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Multipliers in complex Banach spaces
and structure of the unit balls

by
KRZYSZTOF JAROSZ (Warszawa)

Abstract. Let X be a Banach space such that dimMult(X) = ¢co. We construct an into
isometry from the space ¢, or ¢ into X; we also prove that the sum of the images of such
isometries is dense in X.

1. Introduction. Let X be a complex Banach space. We denote by B(X)
the closed unit ball in X and by E(X) the set of all extreme points of B(X).
By a multiplier on X we mean any continuous linear map §: X — X such
that there is a function ag: E(X*)— C with

§*(x*) = ag(x*)x* for all x* in E(X™).
Note that ag is uniquely determined, bounded and can be extended to a
weak* continuous function on 4 := E (X*)\{0}, where the closure is taken in

the weak* topology. Mult(X) denotes the algebra of all muitipliers on X. It
is obvious that the map

Mult(X)3S —age C(4)

is an 'isometric algebra isomorphism from Mult(X) onto a closed subalgebra
of C(4).

Multipliers have been investigated in different branches of mathematics
([1-3, 5-6]). The fundamental result in this field states that any Banach space
can be considered, in a canonical way, as a module over Mult(X). If
Mult(X) is finite-dimensional we have

M) X=X,0X,®..0X, with [|(x;,..., %)l =sup {lIxh: 1 <j<k}

where k = dimMult(X) and Mult(X;) = C- Idx for 1 <j<k. In [3] Beh-

rends proved that if dim Mult(X) = co then for any ¢ > 0 there is a lingar
map &, from ¢y, the Banach space of all sequences convergent to zero, into
X such that ||d)| < ||®, (@) <1 +8)|]a|| for any aeco. In this paper we prove
that there is always an isometric embedding. This result gives an affirmative
dnswer to the problem whether Mult(X) = C-Idy for any strnctly convex
Banach space; To give more information about the structure of the unit
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sphere in a Banach space X with Mult (X) infinite-dimensional we prove that
for any xe B(X) there are, in B(X), isometric copies of B(cy) or of B(c)
arbitrary close to x; by ¢ we mean the Banach space of all convergent
sequences. '

2. The results.

Tueorem. Let X be a Banach space with dim Mult (X) = co. Then for any
xo€ X with ||xol| =1 and any &q > O there is an into isometry @ from cq or ¢
into X such that ||®(y)—
@.

CoroLLArY 1. Let X be a Banach space and assume that there is an open
subset U of 0B(X), the boundary of the unit ball in X, such that U does not
intersect any segment of length two contained in 0B(X). Then Mult(X)
= C'Idx.

Proof. By our theorem we get dimMult(X) < o0, and then from the
remark (M) we get dim Mult(X) = 1.

CoroLLARY 2. Let X be a Banach space and assume that B(X) contains
no. segment of length two. Then Mult(X) = C-Idy.

CoroLLARY 3. For any strictly convex Banach space X we have Mult (X)
= C-1dy.

Remark 1. Note that the theorem cannot be generalized to state that
“.. there is an into isometry from c, into X such that ...”. To get a simple
example put X =¢ and xo=1. =

Remark 2. Neither can the theorem be strengthened to “... ®(y) = X
for some y from the domain of @”. We give two examples of dlfferent nature.
The first one is taken from [7].

(a) X = disc algebra, i.e. the algebra of all continuous functions defined
on the closed unit*disc'D on the complex plane which are analytic in int D,
and Xo = 1.

(b) Let J:[0,11-R be a C* function such that
fO =1, f1)=0, fOO)=0fork=1,2,.
fis strictly decreasing.
Let X' be the disc algebra’ with norm glven by

lglll = sup {£ (1zl) lg 2)|: z& D}

and let X be the completlon of (X', [I'll). X can be represcnted, as a
subspace of Y = = {he C(D): h|a,,_.0} It is evident that E(X*) =D and
Mult(X) = H m(D) We prove that there.is no into isometry from c, nor from
¢ into X such that the 1 image. of the umt ball contains 1. To this end assume
tl}at P is. such .an 1somet1:y and et aeB(co) (aeB(c)) be such that ¢(a)

[RE LT

w i

Xoll <& for some y of norm one from the domain of
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=1eX' Let ¢} be the usval Schauder basis of the space c* =I' and put

ek c—C,  et((ay, ay,..)) =lima,.
We consider two possibilities: _
(i) There is exactly one n in Nuw {oo} such that |e}(a)] = 1.
(i) There are n#m in Nu{oo} such that |e*(a) = |e¥(a) = L.
Assume first that (i) holds and let becy, b # 0, be such that
lla+Ab|| < for all 1 in C with |4 = 1.

Any element of X can be viewed as an analytic, possibly unbounded function
defined on intD. Hence there is Age C, |4y = 1, such that the first nonzero
derivative at the point Oc D of the function Gy = 1, & (b) is positive. We have
also

go(z) = 2*(og+zh(z)) for z in D,

where k-is a nonnegative integer, a; > 0 and & is an analytlc functlon on'int D,
By our assumption we have

lla+Adabll <1, ®(a+dob)=1+g,.
To get a contradiction we show that [||{1+4gell| > 1. We have
11+ golll = sup {f (iz)[1 +go (2)|: zeD} : o

= sup {(1~[1—f (D] 1 +* (o +2h(2)): zeD} -

2z sup {|l+a,z—@(2): zeD} I
where oo am

@(2) = 2" @)+ (1= (2D) (1 +ao 24)

ﬁy our assumption about f there is C > 0 such that
Clz++Y

for zeD.
P(a) < if 2 < 4.
Hence

I +golll =

Assume now that (i) holds and let n# me N w {c0} be such that |e}(a)|
=|ep(a) = 1. Let F,, F, be the norm one functionals on X, given by the.
Hahn-Banach theorem, such that

en () =Fn(®(b), erb)=

for all b from the domain of ®. We have
Fu(1)] =ley (@) = 1 = [en(a)l = |Fpm (1),
and on the other hand Y = X s5g+F(g) =

= sup {[1+ao 2 ~ClZ**Y: |2/ < 4} > 1.

F,(®(b)

g(0)&C is the unique:norm one
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functional on X such that F(1) = 1(0) = 1; hence F, and F,, are proportional
which is absurd.

Remark 3. As was mentioned in the introduction, any Banach space X
is a module over some function algebra, and if X is actually a function
algebra, we get a trivial representation, i.e. Mult (X) = X. In this situation it
can be deduced from the Theorem of [7] that our theorem can be extended
as follows.

For any function algebra X
1) X = C(S) for some compact set S, or

2) For any compact metric space K there is an isometric embedding of

C(K) into X.

The above result does not hold in general. That is, there is a Banach
space X such that Mult(X) is a function algebra not of the form C(S) but
X* is separable, so X contains no C(K) space with K uncountable. An
example of such a space X is the space from Remark 2b. In order to prove
that X* is separable it can be shown that for any countable dense subset 4
of int D the set of all linear combinations of evaluations at the points from A
is norm dense in X*.

Finally, we note that we only consider the complex case since in the real
case all the results presented here are well known (and easy).

3. Proof of the theorem. Before proving the theorem we need some
definitions and notation.

For a Hausdorff space S by a function algebra on S we mean any
algebra of bounded functions defined on S, which contains the unit and
which .is complete in the usial sup norm topology. For any bounded
function f defined on S and any subset §' of S we define

Iflls = sup{|f (s): ses7}.
For any bounded subset G of the complex plane C we denote by G the
polynomially. convex hull of G, ie.

G ={zeC: p(2)| < |Ipll¢ for any polynomial p}.

For any such G we denote by A(G) the closure in the sup norm on G of the
algébra of ‘all polynomials. We obviously have A(G) = A6).
By ChA4 and 04 we denote the Choquet and Shilov boundaries,
respectively, of a function algebra A.
For a complex number w and a posmvc number r we put
o Dw, ) ={zeC: |z—w| <1}

‘and we: write::D.in-place iof D0, 1), - x - . e
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For any w # zeint D we define
Ao ={feAD): fW) =fW=F1D)=0=f(z)=f"(z) and f(z) =1}.

For any weintD we denote by B,, the corresponding Blaschke factor,
ie. '
B,(2) =(w—2)/(1—2zw) for z in D.

Our proof is rather technical so we divide it into a number of steps.
We will use the following propositions; the first three are well known.

ProrosiTioN 1. Let A be a function algebra on a Hausdorff space S. If
dim A = co then there is an f in A such that the set f(S) is infinite.

ProposiTioN 2. Let G be an open, bounded, connected subset of the
complex plane and assume that 3G, the boundary of G, is homeomorphic to a
circle. Then there is a homeomorphism g from G onto D such that g|g is
analytic.

CoRroLLARY. Let G be a bounded infinite subset of the complex plane. Then
there is a homeomorphism f in A(G) which maps G onto a set G' such that
G cintDuU {1} and 1 is a cluster point of G'.

Proof. By an appropriate translation of the complex plane we can
assume, without loss of generality, that 0 is a cluster point of G and that
there are no cluster points of G in the set C. = {ze C: Rez > 0}. The set K
of all isolated points of G is at most countable so there is a half-line L such
that LN K = {0}. By moving .G again we can assume that L = {ze C: Rez
20, Imz =0}. We define x: R— R by yx(t) =dist((t, 0), G). Then y is
continuous and

G {zeC: Imz| < y(Rez), Rez > 0} = {0}.
Hence using y, —x and some arc we can define a Jordan curve J such that
0cJ and G\{0} is contained in S, the bounded component of C\J. By
Proposition 2 there is a homeomorphism g, in 4(S), from S onto D and we
can assume that g(0) = 1. To end the proof we put f =g|s.

ProrosiTionN 3. Let A be a function algebra on a Hausdorff space S, let
feA and let ge A(f(S)). Then gofeA.

ProrosiTion 4. For any woeint D and any sequence (w,),%, in int D with
limw, = 1 there are a sequence f, e Aw,,,w and a sequence gn€ A, v, Such that
hmll fill =lim|lg,l =1 and f,— 1 and g,— Q _uniformly on compact subsets of
D\ {1}.

Proof. We need the following statement, which is an immedlate conse-
quence of Lemma 1 of [4]:"
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For any ¢ > 0 and any open neighbourhood U of 1 in D there is a p in
A (D) such that

Il =1+e, p(W)=1, Ipwl<e for weD\U,

[p—Re" pll<e
where for a complex number w we put Re* w = max (0, Rew).

Let w, be as in our proposition and fix any open neighbourhood U of 1.
Without loss of generality we can assume, in the above statement, that
wo¢ U and then, by putting (p—p(wo))® in place of p, we can also assume
that

P(Wo).=p'(wo) = p"(wg) = 0.

Fix" now. neN such that Rep(w,) = 1—¢ By the same argument as
above there.is a q in A(D) such that

g <1+e,  q()=1, llg—Re*q]|

<g,
for all weD such that Rep(w) < Rep(w,),

law) <&
q(wo) = 4 (Wo) = g" (wg) = 0.
Put

Fo==-apw)—awa), . fy=1-1-F).
By a dil'-e'ct"éomputation it is easy to verify that Fo€ Ay and |If]I <1
+ 1(X)E- Wy ) 4 . ‘ B
The construction of a sequence (g,)2, is analogous.
PropoSITION 5. Let A be a function algebra on a compact Hausdorff space
S, let 8" =S be a peak set for A -and let p be a lower semicontinuous and
strictly positive function defined on S with plg = 1. Then there is an fin A such
that f(s) =1‘1 for sgS',and I£. ()l < p(s) for seS\S". ‘ ,
. Proof. The above proposition is very well known in the case when p is
continuous [9, p. 61]. .. , 2
Let p be as in our proposition and let g: S~ R be defined by
ST § B for ses’,
s) =<,
4(s) {mf{p(s): seS}  for seS\S". -
We have g < p an_‘d\q is "tpper semicontinuous, 50 by the theorem' of Tong
[’10] there is a continuois function p'* defined on S such that '
. O0<gs<p<p - ,
T]fm function p'is eontinuous; strictly positive and P'ls: = 1, hence:there is an
fin 4 such that fig =1 and |f(s)| < P'(s) < p(s) for seSASL -

A
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For the proof of our theorem we also need the following lemma.

LemMAa 1. Let f be a real, nonnegative function defined on a set G
contained in the complex plane. Assume that 1€ G < intD U {1}, || fll¢ = | and
fW)—0 as w—1. Then for any &> 0 there are fe A(D), zoeG and 6 >0
such that

(i) I~ <e, M1 =1,
(i) LT W +81B2, W) < 1
Proof. Assume without loss of generality that ¢ < 0.1. Put
to = inf {t > 0: t(L—eRew) > f(w) for all weG},
and let zoeG be such that

for weG.

to(l—e Rezy) = limsup f(w).

wozg
Note that 1—~2¢ <to <1+2¢ and that by our assumptions z, # 1. Let
h(w) = k(w—ao)*

where k > 0 and aye C are such that the plane in C xR given by wrty(1
~&Rew) is tangent to the surface w —|h(w)| at the point (2o, 1—~Rezo). By a
direct computation we get -

k= e%to(1—Rezy)~ /4,
aq = Rezo+2(1—Rezo)e+ilmz,.

for weC

Hence we have
|1—h(w) <4e for any w in D.
Put
W) =klw—ao*—t,(1—eRew) for weC.

The map ¢ defines a rank two surface in R® = C x R which is tangent to the
plane C x {0} at the point zq, so for any sufficiently small §' we have

o(w) < 28'|lw—zo* for weD.
Hence
59(1—_852@+5’|w——20|2 <1 ‘for weD.
kiw—ay|

So to end the proof of the lemma it is sufficient to put = 1/h and to take
é > 0 such that : ‘ . :

. 0|B,,(W)I> € d'lw—20|* for any win D.
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Now to prove our theorem, fix & >0, x,60B(X) and assume
dim Mult (X) = co. By Proposition 1 there is a T in Mult(X) such that the
set G = ap(d4) is infinite. For any x in X and any w in G we define

£(w) = sup {|[x*(x)|: x*e4, ar(x*) = w}
and we extend £ to G by

£(wo} = limsup £(w) for woeG\G.

weG,w —wq
Note that X is an upper semicontinuous function on G and that ||x|| = ||%ls.
Mult(X) is isomorphic to a function algebra on 4 so, by Proposition 3, we
have f (T)e Mult (X) whenever f € A(G). Moreover, for any such f and for any
x* in E(X*) we have

*(f(T) () = f(ar) (x*) x* ().
Hence, for any fe A(G), we have
(% (F(D) W) =|f1%(w) for all w in G.

The above observation () will play a fundamental role in the whole proof.

The idea of the proof is the following:

Using “peaking” functions of the algebra 4(G) we construct a sequence
Xy, X, ... of norm one elements of X and a sequence Wy, Wy, ... of elements
of G such that %,(w,) = 1 and the supports of %, are “almost disjoint”, i.e. the
sets {zeG: %,(z) > ¢} are pairwise disjoint. Then, using (x), by the same
method as in Lemma 1 we perturb x, slightly to obtain a sequence Xy, X5, ...
of norm one elements of X also with “almost disjoint” supports and such
that we can estimate their behaviour near their peak points w/, ~ W,

O ,(w) < 1-6|B}; (w)

Next, by Proposmon 4, we find, for each ne N, a function g, from A (G) such
that ||g,/] is very close to 1 and

for all win G.

gn (wn) = 15 .
(W) =0 for n#m,
G(Wm) =g, (w,) =0 for all n,min N.

We put y, = (g,(T))(x;). By the Schwarz Lemma, for all w in G we have
o lgn(W) < (1+6) B, (w)] .
. lgn(w)—1| <(1+'3)|B2 (W)l

for n#m,

Hence for any w in G we get

) a(W) < 15" |BY (W), Fu(w) < &|BE, (W) - for ns m.
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Finally, using the “almost disjointness” of the supports of 7, and () and
(') we prove that

J.w)<1 for any weG.

=
ins

The above inequality, together with ||y,|| = 1, is equivalent to the statement
that
o0
003(‘11: az, )H Z Ay Yn

n=1
is an isometric embedding of ¢, into X and will end the proof.

We divide the proof into two parts according to-the following condi-
tions:

A. There is a cluster point ay of dG such that

lm X, (w) =
W"llo
B. For any cluster point a of 3G we have
limsup %o (w) > 0.

Part A. By the corollary from Proposition 2 and by Proposition 3,
composing 7T, at.the very beginning, w1th an appropnate analytic map we
can assume that

G cintDu {1},

1 is a cluster point of 4G,

X(w)—0 as w—1.

Let (w,);=, be a sequence of complex numbers and let (r,)i
sequence of positive numbers such that
(1)  w,edGnintD
2 limw,=1,
3)  D(Was 1) N Do T) = B
To simplify the notation we will write D, in place of D(w,, r,).

Put f =%, ¢ =¢¢/2 and let f,  and z,e G be as in Lemma 1.

By Proposition 4, taking an appropriate subsequence of (w,,),,,1 we can

assume without loss.of generality that there are f; in Aw zo and fnin 4, .,
such that :

be a

for all nin N,

for all n# m.

@ ||Hf,,”G 1484, |ﬁ'ﬁ,(w);1|<s iffo(u})‘ze,
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e [ ol <2,
© inf{B2,00): we U D} > 172,

(M |J1%w) <0015  for we Lj D,.

n=1
Taking r, smaller if necessary, we can also assume that
®) sup {!Bin(w)lz zeD,} = B6-0.01/2" for all n in N,

where § is an absolute constant which we will define later on.

We will now define an isometric embedding ¥ of ¢, into X in two steps.

In the first one we define a sequence (x,)7%, of elements of X such that
v 0
co3(ag ay, a3, .. ) Y a;x;€ X
. i=0

is an isomorphic embedding of ¢, into X with ||¥||||¥ Y| close to one, and
- in the second step, using the functions f,, f, , and f we slightly modify our
sequence (x,),=; to get a sequence (y,)=, in X which defines an isometric
embedding of ¢, into .X. o

We now define by induction a sequence (x,):2, of elements of X and a
sequence (z,);%; of elements of G such that

9 [1%d =1 = %,(z,,)
(10 %, (w)+151BZ Wi < 1
(1) £,(w) <0.015/2"+2

for neN,

for neN, weg,
for we G\D,,.

Assume we have defined x,, ..., x,_; and z,, ..., zy—y (if n =1 there is
no assumption). Put G, = B,,(G) and let pe A(G,) = 4(G,) be such.that
12 p(O=1=lple, Ipw)<0016/2"** for weG,\B, (D,).

Such a p exists since 0 = B,, (w,), w,e G and 9G, = B, (0G), and moreover
the Choquet boundary of A(G,) is equal to the topological boundary of G”.

By Propo‘sitionks we can also assume that

Wl <iw—1"* for win B, (D,).
Hence we can put the function wp(w)(1—w)® in place of p to get a
function in A4 (G,) such that (12) is still satisfied and moreover we have

13) P S 1-Rew for weG,AD(0, 1/2)

icm

Multipliers in complex Banach spaces 207

Let x§e E(X¥), x'e B(X) be such that
Ip oB,, (ar (x3) 2099, |x&(x)] = 0.99.
Put
¥ = (POBy, (T))(x)-
We have
1 = Iyl = §(ar (x¥) = 098.

We have 13“,"(53,,,,l =1dp and we can define g: G, — R by

7=1poB, |,

g=JyoB, =Ip|X'0B,,.
Put
to=sup{t = 0: 1-Rew >tg(w) for all w in G,]}.
By (13) we have t, < oo. Put gy =tog and let woeG, be such that
k 1-R‘ﬂWo =go(Wo);

such a ‘wo exists since g, is upper semicontinuous. From (12) and (13) we

" have
(14) woeB, (D), 09< to< 1.1.
Put
(w+ W —2)?
=7 f C.
h(w) 4(1—Rewy) or we

Note that the plane in C xR given by w —1-—Rew is tangent to the surface
w—|h(w)| at the point (w,, 1—Rew,). We put

2= (0B 102
1onn

P
A to)’*yﬁ

(16) . %,0B,, = go/ll

Hence we get

we have

(15) £, = 0B, to¥,

el = Illg = 1%, 0By I, = sup%(w) 3

<s 1-Rew . I'—Rew, -
SSPTRe T Thwo)
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and
JZ:n (Bw" (WO)) =1

so we can put z, =B, (wo) and (9) is fulfilled. Inequality (11) is a conse-
quence of (15), (12) and (14). To check (10) it is sufficient, by (15), to show
that

go (W)
17
an b
and since by the definition of ¢, and g, we have go(w) <
in G,, it is sufficient to show that

4(1—Rew)(1—Rewg)

+75|By, W <1 for weG,,

1—Rew for any w

(18) O — +10|B3, (W) <1 for weD.
Note that for wy =0 we have

4(1—Rew) ‘

W'*‘%lwfz <1 for weD.

By a direct computation it is easy to deduce from the above inequality that
there is a constant f' such that (18) is satisfied whenever [wo| < §'; on the
other hand, from (8) and (14) we have |w,| < % so to get (18) it is sufficient
to define B to be equal to f'

Now we slightly modify the sequence (x,)%,, which satisfies (9)~(11),
and we get a sequence (y,);2 o in X which defines an isometric embedding of
¢o into- X. To this end we put ‘

fO e I=—I1 f;n In =
y0=f0f(T)(x0)! In

[T fim

j=0,j#n
=g,(T(x), n=1,2,...
We have
Po= ]foﬂ Xo,  Pn =g %
By (4) and Lemma 1 we have
llyo =xolt = o~ o) llg = lI(fo F~1) Zollg < eo.

So to end this part of the proof we havé to show that the map @: ¢o—' X
defined by

®((ag; a,.))= Y 4y, for (ag, ay, ..)eco
. . Jj=0

is a well defined into isometry, We have:

Iyl = @) =1 forn=0,1,2, ...,
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so we only have to show that

(19) i() 1

i[\’Je

for any w in G.

From the Schwarz Lemma and by (5), for any n # m, we have

(20) lg. (W)l < 2|B2 (w)|

and by (8) we get

for win D

(21) lg ()11 < 31B3,( B2 (W) for weD,.

From (4) and (6) we also get

22) ' oWl <

23) [fowll <

Let w be any point of G\{J2, D,. By (11), (20), (22) and Lemma 1 we
get

o
1+361B2 (w)| ~ for weG\ L:le,,,

2|B2 (w)[ for weD.

0.016
W57 T2

™Ms

In(W) =

o

o+ 3 I 5,00 < 1fll 71042 3 18,

<|fol(1 5IB (W)l)+001513 (W)
< (1+381BZ,wW))) (1 —81BZ, (W))+0.018 | BZ, (w)] <

Assume now that weD,; successively by (23), (7), (20), (11) and (21) we
get

n

3 5000 = oll71 50+ 3 10a09)%, 00

<2AB,0-000042 § B (w)|2,32+|gk(w)|xk<w)

n=1,n%

< 0.038 | B2 (w)l+(1+0035]B (W)) (1—0.1|BZ (w)]) <

Part B. For this part of the proof we need the following two auxiliary
results. The first one is an immediate consequence of the Michael-Pelczyniski
theorem [7, § 4].

TueoreM (Michael-Pelczynski). Let G be a compact subset of the unit
disc D and let (z;)j% be a sequence of distinct points from 0G such that z;— z,
as.j —co. Then, for any & > 0, there is a sequence (f)i% in A(G) such that
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Nl =1=f(z;) for alljin N,
'Z fj(w)—-1| <g for all win G,
j=1
and

e3(ay, ag, .. ) Y. 4 f;6 A(G)
j=1
is a well-defined into isometry.

LEMMA 2. Let G be a subset of D, let p be an upper semicontinuous
nonnegative function on G and let S = 0G n 0D ‘be a peak set for A(G) such
that pls = K > 0. Assume that there are an & >0 and a woeG NintD such
that )

(25) llple =1 =pwo), pw) < 1-2¢[B} (W) for win G.
Then there are fy, go in A(G) such that
(2600 fols=1, [lfo+go—1lis <4,
(27)  llpgolls =1 = pgo(wo),
w
@) oot +2f0M <1 Jor all w in G,
Proof of Lemma 2. Let ke A(G) be such that
Kl =1, ks=1, [kw)<1 forallwin G\S.

Fix a positive integer n and define
Uy=f{zeC: [1-2] < (1+8)(1—|2")}.

U, is an open set which contains the segment [0, 1) on the real axis, so by
the same argument as in the proof of the corollary of Proposition 2, there is
an I in A(D) < A(k(G)) such that

l=1, 1)=1, I(k@G\{1})<cU,.

Composing | with an appropriate Blaschke factor we can ‘also assume that
I(k(wo)) = 0. Put f =(lok)", We have

W=t fh=1 f@e<u,
o) = f'(we) =.... = fP(w) =0, .
Hence, by the Schwarz Lemma, we get
| S Bt or all win 6.0
Note “tht ‘the -sequence Bo)

C

W

“tends ‘uniformly to°zero on ‘any compact
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subset of int D so, taking n sufficiently large and since p is upper semiconti-
nuous, we can assume that
(29) If W) < Ke|B2,(w)| for any weG with p(w) > (1+& K.

Put '

qw) = K/pw)—|f W)|(1-2—K(1+¢)—K(1+g for weG.
Then ¢ is a lower semicontinuous function such that
for any we G such that p(w) < (1+¢)K.

gs =2, qw) >¢

By Proposition 5 there is an h in A(G) such that
hls =2, |Allg = 2,
lh(w)] < g(w) = for weG with p(w) < (1+¢)K.

We define gy = 1 —f and f;, = (1—2¢) f+hf. Now (26) is evident. From
(29) we have f(wg) =0 hence pgo(wo) =go(Wo) =1 and |[pgyllc =1 will
follow from (28). We have to check (28). To this end let we G and assume
first that p(w) = (1+¢) K. By (25) and (29) we have

[Pgo (W)l +£%Q fow)l < (1—2¢|B5, (w))(1+Ke | BZ, (W)l +& B3, (w)) < 1.

(30)

Assume now that p(w) <(1+e K. Since f(G) = U, we have |gy(w)

<(L+¢)(1—[f(w)|), hence by (30) and the definition of ¢ we get

Ipgo W)+ p(wW) ] fo (W)/K
S pW) [K(A=If W)L +e)+(1—2e) | f (W) +|fh(w) ]/K
<pW[If WI(1-2s—K(1+a)+K(1+e)+qw)])/K < 1
and this ends the proof of Lemma 2.
Now to end the proof of part B let x, and g, > 0 be as in the Theorem

and assume that T and G are such that the assumption of part B is fulfilled.
Note that .

(31 If limsupX,(w)>0 then wyeG

w-wg

so by our assumption we get 3G = G and
inf {% (wW): w is a cluster point of 8G} > 0.

Since X, is upper semicontinuous there is a cluster point z, from G
such that Xl,¢ is continuous at this point. By the same argument as in the
proof of the corollary of Propositiom 2, and by Proposition 3, composing T
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with an appropriate analytic map we can assume that
(32) GeD,
Let (z){2 { be any sequence of distinct points of G N 0D such that z; —z, = 1
as j—oo. Put §={z;: j=0,1,2,...}). Any countable closed subset of 0D
is a peak set for A(D); what is more, S is a peak set for A4(G).

Put G' = {zeC: 2zeG}u {1}, define k: G'— R by k(1) =0 and k(z)
= £,(22) for 2z G, put &, =& and let  be as in Lemma 1. Define k, e A(D)
by k,(22) = f(z). We have

[ty (T) (xo)l| = 1 = [ky (wo)| %o (wo),
lkey] %o (W) +6|BS, (W) < 1

So, by taking k;(T)(xo) in place of xo, we can assume without loss of
generality that there are a 6 > 0 and a woe GnintD such that Xq(we) =1
and

1is a cluster point of GNdD, ||Rollgamp = 1-

llky (T) (x0) = Xoll < &0,

for all w in G.

(33) RoW)+8[BZ, (W <1 for all win G;

by (31) we have wyeG.
Let (f);2, be as in the Michael-Pelczyriski theorem and put

f=
J

fj : (K —X (zj))/Bio (Zj)-

1

[Kask}

We have feA(G) and
f(z)Bly(z) = K~%o(z) forj=1,2,..,
/1l = sup {|[K —%o(z))l: je N}.

Put x' = ((1+fB2 )(T))(x0). We have ||x'—x|| < [|f]| and % X'(z) = K for all j
in N. Since K — xo( ;) — 0 as j— oo, taking an appropriate subsequence of
(z);2, we can assume that

eo/2, - |Iflle = 6/2,
hence by (33) and the definition of x' we have
X' (w)+46 |B, (W) <

So, to s1mp11fy the notation, we can assume w1thout loss of generality (by
putting x’ in place of xg) that ‘

(34
Put now p

Il —xoll <

for all win G.

Kols =K.

m1n(5 eo)/4 and le‘t fo, g0 be as in Lemma 2. Put
Ly F’Wo(n(xo) .Vj "fofj(n(xo)/K

* ©
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and define ¢: ¢ — X by

)= f 4y;.

j=o
By (27) we have |jyoll = |go| Xo(Wo) =1 and by (26) and (34) we
have |yl = [fo fil{z)) %o (z)/K = 1. On the other hand, from Lemma 2 we get
Z, fiw) <1 for we G and so, by (28), for any w in G we have

o()

¢«a01 ay, ..

2,509 =lao 091200+ 5 1o 5 Liomh <

We have shown that & is a well-defined into isometry; to ‘end the proof note
that by (26) and (24) we get

&(1, K, K, K,

ko~ )<

loo-+fol & )1 <20
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