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The generalized skew product T(x, y) =
tor

(h(»), T.(y)) has the*l-sided genera-

a = {[Oa 3'] 8? 4] (4: E] (E> ?‘] ) I] (%a %]: (%a 1]}
x{[0, 11, G. 11}

because T | C is expanding for any Cea. By Jr;1 5 1, the transformations
T, do not preserve the measure my.
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On the space of Bloch harmonic functions
and interpolation of spaces of harmonic and
holomorphic functions

by

EWA LIGOCKA (Warszawa)

Abstract. We prove that the orthogonal projection P from I*(D) onto I*Harm(D), the
space of square-integrable harmonic functions, maps L* (D) onto the space BlHarm(D) of Bloch
harmonic functions on D if D is a smooth bounded domain in R". We prove an interpolation
theorem which permits us to interpolate between Sobolev or Holder spaces of harmonic
functions and the space I Harm(D, |g|) of harmonic functions from I#(D, |gl"), where g is a
defining function for D. We prove analogous results for spaces of holomorphic functions on
strictly pseudoconvex domains,

1. Introduction and the statement of results. The present paper is the
direct continuation of [14] and [15]. First, let us recall some notation from
those papers.

For a bounded domain D in R" we denote by P the orthogonal
projection from I?(D) onto the space I?Harm(D) of square-integrable har-
monic functions. If D is a domain in C" we denote by B the orthogonal
projection from I?(D) onto the space I[?Hol(D) of square-integrable holo-
morphic functions (the Bergman projection). Harmj(D) is the space of
harmonic functions from the Sobolev space W,(D), —o0 <s < +o, 1 <p
< o0, and A,Harm(D) the space of harmonic functions from the Holder
space A,(D); analogously, Hol(D) denotes the space of holomorphic func-
tions from W;(D) and A, Hol(D) the space of holomorphic functions from
Ay(D). If D is a C®-smooth domain in R" then a function 0eC®(R") is a
defining function for D iff D = {xe R": g(x) <0} and gradg #0 on &D.

The space of Bloch harmonic functions on D consists of functions
harmonic on D such that

I[Alls; = S‘:IJJ(IQ(X)h(X)HIQ(X)grad h(x)) <0

for a defining function g. We denote it by BlHarm (D). If D < C" then
BlHol(D) denotes the subspace of BlHarm(D) consisting of holomorphic
functions.
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In the present paper we also consider the spaces L*(D, |g|*) of functions
f on D such that

vraimax |g|*| f| < 0,
b

and the spaces L Harm(D, |g[¥), s > 0 (L Hol(D, |g*), s > 0), defined as the
subspaces of (D, |g¥) consisting of harmonic (holomorphic) functions.

In [14] we proved that if P maps continuously L*(D) onto Bl Harm (D)
then the space BlHarm(D) is the “vertex” of the double interpolation scale
formed by the spaces Harmi (D), 4,Harm(D) (as the right column) and
L?Harm (D) = Harm{(D) (as the bottom row).

In [15] we proved that if D is the unit ball in R" then P maps
continuously L” (D) onto Bl Harm (D). It was done by explicitly writing down
the kernel of the operator P and estimating it. We are now going to prove
the following general

TueoreM 1. If D is a bounded domain with smooth boundary in R", then P
maps continuously L®(D) onto BlHarm (D).

Theorem 1 is a consequence of the estimates from [14] and of the
following

ProposiTION 1. Let D be as above and let 0 <s <1, Then P maps
continuously L*(D, |g) onto L®Harm(D, |g}*).

Theorem 1 yields the following

CoroLrary 1. BIHarm(D) represents the dual to the space L' Harm(D) of
integrable harmonic functions via the pairing (u, v)y = {u, L' vdy, where
{s Do is the usual I* scalar product and

2
Dy=yig{ 20P
o (Igradalz

is the operator introduced by S. Bell in [4] (Cu, v)y = u, vdo if both u,
v belong to I* Harm(D)).

Remark E. Straube observed that if ue I Harm (D), ve BlHarm (D),
then

(G vyy = m [u()GdY, = u, 03y,

e»0% D,

where D, = {xeR™ g(x)+¢ <0} €D. The pairing <<, >> was introduced

by E. Straube in [17] and used to study the duality problems (see [17], Th,

3.4 and the following remarks).
The next part of this paper will be devoted to the extension of the
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double interpolation scale described above. If E, F are Banach spaces then
we denote by [E, Fly, the value of the complex interpolation functor at 6,
0 <6 <1, and by [E, F] the completion of [E, Flig; with respect to E+F.
(For the informatfons concerning the complex interpolation functor see [5]
and [8])

In [14] (in [10] for p = 2) it was proved that for every integer k > 0 the
mapping TLu=¢*u maps Harm{(D) into W:**(D), —o0 <s <o, and
A;Harm(D) into Ay, (D). Here we prove the following.

ProposITION 2. Let k> 0 be an integer. The mapping Ryu = P (g*u) is an
isomorphism between Harm$ (D) and Harmi**(D) and between A,Harm(D)
and A Harm(D) for s>0, and extends to an' isomorphism between
Harm$, (D) and Harm$**(D) for s <0. Moreover, R, is an isomorphism
between BlHarm (D) and A, Harm(D) and between L*Harm(D, |of) and
Ay-sHarm (D) for 0 <s < 1.

Proposition 2 has interesting consequences. The results proved in [14]
yield that Harmj (D) is equal to IF Harm(D, |¢|~*) with an equivalent norm
if s <0.In [15] it was proved that Harmj(D) = I” Harm(D, |g|™*%) for 0 < s
< 1/p if D is the unit ball in R". However, the proof from [15] (part c) of the
proof of Theorem 3) remains valid for every smooth bounded domain in R".
On the other hand, the Poisson formula gives an isomorphism between the
Besov spaces: B;,,'/7(0D) of the traces of functions from W:(R" on oD and
Harmj(D) for s>1/p, and between the Holder spaces A,(0D) and
A;Harm (D) for s > 0. Thus we get the following

CoroLLARY 2. B ,Y'?(@D) is isomorphic to I? Harm(D, |g|"*~9) for every
integer k > s > 1/p.

A(0D) is isomorphic to L*Harm(D, |o|*"™) if s~[s] > 0 ([s] denotes
the integer part of s). If k >0 is an integer then A,(8D) is isomorphic to
BlHarm (D). It should be mentioned here that A, Harm (D) consists exactly of
those harmonic functions whose kth derivatives belong to BlHarm (D).

We shall also prove

ProrosiTion 3. Let t >0 and t—[t] > 0. Denote by R, the mapping
Ryu=P(g|'y). Then R, maps continuously Harms(D) into Harm$*(D)
and A;Harm(D) into Ay, Harm(D) for s = 0.

CoroLiary 3. The projection P maps the set {jgl' f: fe W3 (D)} into
Wit (D) for t <0 and s> 0, and the set {|of f: feA,(D)} into A,,,(D) for
s>0and t > 0.

We do not know whether the mapping R, from Proposition 3 is an,
isomorphism between Harmj(D) and Harm;*'(D) or between A, Harm (D)
-and A,,, Harm (D).

Proposition 2 yields the following interpolation theorem which extends
Theorem 3 of [14]: :
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THEOREM 2. Let D be a smooth bounded domain in R". Then:

where 0 <0 < 1,

1-0 6
1 <py,pp <0, —0 <8y,8, <00, t =(1—0)s, +0sy, ~——+— =1
Pt P2 ¢

where r > 0,

1) [Harm); (D), Harm,} (D)] = Harm}(D),

2)  [Harmj (D), 4, Harm(D)]e = Harmj (D),
0<f<1,1<p<oo, —o <5<, q=~1——l~)~é, t = (1~ 0)s+0r.

3) [Harmj(D), BlHarm (D)}, = Harm! (D),  where

0, p, s are as above, t =(1—0)s, =—1~B~—.

~6
4) [Harmj(D), L* Harm(D, |o|")]i = Harm} (D), . where

0,p,s are as above, 0 <r <1, t =(1—0)s~0r, g =T—p_6'

5) [4sHarm(D), L* Harm(D, |o[")]
= A(l—e)s—ﬂr Harm(D)
= Bl Harm (D)
= L*Harm(D, |g"), t = Or—(1—6)s,

if (1—-6)s> 6r,
if (1—0)s = 6r,
if (1-0)s < 0Or.

Since I Harm(D, |g|") = Harm; "?(D) for 1 <p< oo and r > ~1, the
above theorem permits us to interpolate between I?Harm D, lal), r> -1,
and the Holder and Bloch spaces of harmonic functions, All the above
results have their counterparts for the Bergman projection B and for spaces

f)f holomorphic functions on smooth bounded strictly pseudoconvex domains
in C". The following facts hold:

PrOPOSITION 4. Let D be a bounded strictly pseudoconvex domain with C*-

smooth boundary in C". Then the Bergman projection B maps continuously
L*(D, lo) onto L*Hol(D, (o) for 0 <s < 1.

c T;;IEOREM 3. Let D be a smooth bounded strictly pseudoconvex domain in
". Then:

1) [HoL) (D), HoL2 (D), = Hol (D),  where 0 <9 < 1,

-0

1

1<P17P2<00, —00 <8¢, 8, <0, t=(1—0)51+632, 1 +~0.=_1_
P2 4
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‘ 2)  [Hol;(D), 4, Hol(D)]je = Holi (D), where 0 <8 <1,

l<p<oo, —0<s<oo, r>0, r=(1—9)s+0r,‘ q=]—§5.
3) [Hol;(D), BlHol (D)l = Holy(D), where
0, s, p are as above, t =(1—0)s, qzl—i—e.
4) [Hol; (D), L® Hol(D, o)) = Holy (D),  where
0,s, p are as above, O <r <1, t =(1—0)s—0r, ¢ :1—5—5.

5)  [4,Hol(D), L*Hol(D, |o)]
= A - gs-o- Hol (D)
= BlHol(D)
= L*Hol(D, |g[), t = Or—(1—10)s,

if (1—6)s > 6r,
if (1—6)s =0r,
f(1—0s<0r (s>0,0<r<l).

We have IPHol(D, |g|") = Hol,"?(D) for 1 <p < o and r > —1, so we
can interpolate between IPHol(D, |gI) and Hélder or Bloch spaces of
holomorphic functions. Theorem 3 is an extension of Theorem 8 from [14].
If D is as above, then Propositions 2 and 3 together with Corollary 3 remain
valid if we replace the projection P by the Bergman projection B and the

 Sobolev spaces Harm? (D) by the spaces Hol? (D). We shall end this paper
with remarks concerning some applications of the above results.

II. Proofs.

1) Proof of Proposition 1 and of Theorem 1. Proposition 1 will
be proved in the same manner as Proposition 2 in [11]. Let
feL®(D, |g) n C=(D). In [11] it was proved (in the proof of Proposition 2)
that Pf = Av, where v is a biharmonic function on D such that

~ 1(dY, _
0 = R et~ 1O
) o)l (Bo/on) () dV,
5(”_3"%0))“1{ (x—yP+e(x) e ()" =¥ 0)

for yedD. We can assume that |Fgl=1 on 0D. We shall show that
wiedy-o(D) and [wylla,_ o SIS , and that wyed;_ (D) and

Wall 4y - 2y = 1l o, oy

L®(D,el%)
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We have for all i,j<n
& )'~ }c 7 S @le () v, '
lay.- dy; »0)|= 8y; plo()*(x—y2+e(x) e ()'*~!
av,
< eslf oo, | o= =3+ 2 G2 G

The last integral can be estimated in the following manner:

av,
[P P+ e @)™
(1-17al* (x)dV; |Pal* (x)aV,
- i]g(x)|’(|x—,"|2+Q(X)Q(LV))"/Z zj;Ie(x)l’(lx-ylz+a(X)Q(y))"’2

o= av,
<6 (s[(lx—yP @)

(B0/0x) () (8/3x) (—le ()| "s)de>
+£Z (x—y*+e(x) e (M) '

The last integral can be estimated via integration by parts by

| le()i*dY,
p(x—yF+e(x)e ()1

It now follows that the whole expression can be estimated by cs/lo (y),
which can be proved in the following way. There exists ¢ > 1 such that |o(x)

-e(y) < \/C_lx—yl. Hence
(@™—e0)f = ¢*(9)+e* ()2 (Me() < clx—yl*.

Thus

e®)e0) | ¢ (+e*0)

- 5 Fx—y?

and

[ o1~
(x=y*+e()eOI"** 172 = (Ix—yI*+ o (x) o (/) T*+ 172

< . < < .
C (x=yP @2+ ROV T (=Y e P )TV
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If R >diamD then for every yeD,

eCor ey, A
px—yP+o(x)o()y?Hir ™ B (X =P+, @2 ()T

av, C3
1 I (I 2 2 n/z+s/2< e
somy IXx=y*+cs0 ()’)) le(!

—

<c

Hence by the Hardy—Littlewood lemma wi€d;-5(D) and w4, )
Sl poip, oy

Exactly the same kind of estimates permits us to show that wyeA;_ (D)
and ||woll 4, _ypy S ”f“L“’(D,IaI’)‘ The estimates from [1] yield that the bihar-
monic function v belongs to A,_,(D) and

ol 4y _ 0y S ”W1||A,__,(ob)+”W2”AI_,(.’D)-

Thus lollay - oy S ”f“L"’(D.IeI‘)' The lemma from the proof of Theorem 2 of
[11] implies that Ave L=(D, |gf). Since Pf= Av we have

WES Nl op, gy < € 1S |y, s for €ach fe L2(D, |gl%) N C=(D).

But for every feL*(D, [of) we can find a sequence of functions f,e C*(D)
such that f,— fin IP(D), 1 <p <1/s, and

fall Lo, ey = Nl ogp pqpsy  ~for €ach m.

Hence ||Pf||Lm(D,|a',) < c”f“L“’(D.lnl’)' and Proposition 1 is proved.

In order to prove Theorem 1, it suffices to make the following observa-
tions:

(@) [L*(D, lgI'), L™ (D, loI™9152 = L™ (D).

(b) By the lemma from the proof of Theorem 2 in [11], for each
1<i<n the mapping f—(§/dx)Pf maps continuously L*°(D, lof) into
L=(D, |g|**9). '

(¢) By Proposition 2 of [11], the mapping f — (6/x)Pf also maps
L*(D, |eI™*) into L*(D, |g|* ™.

(d) [L=(D, [oI* ™), L*(D, laI* 9152 = L™(D, |el).

Hence, by interpolation, the mapping f — (9/8x;) Pf maps continuously L® (D)
into L*(D, [gf} for every 1 <i < n, and thus P maps continuously L® (D) into
BlHarm (D).

The proof of Corollary 1 is exactly the same as the proof of Theorem 1

in [15] or of Proposition 2 in [13].

3 — Studia Mathematica LXXXVIL3
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2) Proof of Proposition 2 and of Theorem 2. Let us consider

the operator
[
Hu=PlAd{ou—= ),
! ( (? lvm2)>

where ¢ is a function from C®(R") equal to 1 in a neighbourhood of dD and
equal to zero in a neighbourhood of the set {Fg = 0}. The operator H maps
Harm; (D) into. Harm$ ™! (D) for s > 1. We shall prove the following proper-
ties of H:

(a) ker H = {0}.

(b) For each integer k=0 the operator u— P(g"H*u) is a Fredholm
isomorphism of the space Harmy**(D), s = 0.

Let us prove (a). If Hu =0 then for every we I?Harm(D) n C*(D)

It follows from the Green formula that

1
IA<Qu|V|2)WdV _fuleI2 =0.

The last equality implies that the trace of u on 4D is equal to zero, and so u
=0on D.

We begin the proof of (b) with the following

LeMMA. The mapping f — P(¢* ) maps continuously W (D) into W3 *¥(D)
and A,(D) into Ay (D) for s 20 (k is an integer, k > 0).

Proof. Let r>0 be an integer. In [10], Remark 1, we proved the
following fact: Each feW; (D) can be written in the form

f=hoteh+ ... +o o +w,

where h;e Harm’,"!(D), we W;(D) and the correspondences f — h, f — w are
uniquely determined and continuous if the defining function g is fixed. In
[10] the above fact was stated and proved for p = 2, but its proof for p s 2
is exactly the same. As was mentioned in [14], w = ¢" v, where ve LP(D) and
the correspondence w — v is continuous. In [11], Remark 2, it was observed
that there exists a uniquely determined decomposition of fe A, (D),

f = ho+ohy +

where s = [o] (the integer part of «), hy € A, , Harm(D) and w belongs to the
space A, (D) of functions from A,(D) which vanish on 8D up to order [«].
This implies that w = |g*v, where ve L*(D).

+0° ht+w,
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We have

r—1

P(g*f) = Z P(@™*h)+ P v)  if feW; (D).

Theorem 1 and Proposition 1 of [14] yield that ¢'**he W;**¥(D) and
P(¢""*v)e Harm},"*(D). The results of [11] imply our lemma for /e 4, (D) in
exactly the same way. Interpolation permits us to prove the lemma for
W, (D) when s is noninteger.

We shall now prove (b) by induction on k. For k = 0, H* = Id and (b) is
obvious; suppose that (b) holds for k—1. We have

P(¢*H*u) = P(Q"PA (gH""‘u Qil))
- -1 _ k 2 -1, P
_p(gu (QH» w le» P<Q 46,4 (QH quP))
= P(Q"A (QHbluIVQ]z))—F;,u.

Our lemma implies that the operator F; maps continuously Harm$**(D) into
Harmj*** (D) since 42(gH* *ug/|Vo|*)e W' (D) and thus

!

4G, A? (ng-lu hd )e Ws*1(D),

I7el*

where G, is the operator solving the Dirichlet problem A%u = f on D, u
= fu/dn = 0 on 0D. Hence Fj, is a compact operator from Harmj**(D) into
itself.

Since P(d¢**' H* 'u ¢/|Vo?) =0, we obtain
Ld ))= —kP(g* ' H*1u)+ Fyu,

P "A(H"“‘u
(Q ¢ [Val?

where Fy maps continuously Harm$"*(D) into Harm$™***(D). This follows
by an elementary calculation from our lemma and from the fact that ¢ =1
on a neighbourhood of éD. Hence

P(¢*H*u) = —kP(¢* L H* ' 1)+ Fpu,

where F, is a compact operator from Harms**(D) into itself. By the inductive
hypothesis u — P(¢* H*u) is a Fredholm operator. We have ker P(g* H*u) = 0
because ker H = {0}. Hence u— P(¢*H*u) is an isomorphism and (b) is
proved.

Observe that we have already proved the first part of Proposition 2. The
above construction applied to the Holder spaces A, Harm (D) gives the proof
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of Proposition 2 for these spaces. Proposition 1 together with the above
construction and interpolation gives the proof of the last part of Proposition
2. The details are exactly the same as above and thus are left to the reader.
Hence it only remains to prove that R,u = P(¢*u) extends to an
isomorphism between Harm{ (D) and Harm:™*(D) for s <0.
Assume first that s+k < 0. Theorem 2 of [14] implies that for every
heHarm$ (D) N C*(D)

IP@ Mllsse = sup  [KP(@"h),v)l= sup [k, Plg“v))l
vetlarmg 5~ K(D) veHarmg S~ k(D)
lloli<t Ilvll s1
_ b
= [lIAlll, =777

Since v— P(g*v) is an isomorphism between Harm;* (D) and
Harm, *(D), the norm |||Afll is equivalent to |[Al}. The functions from
Harm;, (D) n C*(D) are dense in Harmj (D). Hence R, extends to an isomor-
phism between Harm, (D) and Harm$™ (D) if s+k < 0.

We now use Remark 4 from [14] to interpolate between Harmj*(D)
and I[PHarm(D), and Theorem 3 from [14] to interpolate between
IFHarm (D) and Harmf (D). This interpolation gives the rest of the proof of
Proposition 2. .

We can now prove Theorem 2. For s, sy, 5, > 0 Theorem 2 was already
proved in [14] (see Theorem 3 and Proposition 3). If, in 1), s, or s, is
negative, then we have by Proposition 2

[Harm,, (D), Harm;? (D)]q) = R;"* ([Ry(Harm}}, (D)), R, (Harmj2 (D))];s))

=Ry ! ([Harm;11+k

sytk
(D), Harm,?
In exactly the same manner we prove the other four items of Theorem 2
always using Proposition 2.

Remark. It follows immediately from Proposition 1.5 of [18] that the
operator H defined above does not depend on the choice of a defining
function ¢ or of a function ¢. The operator H seems to be an important one.
It not only defines an isomorphism between Harmj, (D) and Harm?™* (D), but
also has the following property: If u, ve Harm}/?(D) then

fuvdo = (Hu, v)o = <{u, Hv),.
a

Thus it is also useful in the study of Hardy spaces (see Remark 2 at the end
of this paper).
3) Proof of Proposition 3 and of Corollary 3. In the case of

Sobolev spaces we prove Proposition 3 and Corollary 3 for integer s by
induction with respect to s.

(D)Jig)) = Ry * (Harmi**(D)) = Harmj (D).
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“If 5 = 0 then Proposition 2 of [14] is exactly the needed result. Suppose

now that Proposition 3 and Corollary 3 hold for each sy <sand t > 0. Just
as in the proof of Proposition 2, we have

P<A (IQszhI—V%>>=O for he Harms** (D).

~ Hence

(t+1)(t+2)P(lQI‘hfp)=(t+2)[2p< P.Q_E’imel’“)
i

ox; 8x; |Vol?
t+1 ___(P_ t 6_Q_Q._ _io__
tF ("‘"Q’ hngP)”P ('Q' N (lmz»]

2y Ot 0 (@ t+2 ¢
+27 1o ;T&T&(wmz»” (1 hA(WW))‘

By the inductive assumptiori the operators on the right map W;*'(D)
continuously into Harm$"**(D). Since P(|gf k) = P(|of' ol +P(la'(1— o) h)
and ¢ =1 in a neighbourhood of 8D, Proposition 3 is proved for s+1.

In order to prove Corollary 3 in this case we take the same decomposi-
tion of fe W;*!(D) as in the proof of Proposition 2:

f=he+Y &'h+g* v, heHarm$ 't (D), ve7(D).
i=1
Thus
lol' £ = el ho+ ¥ (= 1) [el ™ by +(= 1) gt =+ 1p
i=1

and Proposition 3, together with Proposition 2 of [14], yields the required
result.

The same procedure permits us to prove Proposition 3 and Corollary 3
for Holder spaces. The only difference is that in order to start our induction
we must observe that Proposition 2 from [11] implies that h— P(|g|* h) maps
L*(D, |oI*) into A,_,(D) if t>s and into L*(D, [o|*™" if £ < s.

4) Proof of Proposition 4 and of Theorem 3. The proof of
Proposition 4 is based on the same methods as the proof of H5lder estimates
for the Bergman projection in [9] and Bloch norm estimates in [13]. In
order not to repeat ourselves we outline it very briefly.

In [9] we used the Kerzman-Stein integral formula [6] to construct
another projection G from I*(D) onto L?Hol(D) and we got the representa-
tion

Bf =(1~(6-GY) ' G*/ = G(I+(G-G""")f.
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'We proved that G is an integral operator with kernel G(w, ) holomorphic in
w and such that |G(w, 2)| S I/[F (w, z2)—ea(2)|"" if w is sufficiently close to z
and to 0D, where

n

0
Fiw 9= 3 5.

i=1

wi)+'2'za % W=z} (z;—w)).
Hence the operator G— G* is also an integral operator and its kernel A (w, z)
satisfies the estimates

1 1
v g—a@prm  Eade A A=

if w is near z and near OD.
We shall need the smooth change of coordinates v(z) used by S. Krantz
“in [7]:

e, 2) = Fiw, 0@

v =0(2)—o(W+iImF(w, 2) =ty +it,,
U =ty g Fily,
v(w) =
and next the spherical coordinates in the variables

r=ti+...+t}, t;=rcos.

tZs ey tZru
We then have

|F(w, 2)—0(2)] =
Now we have for _fe L*(D, o), 0 <s <1,

c([—ts+2]eW)+ @ +rD]*+r% cos? )12,

G(w, z) |G (w, 2)|
& 0l = oG oar %

From Krantz’s estimates [7, 9] it follows that there exist ¢ and R indepen-
dent of w such for all fe L*(D, |g|) and weD

0@ SV, | <y |

16 00< €11V,
low]  RZ-1H12 F2n=2gin20=3 g 4
X dt dr
J, a[ g(-m|e<w>|)*([2|g(w)|~t1+n+r’]?+r200820>‘”“”2

By putting s =cosf, we can estimate the last integral by

le(w)| ®2-HN2 P22 4o
I dt, .f dr I 2 2%, 2 2\nt1)2"
R 0 (=t +lew)) (2leW)—t;y+ 13 +r2 +12s Yo

icm

Bloch harmonic functions 235

After the same elementary estimates and mtegratlon with respect to s and r
as in Krantz [7], we get the estimate
le(w)|

111l o, g5, 1 Al 00,1619
TN | TR Qe =) S el

Thus G maps continuously L*(D, [gf) into itself. In exactly the same manner
we can prove that

Nl ANl Lo s
G_G* g L*D, 0["), et 3 < LD, e} ).
I( )f W) eoIF lgrad (G—G*) f (W)l S et

This last estimate implies that G—G* is a compact operator from L*(D, [g)
into itself. Hence I —(G~—G*) and I +(G —G*) are Fredholm isomorphisms of
L?(D, o) and B = G(I+(G—G*)"! maps continuously L=(D, |of) onto
L*Hol(D, |gf), 0 <s < 1. Proposition 4 is proved.

Theorem 3 is now a direct consequence of the regularity of the Bergman
projection in Sobolev and Hélder norms, of Proposition 4 and of the fact
proved in [14] that for all s <0 and 1 < p < oo, the projection B extends to
a continuous projection from Harmg(D) onto Hol (D). Hence Theorem 2
implies Theorem 3.

5) Proof of Propositions 2 and 3 and of Corollary 3 for
spaces of holomorphic functions. The fact that f — B(lo] f)
maps W; (D) into Hol,"$(D) and A,(D) into 4,,,Hol(D) forr, s> 0if Dis a
smooth bounded strictly pseudoconvex domain follows immediately from
Proposition 3 and Corollary 3 since Bf = BPf. We must only prove that if k
is an integer then h— B(g*h) is an isomorphism between Hol® 5(D) and
Holi**(D) and between A,Hol(D) and A, Hol(D).

The proof is the same as that of Proposition 2 for harmonic functions
with one significant difference.

We define
14
a0 =(s (o)

and in the proof of (b) we show that for ueHoli"*(D)

: o, . @
B(o* H*w) = B "A(H" 1y, ))-B("TGA(H"’u ))
@ Hw (Q ¢ [Pel? ¢ ¢ Vel
= —kB(¢* "' H*"'u)~Fu,

where Tw is the canonmical solution of the &-problem 0Tw =w,
Tw L I*Hol(D), and F maps continuously Hol$"*(D) into Holy™**Y/2(D) and
Ay +x Hol(D) into A, 4y+1/2 Hol(D). Then the same procedure as that used for
harmonic functions shows that u— B(g*u) is an isomorphism between
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Hol5(D) and Hol5**(D) and between A, Hol(D) and A, , Hol(D). Theorem 3
and duality arguments now yield that u — B(¢*u) is an isomorphism between
Hol; (D) and Hol5**(D) for all s and p, 1 <p < co. It can also be proved by
use of Proposition 4 that u— B(g*u) is an isomorphism between
L®Hol(D, |g|*) and A,_,Hol(D).

The fact that Fu = B(¢* T04 (ou)) maps continuously Hol§"*(D) into
Hol5***1/2(D) follows from Kohn’s estimates of the canonical solution of the
d-problem (see [5a]) and Proposition 3. It was proved by Henkin, Grauert
and Lieb that there exists an operator T; solving the Z-problem which maps
Ayy0,1y(D) into A,.q,(D) (see for example [7] or [2]). We have T=(I
—B)T,. Since B maps A4, (D) into A, (D) (see [2], [16] or [9]), Proposition 3
implies that F maps A4,.; Hol(D) into Ay +i+172 Hol (D).

I Remarks. , '

1. Proposition 4 and Theorem 3 remain valid if we replace Hol; (D),
4,Hol(D), L®Hol(D, |¢|), BlHol(D) by the spaces PH; (D), A, PH(D),
L* PH(D, |ol*), BLPH(D) of functions pluriharmonic on D (ie. of functions f
on D with 89 =0) or by the spaces Re Hol; (D), ReA,Hol(D),
Re L* Hol(D, |g), ReBIHol(D) of the real parts of holomorphic functions,
and the Bergman projection B by the orthogonal projection Q from I2(D)
onto I? PH(D) or by the real projection S, from L2(D) onto Re [? Hol(D) (cf.
[12] and [13]).

2. Theorem 1 implies that all results of [15] remain valid if we replace
the unit-ball in R" by an arbitrary smooth bounded domain in R" In
particular, Theorem 3 of [15] which is an extension of Theorem 5.12 from
[3] remains valid for such general domains.

The proof is the same as in the case of the unit ball except the lemma in
the proof of part (b) of Theorem 3 in [15]. We now prove this lemma in the
general case.

Lemma. Let Harm?(0D) denote the Hardy space of harmonic functions on
D with trace on 0D belonging to I7(0D), 1 < p < oo, Then:

(a) Harm?(0D) = Harm}”(D) if 0 >p > 2.

(b) Harm?(0D) > Harm!?(D) - if 1 < p < 2.

Proof. (a) It is well known that Harm?(4D) = Harm}/*(D). We also
have Harm*(8D) = Bl Harm (D). Theorem 2 implies that

Harm®*(8D) = Harm§3(D), 0 <6 <1.

(b) We can assume that the defining function ¢ of D is such that |Vo| = 1‘
on &D. In the proof of Proposition 2 (part (a)) we have already proved that

_ o \_ ®
uwdo = [A|gu—— |wdV = [P 4 —— 1 |1WdV = (H
aj;) Jj; (Q |VQ'2> £ ( (Qu|VQ’2)>WdV CHu, who.
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We have

w = su wd
H ”Hurmp(ﬁD) uEHarmE(BD) |aj):) w o.l

llull <1

= sup [{Hu, who| < c|lwll}’?,
ueHarm4(aD) '
llulf <1

since ¢ = p/(p—1) > 2, Harm?(dD) = W;%(D), the mapping H maps conti-
nuously Harmg"(D) into Harm}~*(D) = Harm, ¥?(D) and

Iwllz? =" sup  [<v, w]
veHarmg 1/p(D)
el €1

(<, D1=¢<, Y on I?Harm(D)).

3. Proposition 1 yields immediately that L*Harm(D, |g[), 0 <s <1,
represents the dual to I! Harm(D, |¢|™%) via the pairing <, >,. The space
It Harm(D, |o| ™9 is the closure of I? Harm (D) in L!(D, |g|™%). Hence we get
the following interpolation theorem “dual” to Theorem 2:

[L* Harm (D, |o| "), Harm (D)} = Harmjty3% (D)

for —o0 <r<l1, —0<s<+ow, 1<p<oo.

The same fact remains true if the spaces of harmonic functions are
replaced by spaces of holomorphic or pluriharmonic functions on a smooth
bounded strictly pseudoconvex domain D (see Theorem 3 and Remark 1).

Addendum. In our next paper On duality and interpolation for spaces of
polyharmonic functions we shall prove that I! Harm (D) represents the dual to
BI1° Harm (D) which is the closure of C® (D) N Harm (D) in Bl Harm (D) via the
pairing (v, u>,, ve I} Harm (D), ue BI° Harm (D). If D is a strictly pseudocon-
vex domain in C" then L! Hol(D) represents the dual to B1°Hol(D) which is
the closure of C®(D) N Hol(D) in BlHol(D), via the same pairing. The space
B1°Harm (D) can be characterized as the subspace of BlHarm (D) consisting
of functions u for which ggradu —0 as ¢ — 0. The same fact holds for
BI° Hol(D). In particular, if D is the unit disc in C then BI’Hol(D) is equal
to the classical Bloch class B,. Straube’s observation (see Remark after the
statement of Corollary 1) yields that

o, udy = lim [uf, D,={xeD: |o(x)|>¢}.

e~pt Dy
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Nilpotent Lie groups and eigenfunction
expansions of Schrodinger operators II *

by
ANDRZEJ HULANICKI (Wrodaw) and JOE W. JENKINS (Albany, N.Y))

Abstract. Let % = —d?/dx*+|P(x)|, where P is a polynomial of degree d-+1. Following
the general pattern of [9] and using new estimates proved in [3] the following theorem is
proved.

THEOREM. Let 4y <A, ... be the eigenvalues corresponding to the orthonormal basis
@1, 2, ... Of eigenfunctions of & in I*(R). Let KeC>(R), with K (0) = 1, be such that for some
y>1and R>0

>

sup(L+ A * VKOG < R™(nlp, j<non=1,2,...
>0
where s = [(2+d)(5+d)/4]+ 1. Then for every feI’(R), 1 < p < o0, we have
tim(| 2 K@)(f, 0 0=, =0
10 p=t

. In our previous paper [9] we used nilpotent Lie groups to obtain results
on the summability of eigenfunction expansions of Schrédinger operators
on R" whose potentials were sums of squares of polynomials. In an attempt
to prove similar results for operators with more general potentials we investi-
gate here the operator

2

d
£ = "a‘x‘fi'lp(x)l,

where P is a polynomial of degree d+1, say.

We believe that most of our present results are valid also in higher
dimensions but the technique used here is restricted to dimension one. Also
our summability results are weaker than those for operators considered in
[9]. An application of the methods of the present paper gives the following
theorem.

THeEOREM. Let Ay < A, <... be the eigenvalues corresponding to the
orthonormal basis @4, s, ... of eigenfunctions of % in *(R). Let Ke C*(R),

* This research was founded in part by National Science Foundation grant DMS 8501518,
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