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Nilpotent Lie groups and eigenfunction
expansions of Schrodinger operators II *

by
ANDRZEJ HULANICKI (Wrodaw) and JOE W. JENKINS (Albany, N.Y))

Abstract. Let % = —d?/dx*+|P(x)|, where P is a polynomial of degree d-+1. Following
the general pattern of [9] and using new estimates proved in [3] the following theorem is
proved.

THEOREM. Let 4y <A, ... be the eigenvalues corresponding to the orthonormal basis
@1, 2, ... Of eigenfunctions of & in I*(R). Let KeC>(R), with K (0) = 1, be such that for some
y>1and R>0

>

sup(L+ A * VKOG < R™(nlp, j<non=1,2,...
>0
where s = [(2+d)(5+d)/4]+ 1. Then for every feI’(R), 1 < p < o0, we have
tim(| 2 K@)(f, 0 0=, =0
10 p=t

. In our previous paper [9] we used nilpotent Lie groups to obtain results
on the summability of eigenfunction expansions of Schrédinger operators
on R" whose potentials were sums of squares of polynomials. In an attempt
to prove similar results for operators with more general potentials we investi-
gate here the operator

2

d
£ = "a‘x‘fi'lp(x)l,

where P is a polynomial of degree d+1, say.

We believe that most of our present results are valid also in higher
dimensions but the technique used here is restricted to dimension one. Also
our summability results are weaker than those for operators considered in
[9]. An application of the methods of the present paper gives the following
theorem.

THeEOREM. Let Ay < A, <... be the eigenvalues corresponding to the
orthonormal basis @4, s, ... of eigenfunctions of % in *(R). Let Ke C*(R),

* This research was founded in part by National Science Foundation grant DMS 8501518,
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with K(0) = 1, be such that for some y >1 and R >0
(0.1) sup(1+ACr VKD () < R"(nly?, j<n,
250

for al n=1,2,..., where
s=[2+d)(5+d)4]+1.

Then for every feI’(R), 1 <p < oo, we have
(02) lim|| 3% K (th)(/, ) 02~ = 0.
t=+0 p=1

We note that functions with compact support that belong to a Gevrey
class satisfy (0.1).

As in [9] we use here an idea introduced first by W. Cupata to regard
& as the image under a unitary representation of a left invariant operator L
on a nilpotent Lie group G, suitably chosen for the operator % . If the
potential in .% is a sum of squares of polynomials, the operator L on the
group G is hypoelliptic, by Hérmander’s theorem on sums of squares- of
vector fields [6], and so the densities of the probability measures in the
semigroup generated by L are in I2(G) (in C*, as a matter of fact). To prove
this in the present situation, where Hérmander’s theorem is not applicable, is
the main difficulty. Another obstacle is that these measures decay at infinity
too slowly for the use of the functional calculus of [8], as applied in [9].
Therefore (0.2) can be proved only for X in a Gevrey class instead of K in
C"(R"), by an application of Pytlik’s functional calculus [13].

Most of this paper is devoted to the proof that the semigroup consider-
ed consists of measures with L2 densities. The proof goes via representation
theory and the Plancherel formula, which in the case of our nilpotent group
is fairly simple, and relies heavily on a result proved in a recent paper by C.
Fefferman [3].

The authors are grateful to Jola Dlugosz, Pawet Glowacki, Horst

Leptin, Richard O’Neil and Piotr Pragacz for illuminating informations and
discussions.

1. The group. Let X, Y,, ..., Yi14 be the basis of a Lie algebra g such
that [X, Y]] = Y, are the only nontrivial commutation relations. Let G be
the corresponding simply connected nilpotent Lie group. The following facts
can be verified by a routine application of the Kirillov theory [12].

The representations in general position of G are parametrized by R¢*!.
For'cin R*** we write'c = (Cat 15 Cymyy +o-, o), OT, in the other words, ¢; =0
whenever we have ¢, J=0,...,d+1. The representation n° acts on functions
@ on R and

(11 @) ¢(x) = &g, x) ¢ (x+0(g)),
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where |a°(g, x)) =1 and @ is the natural homomorphism 9: G — G/N = R
with N =explin{Y;, ..., ¥;,,}. ’
The infinitesimal form of #° is

N c d c
(1.2) X)) = 7(Y) =M,
where

R d+1
. 1 .
Mup() =P @o0, F0= T e
(note that ¢, = 0).
The Plancherel measure on Rf*! js [as1ldegy 1 degy .. dey, ie. fe I2(G)
if and only if Trn®(f % f*) is finite for almost all ‘¢ and
(13) JTene (f % f*)|Cas sl degy 1 dey_y ...deg < oo0.
We introduce dilations in g putting, for r > 0,
6, X =rX, oY =1y, j=0,.. d+1.

Of course, &, is an automorphism of gand so §,expZ =expé,Z, Zeg is an
automorphism of G.
We have

(1.4) 7°(3,9) = 7% (g),

E d+ +2 2
where 0F (Cat 1, Camts vy Co) = (¥ 3 ¢pry, ooy ¥ Cjy ons TEC).

2. The semigroup. It follows immediately from G. Hunt’s theory of
convolution semigroups on a Lie group that for ¥, in g the operator YZ is
the infinitesimal generator of a semigroup of probability measures v,, t > 0,
on G (cf eg. [7]). For fe CHG) we define

1) —I%lf = =Yg f = — [yt
0

Since n°(Y§) = (M )% 7°(v,) ¢ (x) = exp[ —tP*(x)*] (x) and so, by (2.1),
(22 o m(X%) @) =P () ¢ (x).
It is known that if
L=—X>4|Y,|

then' —L is the infinitesimal generator of a semigroup of probability meas-
ures 4 on G (cf. eg. [7]). It follows from (1.2) and (2.2) that n°(L) is the

Schrédinger operator
' 2

(23) (L) = —-;ld;—i+ | P9
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and, by (1.1), the operators
() = [n°(g) dp, (g)

form a semigroup of contractions on every IP(R), 1 < p < o, whose infinite-
simal generator is n°(L).

The dilations §,, r > 0, are defined in such a way that the operator L is
homogeneous of degree 2, ie.

24) L(f08) = r*Lf 04,
and so
(25) If A is an eigenvalue of n*(L), then r* ) is an eigenvalue of n":‘(L),

This can also be deduced directly from (1.4) and (2.3).
Also (2.4) implies that

o wy= f08,- 1720 1)
Now we are ready to prove

(2.7) TueoreM. For every t >0 the measure p, is absolutely continuous
with respect to the Haar measure on G, ie.

2.6)

(2.8) du,(9) = p:(g)dg,
and moreover,
(2.9 peI(G).

Remark. As a matter of fact, (2.8) implies (2.9). This has been shown to
us by Pawel Glowacki. His proof (virtually contained in [5]) uses the
homogeneity of L. However, we see no direct proof of (2.8). Thus we use the
Plancherel formula (1.3), i.e. we show that

(210) JTr 7 (1) leg 1l dege 4 dey-y...dey < o0,

which implies (2.9) for t = 1/2 and so, by (2.6), for all ¢.

Proof. Let 4,(¢ < 4,(¢)< ... be the eigenvalues of (2.3). Thus (2.10) is
equivalent to

11 D exp [~ A, (O] |ca4 1l degiydeyy ...dey < o0,
n=1

By an obvious change of variables this is equivalent to showing the same
ineqtality where P°in (2.3) is replaced by

a+1
Pé(x)= ¥ ¢;x,

j=0

¢ =0.

icm
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Let

Q={c =(Cat1s Cants o rry Co)t Caqy = 1}.

Then the left-hand side of (2.11) is equal to

(2.12) Cl[ 3 exp[—24,(F IS+ 4e, | dc,dr,
RQn=1
where here and in the following, C is a positive constant which
may depend on d only and may vary from line to line.
By (2.5), 1,(0¥ ) =r*A,(¢). Hence (2.12) is equal to

(2.13) C j‘ J’e—-rz ]r!(s +d)(2+d)/2 i ,l,,(c)"“ +d)(2+d)j4 - 1/2 dcd~1 . .dCo dar
RQ

n=1

o0
=C[ Y hylgSrdoram-12g, g
Qn=1
=C[ [ ATGra0ras-12gNG Ggde | de,,
2 iziqlo

where
N(A.,'C) = # {)'n(c) < '1}

We shall use the following two estimates which are proved in [3], p. 144
150, for positive polynomial potentials but the proofs go through also for
potentials of the form |P9.

(2.14) N4, ¢) < Cvol{(x, &): &+ |P*(x)] < ),
(2.15) A(0) = Cinf {672 +inf max [P(x)[}.
>0 xg |x—xql<é

The following fact is well known and easy to prove:

(2.16) Lemma. If P is a monic polynomial of degree d+1, then there is a
constant C which depends only on d such that

inf max |P(x)| = Cé¢tt.
xo [xg—x|<é

Now we use (2.14) and (2.16) to obtain

@2.17) N4, 6) < CAVZHH+D ce

In fact, by (2.14) we have
N(A, 0 <222 vol {x: |P*(x)| < A}.

But {x: [P°(x)| <4} is the union of at most d intervals I, ..., I;, and by
(2.16), since P° is monic, max,, [P°(x)| < 4 implies |1} < CAM*D,
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Thus (2.17) implies, for ¢ in Q,
}._(5+d)(2+d)/4_llsz(ﬂ,'c) < C/'Ll (c)—p’
AZzi(9

where

(2.18) e =05+d)2+d/4A—-1/d+1).

Consequently, in virtue of (2.13), it is sufficient to prove
(2.19) LEMMA. Let

a-1
Pe(x)=xt14 3 ¢;xd.
i=0

Let A(c) be the smallest eigenvalue of the operator —d*/dx*+|P9. Then
[A(©™ ey ... dcy < 00,
where ¢ is given by (2.18).
Proof of Lemma (2.19). For a k=0, ..., d+1 we denote by &, the

subset of R? consisting of ¢ = (c;_y, ..., ¢o) such that the polynomial P has
the following properties:

(a) All the roots z, ..., z, of P¢ are distinct.

(b) k of the roots, z,..., 2., are real,
zj = ., are complex. ‘

(c) The numbers z,, ..., z,_,, Rez, Rezyys, ..., Rez,.q are all distinct.

Moreover, since ¢, = 0, we have

@ zo+...+2z;=0.

Of course, to prove the lemma it is sufficient to prove

Zks 2kt T 2y veny Zg-ys

(2.20) [ A0 ¢dey_y ...dco < o0
E
for every k=0, ...,d+1.
Let O, be the subset of R*xC', k+2l=d+1, consisting of (zo, ..., z,)
for which (a)d) hold. )

We consider the diffeomorphism taking roots to coefficients, i.e.

0: Q3(zq, ..., 2) = (Cacys ..., Co)€ By,

which, of course, is given by the symmetric polynomials in z,, ..., z,.
Consequently, the Jacobian of this map is
(221) [Tlz~z)

i<j
restricted to ©,. The fact that the Jacobian of the map given by the
symmetric polynomials is (2.21) is not difficult to prove and is, of course,

icm

Nilpotent Lie groups and eigenfunction expansions 11 245

classical, cf. e.g. [1]. Thus
(222)

where

degoy...deg =J(z, ..., 2))dzy...dzy_ 1 dz, dZ, ...z, dE,_,,

I (205 ooy 2d) = ¢dg (2o + ... +25) [ ] lzi—~2z.

i<j

v . ’ -1 .
Now we fix z =(zo, ..., z,) in £ and we write P, = P*"'¢ je.

d
[P, (x) = [T x—z).
=0

In virtue of (2.15) we have to estimate

inf {872 +inf max |P,(x)} =0(2)

>0 xq |xg— x| <s

in terms of z.
First we note that

(2.23) inf {6724A48™} = [(m/2)2 M 4. (mf2)~m2+m] g21@+m)
>0
Hence, by Lemma (2.16), we have

(2.24) o(z)>C >0.

(We recall that C is a constant which may depend only on d.) Thus let § > 0
and let an interval I with |I] =25 be such that

(2.25) o(2) = %{(S"Z—I—mg.llez ).

(Of course & and I depend on z) Let soel be such that
(2.26) Iso—z} = so—Rez| = (d+1)"'8, j=0,...,4d,

and let z;, be such that a = Rez; is closest to s, ie.

Iso—al <|so—Rez| forallj=0,...,d.

We then have
for all j=0,...,d.

(2.27) Iso—z,| = 'Ha’"‘sz

Let

M, = {(z0, -, 20D o =n}.

Clearly, @, is the union of the M,’s and we may restrict our z's to one M,
only.

A e Qs Mot harating | YYVYVYVIT 1
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Thus for z in M, we put a = Rez, and we reorder Zgy ..., %4 in such a Since J(z) does not depend on the order of z, ..., z;, we may write
way that {zo, ..., z} = {ap, ..., a}} = a, ,
y { 05 s d} { 05 <+ 0s d} (2.29) J(z):J(a)=50(a()+...+a,',)Hlai-ll+a——a}l.

2
la—ay| <la—aj| <...<|a—a) '

d
. < Cdo(ap+t ... +a) I la—alf
and af = @ implies Ji—j| <'1. Let i=1

azfl’a£1+1: EEET) a;p ai’ﬁ‘ly ii <...<li, . =C50(ab+..4+a,,1)Hla~af‘aﬂ'
j=1
be the complex roots among d, ..., aj. We drop aj, 41, +.vs 4+ from the Let us write _
sequence ay, ..., gy, thus leaving just one from each pair of complex conju- o fda; if =1,
gate roots, and we obtain the sequence ay, ..., a,,, where m = k+1, such that daj = dagda, if &=2.
la—ag < ... <|a—a,l. Hence, in virtue of (2.22),
We write dey—y...dcy = J(@)day...da;" = J (a)da.
1if a; is real, ’ Thus to complete the proof of case 1 it suffices to show
g = {2 if a; is complex. (2.30) fA(@™°J(a)da < 0.
We consider three cases: First we make a linear nonsingular change of variables
L. z, is real. Then, of course, ao = a. L ;
n ) s - ! =1,..,d
2. z, is complex and z, = a, = g+ ib. b aj+:§1a” g
3. 2, is complex and z, = a,=a+ib, p>1. Since ap =a, and ay+ ... +a; =0,
Case 1. By (2.26) and (2.27) for every j=1, ..., m+! we have , /
(231) la—ajl = (]l
' m+1
max [P, () > |P, (so)] > C8°* " *9=1 [] | g : and
xel . t=j d
by=ai+y d, j=1,...,d.
(where &, =0). Hence, by (2.25) and (2.23), =1
mi1 If by, ..., by is a sequence obtained from bj, ..., b; in th‘e same way as
0(z) > C5™ 24 g0 " -1 II la—a,* ay, ..., Gn Was obtained from aj, ..., i, by (2.29) we obtain
t=1 L j [
w1 J(@)ddy...dd" < C H b db3t...dbyr.
= C[ H la_atlct]zmj, " j=1
t=j Also
where m; =g+ ... +g_,, for all j=1, ... m+1. Consequently, A(@) = (Y [I1 ]b,|£‘]2/"'j+1)-
=1 1=j
o e . ; i i ter than
(2.28) o= C(Y [T] |a_a,j"']2’"‘1+1)_ Hence the integral in (2.30) is not greater i
J=1 1=j o iy q2/m; - j
(2.32) C [ v [ (X In]™+1)7 I] ridrs...dry.

Let us denote by A(a), a=(a,, ..., ay), the right-hand side of (2.28). n>0  ry>0 j=1 i=j =1
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But

m
IIr.

=Jj

s

[17=

j=

it
[

i
Thus, if we put

m
s=[lr, Jj=1,...,m,
1=

we see that (2.32) is equal to

BN B (Z $"+ 1) s dsy .. ds,

sl.>0 sm>0 Jj=1
which is finite as a routine calculation shows.
Case 2. By (226) and (2.27) we have
maXIP () = Cla— aolzﬂl%arlc‘,

t=1

max P, ()] > 871" 11T ja—a*,
1=j

whence, ‘as in case 1,

7= o> (5 T la=a+ 5 [T la=aT"-+1),

Jj=1 r=j

where m; = 2+g,+ ... +¢_,. Moreover,
J(@) < 8o (ap+ ... +a)[b] [T la—a,”
i=1
and so after a linear nonsingular change of variable,

fol@™*J (@das< C I(bzﬂlbl“‘+ z 1T b7+ 1)

J=1 t=j

x [b] n |b|* db H b db ... |b)"™ dbim=3 dpim
t=1 t=2

=c | XD b [Tl s

r>0 r1>0 m

xnr,drndrl.. -

t=2

=Cf( Z )~eds, ... ds,,

which, as in case 1, is finite,

icm
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Case 3. We proceed as in case 2. First, by (2.26) and (2.27) we obtain

gt .tEs : .
max [P, (x) > €87 a—a .. [a—a,™  for j #p,

ggt.te, g+ 1 £ g
maxJP (x)| = cs*° P a—aylla—ay. P L ja—a,)™,

whence

@3)  o@>C(+ Y [[Tla-af™+p S la—afyme

=0 =] t=p+1
J#p
where m; =g+ ... +¢_, for j#p and m, =g, + .. p-1+1.

Now we use estimate (2.31) and we procced as in the previous cases.
This completes the proof of the lemma and of Theorem (2. 7) at the same
time.

3. An application. Let G be the group described in Section 1 and let
L= —-X24]Y,.
Then L is essentially selfadjoint on %(G). Let

If = TME(A)f
[0}

be its spectral resolution on I*(G). By Theorem (2.7) we know that the
semigroup of operators

T'f:?e"”dE(A)f
0

is of the form T*f = f *p,, where

(3.1 p.e }(G) n [M(G).

It follows from [7] that if t is a function on G defined by
7(g) = min {n: ge 4"},

where A= A" is a fixed open neighbourhood of the identity with compact
closure, then for a positive a we have

(3.2) fr(@ p.(9)dg < o0.
Also, clearly,
3.3) p(g™") = p(9).

For the operator

Rf = [(1+4)" dEG)f
0


GUEST


250 A. Hulanicki and J. W. Jenkins
we have Rf = f xm, where
o0
m= [e~'pdteI}(G),
0

and consequently

00

[+ dEQ) f = [ m®.
O .

The following general proposition holds.

(3.4) ProrosiTioN. Let G be a homogeneous group, and let {p}»¢ be a
convolution semigroup of I} N I* functions such that

plg) =t~92 P©G,~129),
where {8} are dilations and Q is the homogeneous dimension. Then for
s=[Q/2]+1 and

m(g) = :j?e“'p:(g)dt,

m* e I?(G).
Moreover, if G is stratified and for some a >0

(@’ p(9)dg < + oo,
then

[m(g)t(g)dg < +oo.

Proof.

3 = [(Je™ " p o L (@) dy ... d)dg
<[ L @) .. diydg
S_fe_(tﬁ'"“’)(t‘l-}- o+ 1) 724ty L dt, [ phg)dg < + oo,

To prove the second statément use the fact that for some, ¢, C >0,
clgl <z(g) < C(gl+1)

holds for all geG provided G is stratified (cf. [11]), and note that

Im(g)lgl*dg = [e™* fp, (g)t°Ig|dg dt < + 0.

We say that a function F, on T belongs to the Gevrey class G, if there is
an R such that

IF?l, o <R'(nly, n=1,2, ...

icm
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We apply Proposition (3.4) and we see that for s = [0/2]+1
- (a) m* is hermitian.

(b) m**eI12(G).

© [Im*t(g)°dg < +o0 for some a > 0.

Conditions (a}-{c) were used by T. Pytlik [13] to show that if FeG, for
some ¥ >1 and F(0) =0, then the operator

(3.5) £ ?F((l +2)")dE() f
0

is given by convolution f — f xk, where ke I?(G) n L (G) and [lk(g)l T (9)*dg
< +o00.
Suppose a function K on R* satisfies

I?agi(l +AEDKOD) <R Y, j<n,
>
for some R>0 and y' > 1 for all n=1, 2, ... Let
F(O)=K( -1
for £e(0, 1). It is easy to verify that
max |[F® (&)} < r(nl)”
2e(0,1)

for some r > 1 and y > 1. We extend F to a function in G, (T) and we see
that F(0) = 0. Consequently, the operator

fo [KMIEQ)f = [F(+2)aB()

is of the form f — f xk, where ke I}(G).
. Now, since L is homogeneous of degree 2,

ofK(tA)dE(/l)f=f=kk,,
0

where
k/(g) = t—leK(a,—uz )

with @ = (2+d)(5+d)/2, and so k, is an approximate identity in I!(G), as
t — 0. Hence, by (1.1),

(3.6) limllx‘(kJ(p—(pHLp(m =0Q for pel’(R).
=0

Now we argue as in [9] (cf. also [2] for further applications) to derive the
theorem mentioned in the introduction.
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Two weighted estimates for oscillating kernels I
by
W. B. JURKAT (Syracuse, N.Y.) and G. SAMPSON (Auburn, Ala)

Abstract, In this paper we wish to determine those nonnegative weights w, v for which
TS N € € 1S M Where [ [lye = ({1 fu(nyde)!", The operator Tf (x) is a convolution transform
with kernel

Koplt) = (L4170, a> 1.

Here, we study the cases where b € 1—~a/2. Thus, we solve certain two weight problems for a
wide class of transforms which includes the Fourier transform. The results agree with our earlier
results on the Fourier transform,

§ 0. Introduction. In this paper we solve certain two weight problems for
the kernels

(0.1) Kop(t) = (L+]g)70 e, a>1,

where n (a positive integer) coincides with the dimension of the variable t, i.e.
te=(ty, tgy ornn th |t = +1h+ . +tD)V2 Also, let | = max, j<alt]. We
set

Tf (x) = {K(x—1) f(t}dt
and we wish to determine those weights w. ¢ for which
T Nlgow < 1l fllpwr Where [lgllsu= ([llglPu(0)di)'.

In this paper, we shall study the cases where b < 1—a/2, The arguments
here work for a class of kernels more gegeral than those defined through
(0.1). This class is stated explicitly in Remark 1.6. The case where a =2 and
b =0 in (0.1), which is identical to the Fourier kernel, is included among our
results here (see eg. Corollary 4.12). Hence this argument will furnish
another way to solve a two weight problem for the Fourier transform, and
agrees with our results in [4], but is general enough so that it works for a
wider class of transforms.

Here, for the most part we shall just discuss the cases where n=1 or 2.

We say a function u(t) is radial if u(t) = u(|t]). Furtbermore, we say the
radial function u(f) is essentially decreasing over some region Q if

u(ty) = cu(ty)  where |t)] < |tal, 8y, t2€,
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