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Two weighted estimates for oscillating kernels I
by
W. B. JURKAT (Syracuse, N.Y.) and G. SAMPSON (Auburn, Ala)

Abstract, In this paper we wish to determine those nonnegative weights w, v for which
TS N € € 1S M Where [ [lye = ({1 fu(nyde)!", The operator Tf (x) is a convolution transform
with kernel

Koplt) = (L4170, a> 1.

Here, we study the cases where b € 1—~a/2. Thus, we solve certain two weight problems for a
wide class of transforms which includes the Fourier transform. The results agree with our earlier
results on the Fourier transform,

§ 0. Introduction. In this paper we solve certain two weight problems for
the kernels

(0.1) Kop(t) = (L+]g)70 e, a>1,

where n (a positive integer) coincides with the dimension of the variable t, i.e.
te=(ty, tgy ornn th |t = +1h+ . +tD)V2 Also, let | = max, j<alt]. We
set

Tf (x) = {K(x—1) f(t}dt
and we wish to determine those weights w. ¢ for which
T Nlgow < 1l fllpwr Where [lgllsu= ([llglPu(0)di)'.

In this paper, we shall study the cases where b < 1—a/2, The arguments
here work for a class of kernels more gegeral than those defined through
(0.1). This class is stated explicitly in Remark 1.6. The case where a =2 and
b =0 in (0.1), which is identical to the Fourier kernel, is included among our
results here (see eg. Corollary 4.12). Hence this argument will furnish
another way to solve a two weight problem for the Fourier transform, and
agrees with our results in [4], but is general enough so that it works for a
wider class of transforms.

Here, for the most part we shall just discuss the cases where n=1 or 2.

We say a function u(t) is radial if u(t) = u(|t]). Furtbermore, we say the
radial function u(f) is essentially decreasing over some region Q if

u(ty) = cu(ty)  where |t)] < |tal, 8y, t2€,
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and ¢ is a positive constant independent of te 2. We denote this by u(z) \ \
for te Q. Similarly we define u(f) » 7 for teQ.

Now we shall define a class of functions, which in the applications will
denote two classes of weights for which we solve the two weighted mapping
problem. ‘
DerintTion 01, Let u >0 be radial. In case >0 we say that
ueF=F[f] if

(1) u@® <cu(x) if |x/2<|t| < 2]x| for ¢, xeR",

(i) u(@® » ~ for [t =1,

(iil) u()»~ for |t <1, and

(iv) u@®tf~ N for |t = 1.

In case B < 0, conditions (i) and (ii) are dropped.

Notice that if ue F with >0 and u > 0 for [t| > 1, then it follows from
i) and (i) that u(t) = o >0 for |t| > 1.

Since the Fourier transform is included among our results, the weights
satisfy certain additional integral conditions, as was shown in [4]. This leads
us to the following requirements depending on p, g, &, 6:

. 1/4 1/p
0 s Wa)( g e,
(0 2) 0<s<1 1< <sML—a) |ll 31/(1—‘“)@]![ (w(t))ﬂ a(p—1)]
. ' dt '
i)  su w(t) dt 1/‘1(
0 ‘?Il)(ms;(l-n ® ) sl'“i‘msl |t|ﬂ/(b“1)(w(t))n/[a(n—1)] <.

We define (using y for characteristic functions)
@ vo(e) = [t~ P max((w@)'s, (w (e =), 1) (1l > 1)
+el" (e Py (1] < 1),

N —
() Tf()= j(—‘};——lj%—’i——’—),

(0.3)

dt.

In case 1/p+1/g < 1, we shall state our major result. We state the dual
result in Theorem 4.10 in case § > 0 and in Thearem 4.11 in case f<0;in
fact, we just state the sufficiency there since the necessity is done as before.

CoroLLarY 02 Let 1 <p<g<oo, I/p+1/g<, bg 1—a/2, a> 1, and
n=1 or 2. Suppose

() weF with f =n(b(pg—q+p)/p+a—2),

(i) w satisfies (0.2) with

=”(Pq~“f1+l))(1__b).

b
S=n-(pg—q+p), e
P q(1-p)
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Then, for /g =1/p—4, 0<A<1,
If U(t) = €209 ([)7 then ”nf“q,w < Cy ”f”p,v
where T, f and v, are defined in (0.3), « is defined in Lemma 4.5, and y is
defined in Lemma 4.6. Furthermore, if v satisfies Definition 0.1(i) and is radial,
then
1T S gw < €l f g v(t) 2 eav0(6).

We shall next discuss the power weights w(t) that satisfy Corollary 0.2
(note the festrictions on a, b, p, ¢ and n there). In other words, if
(0.4) w(t) = 10" 5 (1 = D+ 2 < 1)
then we wish to determine ry, r5, p, g such that

N fllgw < ctllfllpe  with () 2 ¢ vo(h).
We see for example from Proposition 5.3 that r; <bg(1—1/p+1/g)+a—2.
Notice that if ry, a b are known this inequality places a restriction
on p and ¢. ’
Remark 0.3. The power weights w(z) in (0.4) that satisfy Corollary 0.2,
as explained above, are as follows. The conditions throughout are:

implies that

11 11
- <0, gbgll——+~}+a—2, 1> b (1—-—-1-—)—1.
1 <r; € ry q( ; q) 1 >bg P
Case 1: 1 <a< 2 and b >0. Then either

11
b (1—~--+—>-——1 <r, and
q » g 1

L(1—1><1< -5
1-b\" p/ ¢ p

Case 2: 1 <a<2and b <0. Then 2b~1 <r, <2b+a—2and 1/p+1/q
=],

Case 3: a=2 and b<0. Then r; <0 and 1/p+1/g< 1.

Case 4: a > 2. Then either r, =0 and 1/p+1/g=1, or ry <0 and 1/p
+1/g< 1

By duality we get a corresponding theorem in case 1/p+1/g > 1. And
although we would obtain sufficient conditions for the kernels in (0.1) for 0
<@g <1 by this approach, we would not obtain definitive results (see also
[2] for these cases). This explains why we have not stated our results for this.
case.

0<r, and

Note that in the Fourier transform case, i.. a =2 and b= 0 here, we
get 8= 0 and so (i) and (ii) of Corollary 0.2 reduce to w(t) , while § =0,


GUEST


256 W. B. Jurkat and G, Sampson

y = (n/q)(pg—q~p), and so (0.2) coincides with (5.1) of [4], where w()
= W(y,|t]"). Hence for n =1 or 2, Corollary 0.2 coincides with Theorem 2 of
[4] in case a =2 and b =0 (see also Corollary 4.12).

The significant development here is that we are able to solve a two
weight problem for a general class of kernels (even more general than those
defined in (0.1)) which when a=2 and b =0 agrees with our Fourier
transform result in [4].

Our conventions are that circles or squares in two dimensions will stand
for intervals in one dimension; and so in two dimensions I(u) = [ ~u, u] x
[—u, ul, R(uy, us) = I(us)—1I(u;) with uy = uy, and R(u) = I(2u)~ I (u). And
we let R stand for a rectangle with sides parallel to the coordinate axes or
annuli as described above.

We let the letters ¢y, c,, ... denote positive constants, independent of the
specified variable quantities, and we use the letter ¢ generically. They are not
necessarily the same at each occurrence.

§ 1. Fundamental I? estimates. In this section, we determine power
weighted I? estimates for our operators, which are the foundations of all our
results. Along with the kernels K,, defined in (0.1), we also define the
following kernels:

Q1) =1+ K,
Q) =02.() with b=1-a/2,
Following [7] and the notation in § 0, we define

S(R)y=S(R, x, 1) = ”Qt(t)e-il-xdﬂ'

for t real,
(1o

The next result can be found in [5] for n=1, and in [11] for n = 2.
LemMma A, Let a>1, b=1-a/2 and n=1 or 2. Then
S(R) < c(L+]z"
with ¢ independent of R, x, t.

LemMa B. Let a>1, u> 1, n=1 or 2. Set Q = R(c; u""*, ¢c,u""") and
J=R"'—~Q, Then for suitable c,, c,

S(R (@) < e(L+aum =442 {0 (x) +u™ "y, ()}
where y =1 for n=1 and y =% for n=2.

The proof of Lemma B can be found in Lemma 3.1 of [2] in case n = 1,
and in Lemma 2.1 of [11] in case n=2. It is these lemmas that have
restricted the dimension in our results. It should be pointed out that Lemma
B works as long as u is bounded away from 0, ie. if u >« > 0; however, this
just gives us other constants c, ¢;, ¢, in the lemma.

In obtaining our estimates it is considerably simpler to work over
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rectangles R than to do estimates over circles or ellipses. Even for these
kernels, the curvature of the domain creates all kinds of complications. In
fact, Lemma A and Lemma B is not even true if we replace the rectangles by
spheres in dimension n = 3, for the kernels in (0.1).

Therefore we define

(x)_{o if ) < 1,
PI=m i om x| < 271,

That is, think of ¢(x) as a replacement for |x|.
We begin with our first result.

Tueorem 1.1, Let a>1, uz 1, and n=1 or 2. Then

[+11 = Q(x—1) f () dt]* dx

U p(x) <2u (1) Sp(x)/4

+ [ ][ QG=nf@adi*dx
uE|x| €2u |t <u/2

< C(] +|ﬂu)2 un(2~2b-—a) ”If'"lz dt
Q

+
A TIOR TP

|12 dt+u™2me | |2 dt ],

where Q = Q(u) and y are both defined in Lemma B.

Proof. The proof of II is similar to the proof of I so we will just give
the argument for I, where we may assume that u is a power of 2.

For such u = 1, but otherwise fixed, we can view the support of the
kernel Q,(x—1), in the integral I, as contained in the set R(c, u, ¢, u) where
¢y, ¢, are positive constants that depend only on the dimension. We set

Q) = Q) x(teR(cyu, caw).
Using the fact that
L) = L0 x(e) = )4+ O x(e @) = @(x)/4)
we get

Ige! |24 5 [ dox + Qi (x—1) f (t)de* dx].

w€olk) <2u uSp(x) <2 plt) 2 P4

Since Q!(x~t) is zero if x~t¢R(c,u, c;u), there is a c¢; so that for
o(t) = ¢3 0(x) the integrand in the second term is zero. Set f¥(t)
=f(0x(p(x)/4 < () € c30(x)). Then we get
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1< e {JI@) 12 1f12 e+ [y 1210/ 17 dt}
Sc(l+ R ue=2-a ([|fRdr
Q

+jl(f“)Alzdt+u""*"§lﬂzdt},

where we employed Lemma B to obtain the last inequality, and our regult
follows.
As an immediate consequence of Theorem 1.1 we get

ProposiTioN 1.2. Let a>1 and n=1 or 2. Then

an J] i

e(0Z1 ) Se(x)/4

Q. (x—1) f()de|*dx

Q. (x=0) £ () de]? |x"* =D dx < e (1+[o]")? [1f1* dt,

1.2) [

PRZ1 o) Z4p(x)

Sc(l+pM? [ IfPrem2mar,

lfell =1

1.3) ] f Qr(x—t)f(t)dt.zlx]"(””"z)dx<c(1+]1‘|")2 j' |f1%dt,
[FESHIES! ES?
(1.4) f | j Q.,(x—t)f(t)dt|2dx<c(1+|r|")2 f |f1? |e|re2 = 26=a) gy,
|

€1 121 21

Proof. We first note that (1.1) follows from Theorem 1.1 by summing
over the outer integral, and (1.2) follows from the dual of (1.1), by restricting
the support of f.

We now prove (1.3). Using the estimate for II in Theorem 1.1 and then
restricting the support of f to |t| <4 and summing over the outer integral we
get

U3) || | Qa—0f@diP e dx e +Rn® [ |f)3dr.

1<% 1] <1)2 l<1/2

Next notice that

I . |2 'xln(2b+a~2] dx

Ixz1 12<]<1

Q(x~0) f@dif [x["®*e " Ddx e |
. 1<)x €2

%= 2

+e [ [Pt = T+ < c(L+l)? [ |f)2dr,
[HESY

where the estimate for II follows just like in (1.3), while for X, €, (x—t)e L}
when |x| <2 and [t| < 1. Finally, (14) is the dual of (1.3).
We refer to Q (x—1) x(¢(t) < p(x)/4) and Q,(x~1)x(p(f) > 40(x) as

the off diagonal pieces of Q.(x—1), and Q,(x—1)x(p(x)/4 < o (1) < 4p()) as
the middle piece.
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The next result is the one that forces the restriction b < 1—af2.
LemMa 13. Let a>1, uz1, b<1-—a/2 and n=1 or 2. Then
I=| | Q@)e ™ di|<c(l+]rut-b-a2,

o) Su

Proof. When b =1-aq/2, the result follows from Lemma A. In case
b <1-a/2, we sum the inequality of Lemma B, where the terms between
the braces are replaced by 1. This completes the proof.

In the next result we obtain estimates for the middle kernel.

LemMA 14. Let a>1, uzl, b<1—a/2 and n=1 or 2. Then

@ I= | Q. (x—1) f (D) dt]* dx
ugp(x) <2 p(x)/4 <p(t) <do(x)
< c(1+"? f |t 2829 | 112 dt,
u/d4 Spl) S8u
() L Q.(x—1) f () de|*dx

U (%) <2u P(x)/4 <plt) <4q(x)

< e(l+7)")? i) |f1?dt.
ufd <) $8u
Proof. Set ,Q(t) = 2,() x(¢() < cu), ¢ some fixed absolute constant,
We just need to prove (a) since (b) is an immediate consequence of (a).
Using the notation in the proof of Theorem 1.1 (assuming u to be a
power of 2), we get

- |

up(x) <2u

2% f dx < [1, Q% 42 dx

= 162 P/ [P dt < e(1+]a"?u@= 2079 ()72 dt
where the last inequality follows from Lemma 1.3. Hence we obtain our
result.
An immediate consequence of Lemma 1.4 is
ProrositionN 1.5, Let a>1, b<1—a/2 and n=1 or 2. Then
(a) [ [ Q.(x—1) f (H)dt|*dx
PO 1 p(x)/4 <plt) <4p()

Se(l+RM? [ |fP e dr,

(1 5) IHIES
(b) [ |x|mabta=2) | Q. (x~—1) f (1) dt|* dx
Pl 1 elx/4 <p(t) <dp(x)
e+l [ |f1Pde.
IHIES

Remark 1.6. We can generalize these results to the following class of
kernels. Let k(t; 0)= 1 and k(t; 7)e L™ for all ¢t and 7. Next suppose 7, (t)
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satisfies Lemma A, Lemma B and Lemma 1.2 in place of 2,, where
Yr (t) = k(t; T) Gab (t): Vera (t) =k (t; T) a1 ~a)2 (t),
ga,be'Lw, _f Iga,b (t)l dt < cun(l-—b).

oty Su
We have replaced (14[f"~" by k(t;7) and K,, by ¢,, in comparison
with (1.0).
By putting logarithmic terms into (0.1) we would obtain examples for
this general class.

(1.6

§ 2. General principles. In this section, we are concerned with stating
the interpolation principles, the general duality results with weights as well
as the Bradley type estimates [1] and putting them into a form that will
be easily applicable to our case.

Here, we let Tf stand for our hnear operator. For 4= 0 and u > 1, we
define E; = {x: |Tf(x) A and F, = Ix: u/4 < ¢ (x) < 4u}. We also let dv,
du denote nonnegative measures Wthh are absolutely continuous except at
the origin, and we write v(a) = [z.4v for a>0. We begin with the
interpolation results.

ProposITiON 2.1. Assume lim, .. ., v(a)

0 TS Gl ()] < el f 1y,

then

=0 and lim,..,ov(a) =

for all x#0,

+oo. If

¢
v(Ep < Z“f”x,w

Proof. We may assume that ||f]|;, > 0. We get by (i)

@) v(ixD| < %u fllu, for xeE,, x #0.

By continuity, there is an a >0 so that
¢
(22 {x #0: (x| < ”i“f“l,u} = {xi |x| > af.

By (2.1) we get

J v o
£ txes (bl € /ALy, b
and so by (2.2) we get
favs | dv=v(a).

E; |x| Za
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But by (2.2), v(a)l < (¢/M|fi1,.» and the proof is complete.
We also need the next result.
ProrosITION 2.2, Let h(t) >0 (measurable) be given and u > 1. Suppose

Tf is an integral operator (depending on u) and dv =v'(x))dx for x #0. If
) v(Ix) < eqv(ltl) and v (x)) < e V' (lt]) for [8/2 < |x| < 2[4,
(@ v(DITF @ <e [ @K, OI[f @) dy, and

ugolt)€2u

(i) v' (@) b(t) [ 1K (x, O dx-x(u < @ () < 2u) < cv(u),
Fy

then

v(E,NF,)<
Proof. We get from (i) and (ii

[ du<

E;nFy

[ duh@IK(x 0]1f @)

uSp() S 2u

duh ()| f ()

1
—_— dv =
()EAL v

Jdxv(x)IK(x, 1)

E)nF,

¢ 1
S50 Tucodrean
v AuhOLFO) JIK (x, Dl

).

:
( luiep(t)&Zu
and now our result follows by (iii).

We now consider duality with weights in the p, g cases. The proof is
standard and will be omitted. Generally let 1/s+1/s'=1, 1 <s < o0.

ProrosiTION 2.3. Let Tf be a convolution operator and assume w > 0 and
v> 0. If |1 Tf llgw < cllf llp0s then

ITAN, e < NSl 1 mg

The Bradley type estimates [1] also apply in our case. In n dimensions,
see Theorem on p. 260 of [4].
ProrosiTiON 24. Let
AA@=14"" [ |fldv
o] <11
and let u(t) =
(a) [ (AN Du()de < c

=1

0 be a radial function. Then

§ e ?u(de <

e <1
i/q
< 0.

u(t) 1/q< g’ =
d e dl
t> |rxjss(“(‘))“ T

2.3 su =
@3) o<ren <:s|iL1|t|2"

€ DAl R A ad s et ¥ VYNAIEY O
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[ 11O u(t)dt <

121
1/4( ltln(q’—l)(a— 1) p )1/«1’
e (I < 00,
) 1<J‘E1ssltln(“(t))q !
§ 3. Weighted I estimates. In this section, we shall prove the sufficiency
in Corollary 0.2 for the operator T, f defined there. We begin with
Lemma 3.1. Let g=2,a>1, b1~ a/2 and n=1 or 2. Let w(t) > 0.
Then

(Ao)

® [ A u(dt <c

lt|z1
sup( { E‘—%)ait
|

s21 \y>s It

(24)

Q.(x—1) f(B)dt|*dx
P(x) 21 p(x)/4 <e(t) <4p(x)

Se(L+fdy ] |f1leremtog:,

llelfz1
Furthermore, if w satisfies Definition 0.1(i), then
(Ao,w) Q.(x—1) f () dt]*w(x)dx

P(x) =1 @(x)/4 <) <4p(x)
Sc(l+g [ |71t D w()de.
1<l
Proof. Set dv=|x|"?"dx and du=|t{"“~2dt and note that v(|x|)
=c|x|™" Now define

If (%) = x(u ) [x" Q. (x=0.f (O]t dy.

@(x)/4 <g(t) <4p(x)

< o(x) < 2u
By Lemma 1.4(a) we get
B (ITf ()P dv = )

u<p(x) < 2u

[l
@(x)/4 <p(t) <d¢(x)

Se(l+pkm* [ IffPdu.
WAt <S8Bu

By Proposition 2.2 (F, = {x: u<p(x)< 2u})

0, (x— 1) £ ()t du? I;’l’;

(32 |fldu.

Now using (3.1) (3.2) and interpolation we get (with f supported in
us o)<

(33) 1TA1lpy < ¢+ S pyu
Unraveling (3.3) and using Proposmon' 23 gives (1/p+1/g=1)
(34) Q. (x—1) f () de]? ||t a2 g

US@(x) S 2u P(x)/4 <p() <4p(x)

c
V(El f\Fu) SI I
uSe@)€2u

for 1 <p<2.

Sc(l+qPye |

uSe(t) € 2u

112 s

icm
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Now it follows from (3.4) that
(3.5) Q. (x—

u<e(x) < 2u P(x)/4 <o) <dp(x)

f(®)diftdx

Sc+ [ |fielreiod,

Sp(t)S2u
Summing (3.5) we get (A).
If w satisfies Definition 0.1(i) then
Q, (x—1) f (t)dtft w () dx

uSp(x) € 2u (x)/4 <@(1) <dp(x)

Sc(l+iy |

uSp(<€2u

[f19ge=ba=ab v, (4) gt

Summing (3.6) gives (Ao,y,)-

Next we estimate the corresponding pieces.

Lemma 3.2. Let g2, a>1 and n=1 or 2. Then
(Bo) F 1 Q=0 @d|x®are2dx

P21 o) So(x)/a

Scl+p | ISP,

@21

€ ] [ @lx-ns t)dt!“dx c(l+efy [ 1f1Fdme=re=dr,
P21 el Z4e(x) [(H{ESY

(Ba) I @c—1) 1 (1) def2 |x|mbata=2) gy
JxlZ1 |t <1

Se(l+[ [ 1Rl at,

[HES!

€ ||| @x-0f@®didx< 1+If|”)" I Lf1#|ema=be= .

Ix[<1 Jt|=1

Proof. We begin by showing (C,) and (
Tf) =[x 0 | OQ(x—0)f@Od)x(p(x) > 1),

o)< p(x)/4

while in the case of (Cp) we take
Tzf(x) = 'x'n(b-i'a“l)(l IL .Q,(xmt)f(t)dt)x(lxl > 1)
HEYY

0), In the case of (Cy) we set

Set dv = |x|™™dx; that implies v(|x]) = ¢|x["~"™. Now using (1.1) for T,
and (1.3) for T, we get

1T 2y <
and by Proposition 2.1

il:glIEal =TSty <clflls-

c(L+[Ifllz  forj=1,2,
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Putting these estimates together yields
(37) I fllp < c+RMIA, for 1<p<2,j=1,2.

Now unraveling (3.7) and using Proposition 2.3 we get (Co) in case j = 1 and
(Cy) in case j=2.
Next, to see (By) and (Bp), this time we define
Lfe)="( [ Q&=0fOH > d)y(ex) > 1)
o) 24¢(x)

in the case of (B), and
Lfilx= IXI"(‘ If Q(x~1) @O "~ ** P dt) y (] < 1)
t] =1

in the case of (Bg). Set dv = |x|"*"dx and du = |t~ ? dr. Using (1.2) for T
and (14) for T, we get [T fllz,y < c(1+[t)|[fl2,u for j=1,2 and by
Proposition 2.1 it also follows that ||T;fli¥, <c|lflls,, for j=1, 2. This
implies that

(3.8) 1T Ml < cA+1fllp,  for 1 <p<2,j=1,2.

Now unraveling (3.8) we get (By) and (Bf) by Proposition 2.3.
LemMMA 3.3. Let =2, a>1 and n=1 or 2.
(@) If (i) w=0 and is radial, (ii) w(t)/' 2 for |it|l = 1, then
Cow | | Rx=0f@adefrw(

1S0(x) ot)>4e(x)

Sy [ (S92 (5)dr.
i1

(b) If (i) (a) holds and (i) w(E)|t]"®* =D\ N for |1t > 1, then
B | [ x-df@dfrw(xdx

1<0® 1<00) <p(x)/4

Sc(l+ply "I /18 |e"a b= Dy () .

Proof. We first show (Cow). The constant case follows from (Cg),
hence we can assume that w(f) — oo as |f| — oo; thus let l<l 70 50

that w(x) ~ 2" (ie. ¢, 2™ < w(x) < ¢, 2" in case A € O (X) K Ay . By (Co)
we have

©

B39 ¥ | | [ Qx=1) S ®dtjtw(x)dx

m>01m$:p(x)$).m+1 @(1) 2 4p(x)
o0
Sc(+pm Y 2m [ |fjejyrabema g
m=0  pZai,

<0(1+Ir|")'1“j f[ajgra=ta=a §> o

HES IS ol)
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where we are summing over all values of m so that A, < ¢(t). Suppose that
Iy S @(t) < A 41. Since w satisfies (a)ii) we get

Z 2" 2™ < ew(d),
l,,,écp(t) m=0
and (Cy,,) follows by (3.9).
Now to see (Bj,,), we begin with

0
1=y | ] =0 @t D w, (x)dx
m=0 Ay Se(x} Sy 1 So® So(x)/4

where wy (x) = w(x)/|x|"®?**~ 2, Since w;(x)\ N we similarly obtain for
1 <Ay 7 oo that wy(x) ~ 27" if 4, < @(x) < A,4+,. Now we get

I<cY 2™ [ | | Qx—0f@dffxeee2 dx

m=0 IpS@(N) €A1 1S Sp(x)/4

CRl) T 27 [ ISP

m=0 LS00 S Ay 4114

where the last inequality follows from (Bo). Hence

I<e(+py [ IfFpme® 3 27,
el =1

[LUET ]

where we are summing over all values of m so that ¢(f) < A,+. Now let m'
be such that 4, < @(t) < Ay 4. Then

S+ [ Ifegre? Y 27
flelf =1 m=m'

but 2™ < cw, (t), and so we have completed the estimate for (Bp,).

The next two lemmas are primarily concerned with where ¢ (x) < 1 (the
outer limits on the integral) or ¢(f) < 1 (the inner limits). We begin with

Lemma 34, Let ¢ =2, a>1 and assume n=1 or 2. If the conditions
(@) w(tylemeara=2 N, (i) 0 < w(t) = w(lt) hold for |t| =1, then

(] Qle=t)f@dif*w(x)dx

1€)x| 1151
Sc(l+l [ (f1+ A7) a2 |g=mba*a= A=y (|10 =D dr.
NESY

Proof. First set w(x) = |x"®**~ 2y, (x); then wy(x)~ for |x] =1
That means that for 1< 4, 7 0 we have w,(x) ~ 27" for A, < [X| < A+ 1)
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the case w, (x) ~1 being covered by (Bj). Hence

5 | | Q.(c—1) f () deft]x]™® e~ Dy, (x) dx

M= 0 Ay S 15| S At g K1

<efrt | |

A S| Shy g M €AL74

Q(x~8) 1) dzm x|ba+a=2) g

oo
+cy 27"
m=0 IS 1A S A0y ALT <1

X1 (0 deft oo~ dx

=I+IL

,(X'—t)

We have

Isey 2™ ([
S S Ay SAL79

A1 defe e a2 gy

I<y2r
2,

m=0 mSI¥ €A1 g

(Af (lel—"))q []@= 2 || (1 = adna

Since wy (x) ~27™ for A, <

1<ey

m=0 Ay <3l S Ay |

Now using polar coordinates with s =r!~% gives

le < }“md-l we get

(AF (1x|* = ) @~ 2 x| =2y, (x) dxc

dm+1

[ (A4f (gD pa=amapn=tyy, () gy

=c
ALy “SI!!%AI —a
Puttmg all this together we get
(3.10) <ec j‘ (Af )7 [tma= Dy, (M0~ a))dt

<1

(4f @ 1e1"a=2 vy (6]~ ) d.

We now estimate the term Il We get by (B! th i
P get by (By) with f supported in

GA) [ ] L Q=0 @)defsjxroete=2 gy

> 1 4L 79 <) <1

SelHy ]Il

mt 1 Sh€1
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From (3.11) it follows that

Se(+RM [ AfFe® 3 27
f <1

kel
But
k)
27K Y 272 < owy (79,
;.",H;»Ml/(l - d) m=m'
and so
(3.12) < (1+IT|")" [ 141878~ wy (142 de.

Now by (3.10) and (3.12) we get our result.
Lemma 3.5. Let ¢ =2, a>1, and assume n=1 or 2. If the conditions
(i) w) >, (i) 0 w(t) =w(t]) hold for |t| < 1, then
| | Q=0 @)di|*w(x)dx
|xI'€ 1 Jel>1

1+IT|")“ [ (S 1+ A ) e w (je] =) dt,

HER

where (Af),(t) = (=0 | |1 1s|*ds.

1<|s] <t
Proof. We suppose that A,., < 4, <1 and 4, \ 0, where w(r) ~ 2™ if
A1 S |t] € Ay this last fact is consistent w1th supposing that w(f) ~ i, the
case w ~ 1 being covered by (Cp). We now get

| | Qux—0)f@defw(x)dx

Mm=0 A4 S12I KAy 111 =1
o

<c Y Wik | | @(x—

m=0 At 1S 1% €y 1131

SO ditdx

<ell+ {3 witn) f116] " de

me= 0 A 1 S 12 € dyy 1€]0| £2HO D

+Zw(l

m=0

a|¢|ra=ba=a) g} = T+ 11.
rfm a)lfl ¢l }

The estimate for obtaining I is straightforward, while the estimate for II
follows from (C§). Using polar coordinates we get

(3.13) [<c(+le [ (AN @D w(id ) dz.
[HESS
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For II, we obtain
O<e(l+[d [ 11 % w(dy),
[ =1 |,|;;.’1"/(1'"“)

where we are summing over all those m values for which 1Y ~% < [t|. There
is an m' so that A% "9 < |t < AY4T9. But

7

m
T 2" 2™ K oW ()
i m=0
and hence
(3.19) Ue(t+Re [ 117Dy (et =) de.
[HES

Putting (3.13) and (3.14) together we get our result.
We immediately see that the following holds:
Prorosimion 3.6. Let w(t) > 0. If fjy<, w(t)dt < co, then

[ 1] @Gx=0f@afwdx<c|fi,

Jxl€1 <1

where f is supported in |t| < 1
Now we are in a position to show our first major result.
TreoreM 3.7. Let b<1—a/2, a> 1, g2 2 and n=1 or 2. Suppose that
@) w =0 is radial,
(i) w satisfies Definition 0.1(j),
(i) wyjyroate- N for [t =1
i) w7~ for llg)| >
V) wit)n~ for |t 1 and
(vi) [ w(dr<oco.

ts1
Then

12 Sl < cQ+RMP{IfIE+ | (AN 0(dt+ [ (Af)v(e)de),
ltj&2

HEY
where

o(t) > ¢ {4~ max (w(e), w(lt* =) z(ld| > 1)
IR g ey (11 (1) < 1)},
Proof. By Lemmas 3.1-3.5 and Proposition 3.6 we get
12 * Flgw < cQ+ 1Y (ISl + | (AN 0()de+ [ (ANt
lHl<2 e[ =2
+( ] 1Sl

Il <1

Two weighted estimates 1 269

but notice that

([ Ifldtf<e | (Afyo(r)a
<1 1<|r|<z
since here v()x(2= |t| = 1) is bounded away from zero, since we may

assume w > 0.
Because of (iii) and (iv), Theorem 3.7 works only when bg+a—23> 0.

We shall now do the contrary case, when bg+a—2 < 0.
TheorEM 3.8, Let b<1—a/2, a>1,g>2 and n=1 or 2. Suppose that
(i) w=0is radial,
@) w2 o for ltl) > 1
@) wtys~ for 1 €1
(iv) w(®) x(ltll = Ve L, and
(v) | w®ydt <o

HE2
Then
19 # f1lg 0 < c (LIl I1LA1IG .+ fz(Af)"v(t)dt-F | ANt dr),

ft|z2
where
v(t) > ¢ {12 D max (w (@), w(lltl* =9, 1)x (el > 1)
_+_Mn(q—Z)|r|wn(hq+a—2)/(l~a)w(ml—a)x(|t' 1)]

Proof, Here we get our result by (A,) of Lemma 3.1, Lemmas 3.2-3.5
and Proposition 3.6

" §4. (L%, L2) estimates. For the most part in this section

el 1 1

K(‘)=mwmj, (—I=—p—l, 0<Aigt.
We set '
(4.0) Tf =Kxf
and we wish to determine those weights v, w for which
4.1) T lgw S clfllper 1 <pSg<c0.

By Proposition 2.4(a) and Lemma 3.4 we get

PropoOSITION 4.1. Let g = 2,a> 1, n=1o0r 2, and 1/q+1/q' = 1. Suppose
that

i) wE)greata=D o for |t =1

(i) 0 < w(t) for |t =1 and w(t) is radial, and

w(r) , \ [¢ @~ Dntba= D) gy \ L'
(iii) sup ( ) m-"ﬁdt> I WW =
0SS\ g g1 st =B <)
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Then

@2 || «Ex-0f@Odfwxdx
1€+ 1%
SO(LHIlY || S et e ey 10 9) gy,
=<1

By Proposition 2.4(b) and Lemma 3.5 we get

ProrosimioN 4.2. Let g =2, a> 1, n=1o0r 2, and 1/g-+1/¢4’ = 1. Suppose
that

@) wit)n N for t <1,

(i) 0 < w(t) and w(t) is radial, and

(i) sup( | w(t)dt)“‘f(

s=1 fr|$s1"“

Then

@3) [ | [ Q=0 @)d]iw(x)dx
1x[<1 |21

SCUH [ LA (4 dr

131
We now define’
T, f(x) = (W) [he(x, 0) £ () dt,

g(x, t)
(U=t

ProrosiTION 4.3. Let a(l~g*) =B, du =|t|*dt and let T, be defined by
4.4). If geL* and

ITiwie S0 < (L) (JIF1 10 0 (e) de) ",
then for w >0, >0

@4

h,(x,t) = z=0+i1,0<0<1, —0 <7 <00,

IIT1~2_f”q < C||f“p,|,‘a(l~p)(.,m)p/q
where 1/p = 1/g+A and 1/q = (1—A)/g*.
Proof. Consider the operator
IS =TS 1 (1)),
Note that since geL®,

() | Fe fllew < €l f s,
and by hypothesis we get ‘
(if) 21w fll e < Q1) (F119° 107 (0 ()2 6l v (2) de )0

=c(+RP) IS,

icm
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(i) and (ii) imply that
. 1 1 1 1-2
T e el R A= g—
(iii) (1#1<2fllg < ellfllpus  where S q+ i

and by unraveling (iii) we get our result.

We have (1 <p, g <o is assumed throughout)

Lomma 44. Let 1/p+1/g <1, a>1,b<1~a/2 and n=1 or 2. Suppose
that

(i) w= 0 is radial,

(ii) w satisfies Definition 0.1(3),

(i) wt) » ~ for |itll = 1, and

(i) Wyl A DN for | 3 1,
Then for 1/q =1/p—4, 0 A<,

@5 ([ | [ Ke—0f@dw(x)dx)
1€p(x) 1€
e [ /1P (wie)ede)”,
15t
‘ n[(1-b)(pq~q+p)—ap]
where o = .

q(1~p)
Proof. We get by (Aq,.), (Bo,) and (Cy )

| | @ue—07Od wdx
P F 1 P31

Sc(l+pm" [ 1710w e,
' Iletf z 1
where 1/q = (1—21)/g* and 1/p = 1/g+ A. The hypotheses of Proposition 4.3
are satisfied with g(x, 1) = ¢ "y (p(x) = 1 and () > 1), f = n(g*—bg*
—a).with ¢* > 2 and v() = w(t), and our result follows from that proposi-
tion.
Lemma 4.5, Let 1/p+1/g <1, a> 1, b<1—af2, and n=1 or 2. Suppose
that
(i) w0 is radial,
(i) wyx(llell = He L*, and
(iii) w(t)/’tlnw(qwq/pwlvl)ahaw DN for [[t)] = 1.
Then for 1/q = 1/p—24, 0 A<,

@) ([ | | K@=0f(0dtw(x)dx)""
1%p(x) 1 &e()

<o [ 111 P max (1, (w@))de) ",
llelf 21
_ L =b)pg—g-+p)=ap]

where o
g(l—p)
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Proof. We may assume w > 0 by slightly increasing w. We get by (A,),
(Bo,w) and (Cy)

] Qx—0f@df*w(x)dx

pZ1 e =1

Se(U+[ [ 11O max (1, w(e)dt

flell 21

where al/q =(1-AN/¢* and 1/p=1/q+4 If we now take g(x,1)
= y(e() 21 and 9()>1), f=n(g*~bg*~a) with ¢*>2 and
v =max(l, w) we get our result from Proposition 4.3.

Lemma 4.6. Let 1/p+1/g<1, a>1, n=1 or 2 and 1/p+1/p' =1.
Suppose that

(i) w(t)/[t]"‘b‘“’““*"’*(“’2”’/"\. N ‘for m >1,
(i) O<w(tyx(tl = 1) and w(t) is radial, and
w(t)dt )1/‘1

@)  sup NECRGEE

0<s<1 (15[1!551/(1"“

|t|n(b(pq~q+p)-p)/[q(n-—1)] 1/p’
) <o

X
(sl/ﬂjﬂ)sm |t|"(w(t))”’["(” 1]

Then for 1/g =1/p—4, 0< 1<,

@7 (] || Kx—07@)dtw(x)dx)a

Ix[=1 |fs1

S+ ([ 11717 (w (i 40 - D)) ar)tie,

<1

n 1
where y =a[(pq—q—p)+5:3(b(pq—q+p)+(a—2)1>)J-

) ?roof. For ¢*> 2, 1/g =(1-2)/g* and 1/p = 1/q+ 4 we see that (4.2)
is satisfied for g*, ie.

115 1|£1Q’(x"t)f(t)dtww(x)dx

< c(l+f)7 m‘Ll |14 |efra= 2 |grtoa+ a= 2/@= 1)y (1 108 = ) gy

Now if we take g(x,1) =™ " y(x|>1 and [ <1), = *

i : <), B=nllg*-2+
(@=1)"1(bg*+a—2)], v(t) = w(f”*~9) and define o(l—p) ==y, then our
result follows from Proposition 4.3.

Lemva 47. Let 1/p+1/g<1, a>1, n=1 or 2, and 1p+1/p =1.

icm
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Suppose that
@) wyNn~ for t] €1,
(i) O < w(t) and w(t) is radial, and
i) sup( [ w@de)he

521 Itlﬁﬁl -

x ‘- : dl’ r
=T =T3P~ 1)]) <.

.v]““;é[tlél
Then for 1/q = 1/p—4, 0 <A<,
[ | [ Kx=nr@dftwdx)ee( [ |f17 =2 (w (e o) di)'",
|x|®1 [e[#1 PET
(1—=b)(pg—q+p)—ap
q(1~p)
Proof. By Proposition 4.2 we get for g* > 2
| | Qx—0f@df" wx)dx

MESENES]

where o = n

e+ | LS w (i ) de
[HED!

where 1/q = (1—24)/q* and 1/p = 1/g+ A Now ‘with g(x, t) = e* 1"y (x| <1
and |t = 1), B = n(g*—bg*—~a) and v(t) = w(t|' ™) we get our result.

Now we are in a position to prove the sufficiency in Corollary 0.2 in
case f > 0.

THEOREM 4.8. Assume the hypothesis of Corollary 0.2 with f > 0, and let
/g = 1/p=A for 0< A< 1. If v(t) > cav0(t), then [T fllgp < 1 1S, where
T, f and vy are defined in (0.3).

Proof. We can suppose without loss of generality that w is not identical

to zero. Next set (with K (1) = /(1 4]¢")P %)
TS =( | Kex=0)/@t)d)x{e(x)>1),
1

olt)

Tf)=( [ Kx=0)f®d)x(x >1)

[TES¢

Bf(x)=( | Kx—1f®d)x(x <),
[HES!

T, f(x) = (I 'L K(x—0)f©)d)x(x < 1).
ER]

Notice that by (0.2), fi<1w(t)dt < oo, and so by Proposition 3.6

ITSlgw<e [ (Afrae<e( [ Ifdg.
1€ €2 =2
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Since v(t) is bounded away from zero we get
N fllgw < c( § 1f1Po() de)',
tl<2

and since

4
TS llgw < 2:,1 1T g

it follows from Lemmas 4.4, 4.6 and 4.7 that
1T g < €IS Npoo-

Now we shall state and prove the sufficiency in Corollary 0.2 in case
B <0.

THEOREM 4.9, Assume the hypothesis of Corollary 02, B <0, and let
Vg =1/p—A for 0K A< L If v(t) 2 ¢ v0(t), then | T, fllgw < €y I flp00 Where
T, f and vy are defined in (0.3).

Proof. We argue as we did in Theorem 4.8, but this time we use
Lemmas 4.5, 4.6 and 4.7 to get our result.

In the Fourier transform case (i.e. a =2, b = 0) the hypothesis on the

weight w reduces to w\ N since in this case f=0 and & =0, while
the conditions (0.2) reduce to

dt

1y
1
(48) sup( | w(r)dr) q(m Jll;[t]"“’""”"”[‘l(”"1)’(w(t))"/[4("'1”) <,

s>0 |t|<1/s
since & = n(pg—q+p)/[q(1—-p)].

Now we obtain the dual results to Theorems 4.8 and 4.9. We employ
Proposition 2.3 which says that if ||Tf]|,., <c||f Il then

WTA U e < €SN -

Then we get
Tueorem 4.10. Let b<1~a/2, a> 1, 1/p+1/gd 21, 1 <q <p <2,
wi=0"", p =w? 50, n=1o0r2and v>0; w0, Suppose rhat
(i) vy satisfies Deﬁmtmn 0.133),
(i1) vy (t)/m"(b(-rx'w’lp—q'/q)+(a-2)(1-tl’));‘ 2 for =1
@) vy ()N~ for ] =1,
) w77 for <1,

(v)  sup (

0<s<1

(a0~ a‘uz)‘/q
1<}j<st/(t~a) |l|"”(’1 a/p+1)

(Ul (t))p/[q’(p— n 1p'
x 111 2 g P 0 PG dt] <o,
£ B[4

icm
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(vi) sup( |

) /' (0= 1)1 g7 \1/p’
S (v (t))”“‘“dt)““( [ (o1 @) dt) Y o
21 1 gsl-a

| [¢|™ap=a+p)laCe= D]
sl=ag) <y

Then for 1/p' = 1/¢'—A
”nf”p’.wl S ¢ ”f”q’,u1

where
wi(t) < elt*x () = Y min ((vy P, (o, (19", 1)
Feft] ™M oy (MO y () < 1),
and o, y are defined in Lemmas 4.5 and 4.6 respectively.
The next result is dual to Theorem 4.9,
TueoreM 4.11. Let b<1-a/2, a> 1, 1/p+1/g =21, 1<gd <p <2
n=1or2 w =07 vy =w"% <0 and v>0, w>0. Suppose
@) o) 7 7~ for 1 <1,
(ii} vy (t)/[tln(hhq’-"q’/pwq’/q)+(a-2)(1-q’))/ 2 for jt =1
and (v) and (vi) of Theorem 4.10 are satisfied. Then for 1/p' = 1/q'—A
T S lprwy < €l f Mgt
where
elel*x (11l = Dmin (v, O)7, (o0 (2* =™, 1)
A 7P (v (MNP y (8] < 1),

wi() <

and o, y appear in Lemmas 4.5, 4.6 respectively.

COROLLARY 4.12. Let 0<w be radial, n=1 or 2 and 1 <p<g<oc0.
Suppose that

i) wt) >,

(i) w satisfies (4.8), and

(iiiy »(t) = ¢ |[|n(pq—u-p)/a(w(l/]t'))p/q‘
Then

1 g < €llflp-

Proof. In case 1/p--1/g < 1, this follows from Theorem 4.9, and in case
1/p+1/q 2 1 [rom Theorem 4.11.

Notice this coincides with the sufficiency of Theorem 2 in [4] (here we
use w, v and there we used wi, vP respectively). Also notice that for (5.1) in
[4] with (cap W)~ and (cap V)~ implies that ‘

(V)P > Brt= e Ya(w (1/r)h.
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§ 5. Necessity results. In Theorems 4.8, 4.9 we gave sufficient conditions
in order that our operators map, i.e. lower bounds for the weight v(t) in
terms of w(z). In this section, we show that these bounds are necessary. This
then completes the proof of Corollary 0.2.

Furthermore, we shall analyze which conditions are necessary. For
example, we shall show that Lemma 4.4(iii) is both necessary and sufficient
for (4.5) to hold.

The case a=2 and b =0 is among the cases we analyze here. In
Theorem 2 of [4], we showed that Af (¢) is needed in our estimates. That first
appears here in Lemmas 3.4 and 3.5, i.e. when we are working around the
origin in one of the variables. Thus conditions like (0.2) are needed in our
results and that follows by [1].

Throughout this section, we shall use T, f, vo, o and y as defined earlier.
In fact, T; f and v, are defined in (0.3) and «, y are defined in Lemmas 4.5,
4.6 respectively. Similarly, ¢ and & will be as before, they appear in Corollary
0.2.

Lemma 5.1, Let n21, a>1, 0€A<1, 1/g=1/p—A and 1 <p<yq
< o0. Assume that v, w are radial, positive and that they satisfy Definition
0.100). If

(5.1 T S Nlgw < ¢l fllpes
then
(52 20t < Do) = e[ (w1 =My (1] < 1),

(53) x(tl > 1)o(0) > et~ (1) > 1ymax (w ()", (wllel =), 1).

Proof. Throughout this argument we let u, x, t, R, AcR".
We begin by defining the following functions:

@ fi@®=x(R*2<]d <|R'79),
(54 ®) L) =e MRy (R/A < || < |RI/2),

© o) = e Ay (RIMA-972 < o) < RO,
Now by (5.1) it follows that
(5.5 ([ LA™ 4wxdx) < el fill,,,.

|x—RI<|R|/c

Next notice that for [R| > 1 with x as in (5.5) and ¢ as in (5.4)a)

x|

(5.6) x—t"—|xl?) =a| [ v""di| < c|R“ g < 1.
[x=1|

Hence it follows from (5.5) and (5.6) that

|R|(1 —ayn

1/ "
w4 (R) [R|"e m’m

< c(o(IRI1 4P R o,
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Take |t| = |15|1”"; then it follows that

201t < Dolt) 2 et (w (g /=)oy (1] < 1)

which is (5.2).
Again by (5.1) it follows that (with |R| > 1)

(5.7 ( | TSl w (x) dx)' < e| foll -
Jx- R| £ R)T = 4
Just as in (5.6) we notice that
[E5]
(5.8) = t—~|t~R%| = a| [ v"~'dv| <c|R|x—R| < 1.
ft=R|
Hence by (5.7) and (5.8) we get
w4 (R) -
iyt =5 IRI"IRI =71t < ol (R) R,

and so if we take [t = |R| it follows that

(59) 20t = D) > (w7 g > 1),

Again by (5.1) it follows that

(5.10) ( f 1ThAwx) dx) < el fallpon
&= RIG|R|fc

where here for f3 we set A = R,
This time with [R| < 1 we get as before

J=d

(5.11)  |lx—RP*~|R—t]"| =a| | v" 'do|<c|RI™'|x—R[<1.
lt=R|

Hence it follows by (5.10) and (5.11) that .

ta
IRI%‘:‘N"E){’%“;’ RJPU=8) |R]7  (p(|R] Y- a)tip | R - o,

and 'if we take [¢| = [R|V! 9 then it follows that

(5.12) 2t 2 Do) = (we* - 9PE =2y (14 = 1).

Now as in (5.10) and (5.11), if we put A in place of R for f; and note by
(5.1) that

(5107 ([ 7AW dx)" < cll fallpes
Jx= Al & |Rl/e
then if we assume that |R| < |4] < |R|Y4~9/4 with |R| <1, then

Wllq(A)

=it IR < clRPPC =204 (R ).
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Now take |x| = |R|Y*~9; then it follows that
v(x) = c|x**"Pwr(4) as long as |x|*"° < |4] < |x|/4,
where |x| > 1, and since w satisfies Definition 0.1(i) it follows that
(513)  v(x)=c|x**"Psup(w(A)e, x4 < |, X = L.
But since ||w||, # 0 and w satisfies Definition 0.1(i) it follows from (5.13) that

(5.14) v(x) = c|x"™?  for x| =1,
and so our lower estimate (5.3) follows from (5.9), (5.12) and (5.14).
Proof of Corollary 0.2. The sufficiency follows from Theorems 4.8,
4.9. The necessity follows by Lemma 5.1.
Now we shall analyze whether the conditions on w are necessary.
ProposiTioN 52. Let 1 <p<g<oo, 1/p+1/g<], a>1, b<1—a2,
and n=1 or 2. Assume (i), (ii), and (iv) of Lemma 44. Then for 1/q = 1/p—2,
0],

(4.5) holds <> condition (iii) of Lemma 4.4 holds.

Proof. Because of Lemma 4.4, it suffices to do the necessity =».
If (4.5 holds then we get from (5.13)

v(x) = c|x" P sup

(W ( A))p/q
15|A|<]x|

as long as O0< v satisfies Definition 0.1()) and is radial; but here v(x)
= [x"*~P(w(x)PP' and so it follows that w satisfies Lemma 4.4(iii). Note
condition (iv) was not used in proving the necessity of ().

We notice that from Lemma 4.4(iii) and (iv) it follows that

(5.15) w(t) € c|fr®a=ap+D+a-2)

for |t| = 1.

We can ask whether (5.15) is also a necessary condition. To this end we show

Prorostrion 53. Let 1/p = 1/g+7, Up+1/g<1, 1 < PLg <o, a>l,
b<1~a/2 and n> 1. Suppose that 0 < w is radial and satisfies Definition
0.1G). If IIT; fllgw S €ll.fllp,0s then (5.15) holds.

Proof. Define fo(r) =e™"®~""y(llt—ull < 1) whefe 2<|lu <3 and
IRl 21 with u, ReR" Now it follows that

516

|x—R|<|R|2™ 8

T fliwe)dx)a < e |

le-ull €1

ol v (t) dt)!ir;

and so it follows from (5.16), once we show

(5.17) Jx =t~ |R~1l) —(x*~ R < 1,

icm
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that
- 1
wlla (R)|R|"2~wra T < C( J" (1) dt)llp,
R| [TEPTES!
and so

Ww(R) ¢, |R|"U-alptD+a=2)

Our proof is complete once we show (5.17) for the variables in (5.16).

We begin by setting H(t) = |x—¢"—|R—t with te R". Then
oH

0<f<1, Hj="a——

H(t) = H(0)-+ }E Hy(¢&nyy,
J=1 L

Next notice that
Hy(én) = a(x;—&t) Ix—&t)*" > —a(R;— 1)) IR— &2 or
Hy(8t) = a(x;— Ry |x = &tl*"* + a(R;— &) (|x — &t~ 2 — R — &t~ 2),
and so
(H,;(60)* < ¢ [0~ R)*|RI*“™ D4 (R} +13) [x — R|* |R|2~],
and then

" n n
3 (}'—Ij(él‘))2 < c((RPHeD Z (%= Rj)* 4[R2~ |R[2a~® Y Ri)<e.
J=1 J= 1 . j=1

Hence

" n

PIRE:AGTTES (_}nj1 ) (Y B <e.
=

J=1 Jj=1
This proves (5.17).
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Local Banach algebras as Henselian rings
by
H. G. DALES (Leeds)

Abstract. We use methods of analysis to show that local algebras which are homomorphic
images of Banach algebras or which are projective or injective limits of Banach algebras are
Henselisn. Many of the standard examples from algebra are shown to be Henselian by these
methods, and a number of further examples, not accessible to classical algebra, are given.

1. In the theory of local rings, there is a notion of a Henselian ring ([5,
§ 16], [11, § 30]). The condition is important because it gives a reducibility
criterion for polynomials over the ring. A form of Hensel's lemma—for
example, the form given in [13, VIII, Theorem 17]—is that each complete
Noetherian local ring is Henselian. In this paper, it is shown that rings which
are complete in another sense are also Henselian: each local Banach algebra
is Henselian. More generally, we prove that a local algebra which is a
homomorphic image of a Banach algebra, or which is a projective limit of
Banach algebras, or which is an inductive limit of Banach algebras is
Henselian.

These results are sufficient to cover the standard examples of Henselian
rings, such as the algebras C[[X]] and C (X)) of formal and of conver-
gent power series in one indeterminate, and they cover a number of other
examples, some of which do not seem to be easily accessible to classical
algebraic methods.

This paper is written for analysts: we shall assume that the reader is
familiar with commutative Banach algebra theory, but we shall give some
algebraic details which the experienced reader of, say, Nagata’s “Local
Rings” would find to be elementary.

In § 2, we shall first give an algebraic condition equivalent to the fact
that a local algebra is Henselian. Unfortunately, the proof of this equivalence
involves some rather deep algebra. To avoid reliance on this, and to make
this paper self-contained, it will be proved that a formally stronger condition
implies that a local algebra is Henselian. This latter condition will be applied
in § 3 to show that each local algebra which is the homomorphic image of a
Banach algebra or which is a complete LMC algebra, or which is a pseudo-
Banach algebra is Henselian. We shall conclude in § 4 with some examples
and with some comparisons between our results and standard theorems.
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