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An operator on a separable Hilbert space with
many hypercyclic vectors

by
BERNARD BEAUZAMY (Paris)

Abstract. We construct a separable Hilbert space H and a linear continuous operator T on
it with hypercyclic vector x, such that for any polynomial p with rational coefficients, p(T) x, is
also hypercyclic.

Let H be a Hilbert space and T a (linear continuous) operator on it. A
point x, is said to be cyclic (for T) if H = span (xo, Txo, T Xo, ...). It is said
to be hypercyclic if the orbit (T*x,, k > 0) is dense in H. An intermediate
notion, called quasi-hypercyclicity, was introduced by the author in [1].

The present construction provides the following:

TueoreM. There is a separable complex Hilbert space H and an operator
T on it with a cyclic vector x, such that every point of the form p(T) X,, where
p is a polynomial with complex coefficients having both real and imaginary
parts rational, is hypercyclic. .

For this operator, the set of hypercyclic vectors, being a G,, is
uncountable. But the operator might still have invariant subspaces: to have
no nontrivial invariant subspaces requires all points to be cyclic.

It is well known (Rolewicz [6], 1969) that on I, (1 < p < o) or ¢, there

- is an operator with a hypercyclic vector xo. Of course, the iterates of this
point are also hypercyclic, so the set of hypercyclic points is infinite, and
therefore, being a G, is uncountable. Also, Rolewicz’s construction can be
modified in order to provide a finite number of polynomials to be
hypercyclic. But our construction provides obviously many more
independent hypercyclic vectors (i.e. not just iterates of one another).

The present construction uses some of the ideas introduced by P. Enflo
to solve the invariant subspace problem in Banach spaces ([3], see also [1]).
But there are of course significant differences. Also, C. Read has given an
example of an operator on a Banach space with no nontrivial invariant
subspaces ([4]), and then such an example in [ ([5))-

In an earlier version of this paper (with the same title), the notion of
hypercyclicity was replaced by a weaker one: quasi-hypercyclicity, which is
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an important feature in our example [1]. The strengthening was made
possible by the fact that we now use weighted I, norms, instead of the
classical one. We now turn to the construction of the example.

L. Enumeration of the triples. We first enumerate all the triples
(4, 4j» &))j21, where:

— ¢;, g; are polynomials with rational coefficients (i.e. both real and
imaginary parts rational).

— ¢ are of the form 1/2} > 1.

We require that this enumeration should be done with the following
restrictions: .

() For all j>1, d°q; <, d°qj <.

(b) For all j>1, ¢ = 1/2.

This enumeration being done, our construction is totally determined by
only one sequence of integers, (N));»;, fast growing, which will be chosen by
induction. We put I, = x',

In our final norm, each ¢; will be moved close _to q; by the
multiplication by [, with an accuracy of ¢, ie.

hg;— gl <&

2. Definition of the norm ||, We start with a weighted [, norm: if
p= ) a;x), we put
iz0

Iply, = ( 0(j-{- 1)|a1|2)1/2.

, iz
The space of sequences {(a);50: ¥ (j+1)]a)? < +c0} is a Hilbert space, an
algebra, and multiplication by x has norm \/25

We fix an integer n > 1, and we now look at all representations of a
polynomial p of the form

® p=r+ % Lot he-g)

where r is a polynomial, a;, are complex numbers (j, xeN). We set:

n
@ Iy = inf (rZ+ 3. TJa 2427
j=1a .
where the infimum is taken over all representations of the form (1),
Then, on the space of polynomials, [*lgn is & norm and the following
properties are obvious;
@) o Slg-1 < -0 <0

(®) “J‘Ij’%l(n) Sg, j=1,...,n.
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N X
© 1Pl <2 j‘p‘(n)s ji=1,..,n
(@) [xple < 2Pl

(¢) The norm |-|, is equivalent (with constants depending on n) to the
original norm |-|,,.

(f) The norm ||, is hilbertian.

Indeed, for Tthis last property, one checks immediately that for all
polynomials py, p,,

2(pal%y+1p2l2) = Ipy +Da2ldy +1p1 — Pl

and the converse inequality follows after the change of variables u = p, +p,,
U= py=Pa.

3. Almost stationarity of the sequence of norms. All the data required to
construct ||, have been completely described, except the sequence (Njjz1-
It will be chosen by induction, according to the following

ProrosiTioN 1. Assume N, < ... <N,_; have been chosen. We can
choose N, so large that for every polynomial p with d°p <n,

(Ploy 2 (1—1/4") |pla— 1)-
(The choice of N, could be made precise; it depends only on the data n,
va reny Nn—la I‘Ij]w (./‘<~ 71), |Q}|w (]Sn))
Proof. We need a very simple lemma, the proof of which is left to the
reader: .
LemMa 2. For any polynomials p,, p, and every 5, 0<n<1, if
C 2 (t=n)n then

[Py + palZ+ClpalZ = (1—1)|psf2.

Take now p, d°p < n. We write an expansion of the form (1) as

p=p—A+4, with A=Y Ya,x*Uq-q)
Jj=1a

@3
We use the following notation:
) [41%) = );% |ayof* 4%¢F,
so the estimate given by (3) is just‘
1 =p— AR+ [A]}-
We also put s; =y, a,x* and write the expansion

N, kN,
8= 8o ytx "8yt . X USSP
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where for all k>0, d°s,; < N,. We put
Uy = X 3 s hg—a),
j=1

so (3) becomes

() p=p~— Y UgtA.
k=0
We wish first to construct a new representation from which all terms
U, k= 1, have been removed.

Lemma 3. If N, has been chosen large enough, we have
X Uy < 1,/8%".
k21

Proof. We have

n

U= Y

J=1kNySa<(k+1)N,

. X° (lj q4;— ‘1})'

Thus, with W, = |[;¢;— g}l

Udy < T WL Va+1lal
=1

a

: at 1\
<$m( 3 %) T
i=1 aZkN, P

< ; u}j( Z 1/24:)1/2 (§ |“;,a|2 4 812)1/2

aZkNy,

< 2~an/2; Wj(; ‘aj,ulz4aajz)1/2/aj

< 2~kN;J2 @81——2 W]z)1/2(§§ |aj’a|2 4a 812)1/2-
But ¢ > 1212, and

W = Lg;~qjly < NY2ox,
with 0; = max (g, lgjl,), and 0} = max;<,0,. Finally, we get
Uiy < 27 (nN, 0224121, and
L U< (X 27 (N, 032 4121, < 87211,

by a proper choice of N,, and the lemma is proved.

We use Lemma 2 with py = p—Uy, py =Yyss Uy, n =872 C =8n,
We obtain

© lo— ¥ UJ2+82| T Uyf2 = (1-8"27)p—U,f2.
k20 ' k21
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Let I, be the estimate given by the representation
)] p=p—Us+U,,
ie. I3 = p—Ugla+[UolR,).
Then, since [A], = [Uo]y, we get from (6)
G+81 > (1-877)13,
or
14872
®) <=t
We now observe that (7) is not convenient for |-|y,-,, because

U = Z So,j(lijJ—lI})
j=1

containg the term so,(l,g,—q), which should not appear in |-|,-y).
Therefore we have to remove it. This will be obtained by careful
considerations about the degrees of the polynomials involved. First, we look
at the s, j < n—1.

Lemma 4, For 0 <n <1, set

W
25/ 1=1

Then there is an-expansion of p of the form (1) or (7) with a;, =0 if « > K,
which gives the estimate

K;, =Log,

.

1
MBS T e are) <
jaéK,m n

Proof. It follows the same lines as that of Lemma 3: we put
By=| Y @ x(ha;=)lw
a>Kj,,,
we find that
By < W27 Ljey,
and the proof is concluded as before, by an application of Lemma 1.

Using Lemma 4, with n =87" K, , =max;<,-, K;,, we then get
a new representation of p:

-1
© p=p—Y 2. Guxg—4)—Sonllndn—a)+Uo

J=1 a8k,
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which gives the estimate

n

10 B=p-3Y ¥

J‘=1‘1$Kn—1
<(1—-8") 112

The important point is that K,.; does not depend on N, (but K, does,
because W, does), so the degree of

Qjg x*(l q;— (1}) —"So,n(ln qn— qg)'%v'*" HUE)H(ZH)

n—1
po=p=3 % @aX(4—=q)
J=1a€K, .4
is bounded by a number which we call D,, independent of N,.
We wish to compare I% with the estimate I} given by the representation

n-1

n—1
) p=p-3 Y @ux(g-q)+ )

J=lasK, 4 J=lasSK,. .y

@ X (1,4~ q3)
which is now convenient for the norm |-, .

We wish to prove that if N, is conveniently chosen, then
(12) I3 (1—=874n" 112,

In [Up]7, we have the term sq,,, which gives the contribution ¥, |a,,|? 4*62.
We may of course assume that

(13) D lanal? 4%} < 13
otherwise (12) is proved. So we get
(14) Z [y, ql*4* <4712,
For a polynomial s =Y ;5 ,¢;x/, we put
s= 3% ¢xf,  slg=Y ¢xl.
JSK J>K

By (14) we can find an integer D) > D, such that

(15) lso‘ulb,;lw < 8~ zn'[4/|q;lIW'

We put s, =so,,,{n;'. Again by Lemma 1, it follows from (10) that
(16) 12 (1=872" " po+ shn g —So.n b Gul2—8 2" I3+ [Ub 3.

Now we have two cases:
Case 1: |so,ulv < 87" L /g,
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Then [,,4:lw < 8721y, and if N, > D} +n then
132 (1=872) |po-+50,,g1/2 ~ 82" 12+ [U, ]2,
2 (1=872)7 |po|3,~8"so , g2 ~ 8~ 2 2+ [U3 ]2,
> (=872 |p|3~2-8"2" 124 [U,]2,,

and so

(17) I32((1-8"22-2.87 212,
Case 2:

(18) IS0.nlw 2 872" Lo/\q1lw > 8727 1,/0,.

Again we have
132 (1=8"2") (1po+50,n 2 + [0, |, 4,2) ~ 82" 12 + [Uo]%)
since N, > D +n.

By (15) and (18), there exists an integer D! > D,, depending only on n,
0,, such that

lso.nlb"l'lz = ISO,nIZ/Z)
where ||, is the usual 1, norm.
Therefore s, has concentration 1/2 at low degrees. Since d°q, < n, we

deduce from [2], Corollaire 7, that there exists a constant An, depending only
on n, 8,, such that

[S0,n Gnl "5 2 AnlSo,nl21qnl2-
Put dy, = Dy-+n, A = 4,1q,l2-872"/0,. We then get
(19)
We write So,uq, = Y509, % Then
Uy Sondnlw = !ZJ’,gij‘*”lw = (; lg)2 G+ N+ D)2

dy

> (,Z lg/1? (j++ Ny+ D)2

=0

d
[Sondul "2 = Anly.

d"
= N#"(jzo(j*-’)ldjlz)”z if N(N;?~1) >d,

d
2 Ny lsontl "lw 2 N ATy > 1,

if N, has been chosen large enough.
Putting everything together, we get in both cases

(18722 —2.872M (1 —8~")~L.(14+87 2" (1 —8~ 211 2,

from which Proposition 1 follows.
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4. The final norm. Let now
' lpl = Lim |pls
p—+ o

for any polynomial p. We have the following properties of the limit norm
(-1

PrOPOSITION 3.

@ Ilquj—q}||N< g, Jj=z1l.

() N pll <27 ]pll.

© llxpll < 2|lpll

(d) The norm ||-|| is hilbertian.

(¢) For any n> 1 and any p with &p <n,

lpll = T (1 =479 [Pli-1)-
kzn

This last property ensures of course that the limit norm is nonzero.
Therefore the completion of the polynomials for ||-]| is a Hilber‘t space on
which the multiplication by x is continuous. Every polynomial ¢ with
rational coefficients is hypercyclic. Indeed, let ¢' % 0 in H, and let £ > 0. We
can find in the enumeration an integer j such that

g=q, &<¢2, |g—4ql<e/2
Then ||gj—ql| < &/2, and
Ix™ g;—gll < IIx" g;— gl +llgj—gq,ll <o

which proves our claim.
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Some remarks on Triebel spaces
by
JURGEN MARSCHALL (Berlin)

Abstract. Some extensions of results in the recent monograph by Triebel [13] about

Triebel spaces Fy, are given. This concerns multiplication properties, dual spaces and some
remarks on the spaces Ff,.

0. Introduction. Triebel spaces are a natural generalization of Sobolev—
Hardy spaces. The characterization of these spaces by decompositions of
Littlewood-Paley type provides a useful tool for the study of multiplication
properties, dual spaces, etc.

The plan of this paper is as follows. Chapter 1 is used to fix the notation
and to recall some results on Besov and Triebel spaces. In Chapter 2
multiplication properties of Triebel spaces are studied: multiplication by
functions belonging to Holder~Zygmund spaces, multiplication algebras and
multiplication by the characteristic function of an interval.

Chapter 3 is devoted to some complementary results in the
determination of dual spaces. The main result can be phrased as follows. Let
us denote by ﬁ'},q the closure of the Schwartz space %(R") in F5,. Then for
1< p, ¢ < o the dual of F5, is isomorphic to F;, 1/p+1/p' = 1/q+1/q' =1.
Also some extensions to weighted spaces are given. The weight may belong
to the Muckenhoupt class 4. '

Finally, Chapter 4 contains some remarks on Fi,, 1<g<o. In
particular, the trace problem is solved.

1. Besov and Triebel spaces. All functions and distributions are assumed
to be defined on the n-dimensional Euclidean space R". %(R") is the
Schwartz space of rapidly decreasing functions and &' (R") its dual, the space
of tempered distributions.

The Fourier transform is defined by

F@:=[e ™ (dx, feF (R
and extended to % (R" by duality. The inverse Fourier transform is
Jx):=@m)~" e f()dE.
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