \varphi(x)(l) \operatorname{Id}_{\Pi}$$

for  $x \in Z(\mathfrak{g})$ , every  $\Pi \in \hat{G}$  and every l in the Kirillov orbit corresponding to  $\Pi$  (see [2], 10.4.5). Hence the hull in  $\hat{G}$  of  $Z \cdot C^*(G)$  corresponds to the subset  $IC_{\mathfrak{g}^*}(Ad^*)$  of  $\mathfrak{g}^*$ , and the theorem follows from Corollary 2.

Two further examples. Let  $\mathfrak g$  be the nilpotent Lie algebra spanned by the basis

$$B = \{X_1, X_2, X_3, H_1, H_2, H_3, H_4, Z\}$$

with the following commutators:

$$[X_1, X_3] = H_2,$$
  $[X_1, H_4] = Z,$   $[X_3, X_2] = H_1,$   $[X_2, X_3] = H_3,$   $[X_3, H_1] = H_4,$   $[H_2, H_1] = Z,$   $[H_3, X_2] = Z.$ 

In this example no element  $v \in \mathfrak{g}^*$  with  $\langle v, Z \rangle \neq 0$  has a polarization which is an ideal in  $\mathfrak{g}$ .

Denote by  $\{X_1^*, X_2^*, X_3^*, H_1^*, H_2^*, H_3^*, H_4^*, Z^*\} = B^*$  the basis dual to B in  $q^*$ .

The Pukánszky parametrization of the orbit space  $\alpha^*/Ad^*(G)$  gives us the following two G-invariant polynomials  $q_1$  and  $q_2$ :

$$\begin{split} q_1\left(x_1\,X_1^* + x_2\,X_2^* + x_3\,X_3^* + h_1\,H_1^* + h_2\,H_2^* + h_3\,H_3^* + h_4\,H_4^* + zZ^*\right) &:= z, \\ q_2\left(x_1\,X_1^* + x_2\,X_2^* + x_3\,X_3^* + h_1\,H_1^* + h_2\,H_2^* + h_3\,H_3^* + h_4\,H_4^* + zZ^*\right) \\ &:= zx_3 - h_3\,h_1 - h_4\,h_2. \end{split}$$

An easy computation shows that in this case we also have

$$\begin{split} C_{\mathfrak{g}^*}(\mathrm{Ad}^*) &= IC_{\mathfrak{g}^*}(\mathrm{Ad}^*) = \{ v \in \mathfrak{g}^* \mid q_1(v) = q_2(v) = 0 \} \\ &= \{ x_1 X_1^* + x_2 X_2^* + x_3 X_3^* + h_1 H_1^* + h_2 H_2^* + h_3 H_3^* \\ &\quad + h_4 H_4^* + z Z^* \mid z = 0, \ h_3 h_1 + h_4 h_2 = 0 \}. \end{split}$$

Let us finish this article with a problem.

Consider the real 6-dimensional vector space

$$V = \langle b_1, \ldots, b_6 \rangle \cong \mathbb{R}^6$$

the nilpotent endomorphisms S and T of V where

$$S(b_i) = b_{i-1}, \quad i = 2, ..., 6, \quad S(b_1) = 0, \quad T = S^2$$

and the unipotent group  $G = \exp(RS + RT)$ .

It is possible here to determine the cortex  $C_V(G)$  with respect to the natural action of G on V. In fact,  $C_V(G) = \langle b_4, b_5, b_6 \rangle$ . But we were not able to determine the cortex  $IC_V(G)$  of invariants. The Pukánszky parametrization of V gives us 4 invariant polynomials:

$$\begin{aligned} q_1 &= \lambda_4 \, \lambda_1^2 - \lambda_3 \, \lambda_2 \, \lambda_1 + \frac{1}{3} \, \lambda_2^3, \\ q_2 &= 4 \lambda_5 \, \lambda_1^3 - 4 \lambda_1^2 \, \lambda_2 \, \lambda_4 + 4 \lambda_1 \, \lambda_2^2 \, \lambda_3 - 2 \lambda_1^2 \, \lambda_3^2 - \lambda_2^4, \\ q_3 &= -\lambda_1^4 \, \lambda_6 + \lambda_5 \, \lambda_2 \, \lambda_1^3 - \lambda_4 \, \lambda_2^2 \, \lambda_1^2 + \lambda_1 \, \lambda_2^3 \, \lambda_3 - \lambda_1^2 \, \lambda_2 \, \lambda_3^2 + \lambda_4 \, \lambda_3 \, \lambda_1^3 - \frac{1}{3} \, \lambda_2^5, \\ q_4 &= \lambda_1. \end{aligned}$$

It follows immediately that  $IC_V(G) \subset \langle b_3, b_4, b_5, b_6 \rangle$ .

In order to show that  $IC_V(G) = C_V(G)$  we need an invariant polynomial of the form

$$\lambda_3^k + \sum_j \lambda_1^j p_j(\lambda_2, \ldots, \lambda_6) + \sum_m \lambda_2^m p_m(\lambda_1, \lambda_3, \ldots, \lambda_6)$$

for some  $k \neq 0$ . There does not exist such a polynomial of degree  $\leq 8$ . So we may have here an example of a group where the conjecture  $C_{\mathfrak{g}^*}(\mathrm{Ad}^*)$  =  $IC_{\mathfrak{g}^*}(\mathrm{Ad}^*)$  fails.

## References

- [1] I. Brown, Dual topology of a nilpotent Lie group, Ann. Sci. École Norm. Sup. 6 (1973), 407-411.
- [2] J. Dixmier, Algèbres enveloppantes, Gauthier-Villars, 1974.
- [3] A. A. Kirillov, Unitary representations of nilpotent Lie groups, Uspekhi Mat. Nauk 17 (4) (1962), 57-110 (in Russian).
- [4] A. M. Vershik and S. I. Karpushev, Cohomology of groups in unitary representations, the neighbourhood of the identity, and conditionally positive definite functions, Mat. Sb. 47 (2) (1984).

MATHEMATISCHES INSTITUT UNIVERSITÄT BIELEFELD D-4800 Bielefeld 1, F.R.G.

Received September 8, 1985

(2090)