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Ultrapowers of unbounded selfadjointwopefatonfs

by
ANDRZEJ KRUPA and BOGDAN ZAWISZA (Warszawa)

Abstract. The paper extends the notion of ultrapower of an operator to the case of
unbounded selfadjoint operators and examines it. The results are applied to the study of almost
periodic Schrédinger operators ~4+V in Hilbert spaces of almost periodic functions.

Introduction. The study of ultrapowers of unbounded operators which
we present here arose from the search for an “abstract framework” for the
analysis of Schrédinger operators in nonseparable Hilbert spaces [17]. There
are various Hilbert function spaces $, different from I?, where the formal
expression L= —A+V defines a selfadjoint operator Lg. Such operators
appear for instance in quantum theories of crystals of disordered systems,
where V is almost periodic (a.p.) and $ = B%(R"), the space of Besicovitch
a.p. functions (see Burnat [5-9], Romerio [27], Shubin [28, 29], Chojnacki
[10]; the papers of Shubin treat a more general case of pseudodifferential
operators with spatially a.p. symbols). Other nonseparable Hilbert spaces
such as B(RY)®L?(R") appear in the papers of Burnat [8, 9] and Herczynski
[14-17]. This “nonseparable approach” is motivated by the belief that
examining the operator (and its spectral resolution) in various spaces
should provide a more complete information about its properties than the
sole L?-analysis. One can prove, for instance, that the Bloch waves
(generalized eigenfunctions) for —A4+V¥, with V  periodic, constitute
a complete system of ‘eigenvectors of the corresponding operator in
B2Z(R") (see Burnat [5-7]; more on the results and motivations for the
“nonseparable analysis” of the Schrodinger operators can be found in [17]).

There are some common features of the operator L in L?(R" and its
formal analogues Ly in certain nonseparable spaces $, such as the equality of
spectra (see [28] and [15]) or of the integral kernels of the same functions of
L and Lg ([6], [18]), which suggest that the relation between L and Lg does
not consist solely in the formal identity of the defining differential expression,
but is of a functional-analytic nature. This intuition leads to the search for a
more general scheme, which would allow to interpret this relation in terms of
the abstract operator theory in Hilbert spaces. (The theory of Gelfand triples
(cf. [13])—in view of which Lg can be interpreted as a distributional
extension of L, restricted to a certain subspace—is insufficient for this
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purpose since it does not define, in the spaces of distributions, any natural
scalar product which would leave the extended operator symmetric.) Such
a scheme can be found by means of the theory of ultrapowers.

An ultrapower of a Hilbert space is a particular case of a Banach space
ultraproduct, introduced by D. Dacunha-Castelle and J. L. Krivine in
[117(}). The theory of ultraproducts, enriched with the concept of ultra-
product of a family of bounded operators (A. Pietsch [24]) was employed by
numerous authors, e.g. in the study of operator ideals and of local properties
of Banach spaces.

In this paper we introduce a new notion in the theory: a partial
ultrapower (p.u.) of a linear (not necessarily bounded) operator in a Hilbert
space, which can be regarded as a generalization of A. Pietsch’s ultrapower
(pu’s of a bounded operator are just the restrictions of its ultrapower to
invariant subspaces). It turns out that, for certain pairs of Hilbert function
spaces H and $ (e.g. for H = L*>(R") and $ = B%(R"), with two selfadjoint
operators, Ly in H and Ly in $, given by the same differential expression L,
there exist isometrical embeddings J of § into certain ultrapowers of H such
that JLgJ™* is a partial ultrapower of Ly. The spectral theory of p.u’s of an
abstract selfadjoint operator and examples of its applications are the subject
of this paper. :

The paper is organized as follows. In the first chapter we recall the
rudiments of the theory of bounded ultrapowers. In Chapter 2 we define a
partial ultrapower of a selfadjoint operator and prove a theorem on the
existence of a maximal partial ultrapower, called just ultrapower. The
spectral properties of ultrapowers are analysed in Chapter 3: the functional
calculus and spectral measures of ultrapowers are examined. The last chapter
is devoted to the applications of our theory: without giving detailed proofs
we describe the relations between the spectra of Schrddinger operators
defined in various function spaces and formulate a theorem on integral
kernels of functions of some almost periodic differential operators in B2 (R").
Relations between Gelfand triples and some partial ultrapowers are also
briefly discussed.

The paper is based on more general expositions given in Ph.D. disserta-
tions of B. Zawisza [30] and A. Krupa [20] (a related approach, not
employing the ultrapower theory, was proposed earlier by A. Krupa in [19]).
Most of the results presented below were announced in [21].

(') From the point of view of nonstandard analysis the Banach space ultraproduct
coincides with the nonstandard hull of Banach spaces, constructed within a certain particular
model of analysis (nonstandard hulls of normed spaces were introduced by W. A. J.‘Luxemburg
in [22]; implicitly they appear already in A. Robinson’s treatise [26]). This paper, however,
exploits the explicit construction of Dacunha-Castelle and Krivine and can be read with no
model-theoretical prerequisites. '
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1. Preliminaries. We shall use the following notation. If 4 is a linear
operator in a Hilbert space H and 1€ g(A4) (the resolvent set) we put R(4, A)
=(A—A)"1 If E is a linear subspace of H then A4 [E denotes the restriction
of 4 to D(A) ~E. We say that E is invariant for A if Ran(AE) < E. If E is
closed then we say that E reduces A if Py A — APy where Py denotes the
orthogonal projection onto E. B(H) denotes the space of all bounded linear
operators defined in H.

We recall that:

— AeB(H) = E reduces A iff E is invariant for both 4 and A4*.

— A is selfadjoint = E reduces A iff E reduces R(i, A), and then A [E
is selfadjoint in E and f(AlE) = f(A)E for any Borel function f: o(A)
— C (C is the complex field).

Now we recall the basic ideas of the theory of ultrapowers. Let J be an
infinite set. A nonempty family & of its subsets is called a filter iff

() Ac#,BeF = BnAeF.

(i) Ae#,Bo> A = Be#.

(iil) Q¢ F.

Example: the Fréchet filter in the set N of natural numbers —the family
of all A = N such that N\A is finite.

If #, %' are filters in J then we say that &’ is finer than & iff #" o F.

A filter 4 is called an ultrafilter iff there are no filters finer than % (but
% itself). For any filter & there exists an ultrafilter finer than . A filter % is
an ultrafilter iff for any A <J either Ae % or \Ae .

Let now X be a topological Hausdorff space, x: J— X a function and
& a filter in J. xoe X is called an Z-limit of x iff for any neighbourhood @
of xp, x Y (®)e F. An F-limit is unique and we write

Xo = limx
F

(if J = N and & is the Fréchet filter then limgzx = lim,.,x(»). If #' > F
then limg x = limg x if the latter exists. If X is compact and % is an
ultrafilter then limg x exists for any x: J— X.

Let now H be a Hilbert space with inner product (-, -) and norm ||-{|, let
J be a set of indices and % an ultrafilter in J. By [®(J, H) we denote the
space of all (norm-) bounded functions x: J — H (we shall sometimes use the
symbols x; instead of x(j) and (x;) instead of x; then limgx is replaced by

limg, x;). Then |||x]]| & limg, ||x;| exists for any xel*(J, H), |||-||l is a seminorm
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and
cq = xel®(J, H): lim||x}| = 0}
Pk

is its kernel. (H)g = 1°(J, H)/cq, the ultrapower of H "with respect to %, is
then a unitary space—and, in fact, a Hilbert space—with inner product

<[X] [y]> = lim(xj’ yj)ﬁ

where [x] denotes the equivalence class of xe!*(J, H).
Let A: H— H be a bounded linear operator. We define the ultrapower

(A)y of A, (A)a: (H)q, — (H)a, bY .
(1.1 (A)a [(x)] = [(Ax))].

The correctness of the definition follows from the continuity of A. The
following theorem holds:

(1.2) THEOREM. (-)g is @ *-isometrical isomorphism of the algebra B(H)
onto its range in B((H)a) w

For the definitions and statements concerning ultrafilters and ultrapo--

wers see [4], [24].

An ultrafilter is called free if it is not trivial, i.e. if Nyeqd = @. If % is
trivial then AE,,,A consists of exactly one point, say jo, and then there exists
a unitary mapping U: H—(H)y such that UAU™'=(A)y for any
AeB(H) (U is dcﬁned by the formula Uh=[(h)], hj=h, jeJ, and the
inverse formula is U™' [(h)] = h;). For this reason we shall consider  free
ultrafilters only. Moreover, we shall assume that J = N. The reason is that
countable infinite sets are the smallest ones that admit nontrivial ultrafilters.
It should be emphasized that the assumption J = N does not cause essential
restrictions in our theory: all definitions and most of theorems (e.g. the
theorems on functional calculus) remain valid for arbitrary J. We stress that
if % is a free ultrafilter in N then it is finer then the Fréchet filter and thus
limg X, = lim, ., X, whenever the latter exists.

2. Definitions. Let H denote a Hilbert space, 4 a selfadjoint (possibly
unbounded) operator in H and % a fixed free ultrafilter in N. Extending the
definition of ultrapower to the case of A unbounded meets essential difficul-
ties. First of all, the relation [(x)] =0 does not imply that [(4x)]=0.
Indeed, there exists a sequence x; & D (A) such that limg|lx{| =0, but |1y is
not even bounded. Thus Definition (1.1) would not be correct. However, we
would.like to preserve the property that (A)qa = [(Ax;)] for some (x) such
that [(x;)] = o This implies that the domain of (4),, must be contained in the
linear space L

2.1 = {ae(H)g: I(x)ea: x,,eD(A) neN, and (Ax,)el®(H)},

icm

Ultrapowers of unbounded operators 105

which turns out not to be dense in (H),. Reason: since A is unbounded,
Oeo(R(i, 4)). Take y, such that ||y, =1 and R(i, A)y,— 0 as n— oo. Then

Lim (x,, ) = lim (A +1) X, R(i, 4) y,) =
xu x

for any (x,) such that ((4+i)x,) is norm-bounded. Thus (4)s cannot be
densely defined. ‘

We first introduce the following notion.
(2.2) DeFINITION. Let 2 < (H)q be a closed linear subspace and let &I

be a densely defined linear operator in . Then . is called a partial
ultrapower (pu.) of 4 in o if

(2.3) VaeD(#) A(x,)ea: x,eD(4), neN, and .ofu = [(4x,)].

All selfadjoint operators have partial ultrapowers here are the simplest
examples:

(2.4) Trivial pu.: Let V. H — (H)q be given by ‘the formula Vx = [(x,,)],
where x,, =x,neN. Then V maps H 1sornetrlcally onto its range #, and o/
=VAV™'is a pu of 4 in #.

(2.5) One-dimensional pu.: Let Aec(A) and let x,eD(A4) be such that
fIxdl = 1 and Ax,—Ax,— 0. Put 5# = {a[(x,)]: ae C} and o: H# — H, Lo
= Ao. Then o/ is a pu. of 4 in' # and A is its eigenvalue.

It is natural to ask to what extent partial ultrapowers are determined by
the condition (2.3). The following theorem' gives the precise answer.

~ (2.6) THEOREM. Put '
2.7
Then:

(a) There exists a (unique) linear operator (A)q defined on 2 with values in
H(A) such that for e D and e H(A) ‘

(A)got =p < Ax)ea: x,eD(A), ne N, and B =[(Ax)]}.

(b) (A)a is the maximal pu. of A, i.e. if # < (H)y and o is a p.u. of‘A in
H then D(f) c D and o =(A)g D ().

(© (A)g is selfadjoint in #(A),
=(R(i, A))a 'l H(4)..

Proof. (a) The uniqueness is
= (R)g [ # (A). Let us notice that

P = {ne(H)y: I(x)ea: x,eD(A), neN, and ((4+i)x,)el”(H)}.

From this we derive that 2 = Ran(R)y. But (R)4 is normal (cf. (1.2)) so 5 (4)
= (ker (R)q)* and #(A) reduces (R)g. Hence & = Ran #. Define

Da: 2 H#(A),  (Aa=R"+i.

H(A) =T .

o{(A)a) =0(4), and R(i, (A)a)

obvious. Put R=R(i, 4), 2
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Let ae2 and f =(A)yo. Then #(Bf—ix) =a, so for some (x,), (v,)ea and

(z,)€ B we have Rz,—iRy, = x,; ne N. Hence z,+i(x,—y,) = 4x, and, finally,.

- [(Ax)] = [(z)] = B. Conversely, let fe #(4) and f=[(Ax,)] for some
[(x)]eD. To prove that B =(A)y[(x,)] it suffices to show £(B—i[(x,)])
= [(x,)], which is obvious.

(b) Let &7 be a p.u. of 4 in S#. Then (2.3) implies that D(«/) < & and #
=D(o) © D = #(A). The assertion /o = (A)ya now follows from the
characterization of (4)4 given in (a).

(c) Let R, # be as in (a). Then

o (#) = o (R)a)\{0} = 0 (R)\{0} = o(R)

where the second equality comes from (1.2). Put f (1) = 1/A+i; then (A)g
= f(4) and A = f(R), which implies that ¢(4) = o ((A)s). So, in particular,
((4)2) = R and (4)4, being a function of a normal operator, is normal itself,
so (A)g is selfadjoint. The remaining part of (c) is a reformulation of the
definition of (4)y. =

(2.8) DEFINITION. (A)q defined in Theorem (2.6) is called the ultrapower of
A with respect to %.

Notice that if 4eB(H), then Definition (2.8) coincides with (1.1). We
stress that J#(4) # (H)4 if A is unbounded. It should also be noticed that,
although ¢ ((4)s) = o (A), the character of the spectra can be entirely different,
Example (2.5) shows for instance that the whole spectrum of (4), is covered
by its eigenvalues, no matter whether 4 has any eigenvalue or .not.

Theorem (2.6) implies that all partial ultrapowers of 4 are symmetric
closable operators and that their closures are also p.u’s of 4. When are they
selfadjoint? The general theory ensures that if a subspace # of #(A)
reduces (A)y then (A)q [ H# is selfadjoint. It is not difficult to prove that the
converse is also true:

(29) ProrosiTiON. Let o/ be an essentially selfadjoint pu. of A in a
subspace H# of (H)y. Then H# < #(A), # reduces (A)y and 7 = (A)y| #.
(of denotes the unique selfadjoint extension of s7.)

Proof. The assertion # -« #(4) is a part of Theorem (2.6). Since &
satisfies (2.3), we have (R(+i, A))y (Fi)a = a for all aeD(s#). Thus

(R(%i, A))y (Ran(Fi)) = H#.

But Ran(s/Fi) is assumed to be dense in 3, so (R(ii, A))a,, () = o,
which implies that # reduces

(RG, D)ot #(4) = R(i, (4)a)-

So o reduces (A)y. (A)s [ # is then a selfadjoint extension of &7 and so
AalH =, u '
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3. Functional calculus and spectral decomposition. In the present chapter
H denotes again a Hilbert space and # a fixed free ultrafilter in N.

Let Ay, ..., A, be a family of normal operators (not necessarily bound-
ed) in H. By their joint spectrum ¢ (A, ..., A,,) we mean the set of all points
(A1s «++s Ay)e C™ such that

m

Y (= A)* (e~ )

k=1

has no inverse in B(H). If we additionally assume that the 4, are bounded
and commute, then Theorem (1.2) implies that the (4,)s have the same
properties, and moreover,

3.1

U((A1)% A (Am)"ll) =0(Ay, ..., Am),

(32) f((AI)Wh EERE (Am)”ll) = (f(Al’ cery Am))‘?l ‘

for any continuous function f: o(4,, ..., 4m)— C.

Do (3.1) and (3.2) hold for A4, unbounded? It is. obvious that both
statements must be reformulated. First of all, 4, must be selfadjoint and f
real-valued if unbounded (we have not defined an ultrapower of an un-
bounded nonselfadjoint operator). Further, (A k=1,...,m and
(f(Ay, ..., Am))a are now defined in different spaces. So in order to give the
proper restatement of (3.1)-(3.2) we should examine in detail the relations
between ultrapowers of a family of commuting selfadjoint operators.

Let A be a selfadjoint operator in H and Be B(H). We say that 4 and B
commute if BA < AB. It is well known that the above condition is equivalent
to B and R(1, A) commuting for some (and hence for all) Ao (A4). Another
equivalent condition is that BE (4) = E(d4) B, where E denotes the projection-
valued measure determined by A and 4 runs over all Borel subsets of R (we
shall always consider E to be defined everywhere, assuming E (4) = 0 when
A no(A) = Q). We say that two selfadjoint operators 4,, 4, commute if so
do A, and R(, A), j, k=1,2; k#j. It is obvious that if B,, B,eB(H)
commute then so do (B;)s and (B,)g. So if A4 is selfadjoint and Be B(H)
commutes with A then (B)y and (R(i, A))y commute. Denote by & the
spectral measure of (R(, 4))y. Then #°(4) = Ran &(R\{0}), so #(A) re-
duces (B)y and (B)y|#(A) commutes with (R(, 4))al #(4) = R{i, (4)4)-
Thus we have proved: ,

(3.3) ProvrosiTioN. Let A be selfadjoint and suppose Be B(H) commutes
with A. Then #(A) reduces (B)y and (B)g | H#(A) commutes with (A)gy. =

Taking for B the resolvents of A, k=1,...,m and reasoning by
induction we obtain
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(3.4) CorOLLARY. Let Al:..., A,, be a family of commuting selfadjoint
operators in H. Then

#= () #(4)

reduces each (Ay)y and o, = (A)a [ H, k =1, ..., m, form a family of commut-
ing selfadjoint operators in H#. m

Now we can give the proper equivalent of (3.1)~(3.2):

(3.5) THeOREM. Let Ay, ..., Ay, H#, 4, ..., oy be as in Corollary (3.4).
Then o(sty, ..., ) =0(Ay,..., A,) and given any continuous function
Si10(Ay, ..., Ay) = C (f real-valued if unbounded) we have

() # < H(f(Ay, ..., A).

(i) H reduces (f(Ay, ..., Am)a:

(iil) £(A1s s F) =(f (41, .., A #.

Proof. The equality of spectra can be proved as in Theorem (2.6). For
the sake of simplicity we shall now assume that m = 1, we put 4 = 4, and
then 3# = H#°(A). The proof for m arbitrary needs no essential modifications.

First Jet us note that for f bounded (i) and (ii) have already been proved
(Proposition (3.3)). So it remains to demonstrate (iii) for f bounded and iy
(iii) for f unbounded and real-valued. This will be done in two steps.

The first step: we take f with a finite limit at infinity:

}ijr:of(l) = f(c0).
Then
fA)=(fog)(R(, 4)

where g(4) =1/A+i is a homeomorphism of ¢ (R (i, A4)) onto o (4) U {0}
Then in view of (1.2) '

(f ()= (7 0g) (R, A))a)-
Put # =(R(i, A)y and let & denote the spectral measure of #. Then
(/(A)a = (f 0g) (B (1 — & {0))+ f (c0) £ {0},
But # = Ran(1—&{0}), so .
(f ()a!# = (f 0g) (R} #) = (f 0g)(R(i, (A)a)) = [ ((A)a).
The second step: f arbitrary.
With no loss of generality we can assume that f is real-valued (even if

bounded). For M > 0, let ¢,, be a continuous function, @, R~ [0, 1], such
that om(A) =1 for |4 < M and @u(4) =0 for 4| > M+1. Put

9= ) Ranoy((4)q)-
) M>0
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Then % is an essential domain of f ((A)q). Take & = [(x,)] € %. Then, for some
M, a= @y ((Au)x = (@r (A (the second equality comes from the first
step). So we have a = [(y,)], where y, = @ (A4) x,. Now

f ((A)%)“ =f ((A)«w) Pm ((A)q,)(x ={(fou) ((A)qz)‘x‘ )
= (fer)(AD)a = [(/ (4) o1 (4) x,)] = [(F (4) )]

So f((A)g)! % is an essentially selfadjoint partial ultrapower of f(A). The
assertion now follows from Proposition (2.9).

(3.6) Remark. Let 4, ..., 4, #, o, ..., /,, be as in Corollary (3.4)
and let us additionally assume that o (4, ..., 4, is not compact (i.e. at least

one of Ay, ..., 4, is unbounded). Let f: o(4,, ..., A,) — R be a continuous
function such that

lim f(4) = +o0.

|4} =0

Then # = H#(f (A, ..., A,)) and thus (fAss oo Aa = fAy, ..., A,).
Proof. Let B= f(A4, ..., A,). We have to prove that H(B) = H#, ie.

ker (R(i, B))y = kgl ker (R(i, 4))a,

ie. limg(R(i, Byx))=0 for any bounded sequence (x;) such that
Akell, ..., m}: limg(R(, 4,)x)=0. . ‘

Let (x;) and k be as above. Let E be the joint. spectral projector family
for (4y, ..., Ayp), Ey = E({AeR™ |A| < M}) and S, = (4, —i) Ey. Then S,, is
bounded and Ej = S, R(i, 4). Let .

9(M) = |(1~Ex) RG, B)|* = sup {I;fl—@

A2 M, deo(Ay, ..., Am)}.
Then for jeN
IR(i, B)x)||* = IR (i, B) Erx|*+[[R (i, B)(1—E,) x|
< Ew i1 +g (M)l
=1Su R(E, A) x> +g (M) Ix;||*.
Thus for any M >0 ‘ o
li;:ﬂllR(i, B)x|I* < g(M) li;llnllxjﬂ2 =79(M) l‘ll[(xj)]lllz-

But infg = 0 so limy (R(i, B)x;)=0. = - , 3 ‘

(3.7) CoroLLArY. Let A be a selfadjoint.operator in H. Let # = (H), and
let o be a selfadjoint partial ultrapower of A in #. Then o(A) < ¢(A) and
S () = f((A)a) | H# for any continuous function f: a(A)— C (real-valued if f is
unbounded). ; : : o
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Proof. This is an immediate consequence of Theorem (3.5) and Proposi-
tion (2.9). =

Corollary (3.7) will be exploited in Chapter 3 (applications). Here we
note an interesting consequence concerning essential spectra. We say that
4e C belongs to the discrete spectrum of a selfadjoint operator A, 1€y, (4),
if 4 is an isolated point of o(4) and the corresponding eigenspace is finite-
dimensional. The remaining A’s constitute the essential spectrum of A: 6,,,(4)
= 0 (A)\ Gy, (4).

Let us return to Examplé (2.4). The space J#, consisting of all classes of
constant sequences, can be naturally identified with H; we can then say that
A is a p.u. of itself. Hence, by virtue of (2.9), H reduces (A) . It is not difficult
to compute the orthogonal projection Py of (H), onto H:

Py [(x,)] = w-lim x,,,
w

where w-limg x, denotes the limit with respect to % in the weak topology in
H (we recall that limgqa, always exists if a,’s vary in a compact set). Thus

H' = {[(x,)]: w-limx, = 0}.
@

Put #, = #(A) " H*. Then obviously #, reduces (4)y and (A)g [ #, is a
selfadjoint p.u. of 4 in #,; one may call it the essential ultrapower of A.
(3.8) ProposiTioN. Let A be a selfadjoint operator in H and let of
=(A)y| #o where #o = H#(4) NH* Then o () = 0.,(A),
Proof. Let leo,,(4). Then there exist x,e D(A4), ne N, such that ||x,||
=1, (X, %.) =0 for n# m and ||Ax,— x| =0 as n— co. Obviously

[x)]eD((A)a) "H* =D(sf) and o [(x)] = A[(x)],

so Aeo(H).
Now let leay,(A4). Denote by E the spectral measure of A and by & the

spectral measure of . Then (3.7) yields £({1}) = (E({A}))a | #. But for any
[(x)le #o, [(E({A)) x,)] =0, since w-limgx, =0 and E({1}) has finite-di-
mensional range. Thus §({4}) =0 and Aé¢o (). m

One may ask whether Theorem (3.5) holds for all Borel-measurable f.
The answer is negative. Indeed, suppose that A is a selfadjoint operator in H
and that Aeo(4) is not an eigenvalue. Denote by E the spectral measure of
A and by & the spectral measure of (4)y. Then E({A}) =0, but &({i}) # 0
since the whole spectrum of (A4), is covered by eigenvalues.

Following this example one can show that if A is an accumulation point
of o(4) and, at the same time, a point of discontinuity of f then there exists
an eigenvector o of (A)y (A)g2 = A2) such that either a¢D((f (4))s) or
(f (4))gx # f((A)a)o. This leads to a supposition that the failure of (3.5) for
f discontinuous is caused by the existence of too many eigenvectors of (4)y
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and that
(f (A)al #, = f (A | #£,)

where 3, consists of all elements of #(4) which are orthogonal to all
eigenvectors of (A)y.

. The. 1a§t equality, although in general false, holds for f’s whose points of
discontinuity form a countable set (%). For the proof we shall need some
notions and facts from measure theory.

. Let X be a separable metric space, J a set of indices and {ulies 2
uniformly .bounded family of nonnegative Borel measures on X. Let ¥ be an
ultrafilter in J. We say that a measure y on X is the weak % -limit of b if

ﬁg}{fd#j = ydu

for f: X — C bounded and continuous.

(39) Lemma. Let X,J,u and W be as above. Suppose that pu
= w-limy- ;. Then

(@) limy-4;(G) = u(G) for any open subset G of X.

) (b) limy [y fdu; = [xfdu for any bounded Borel-measurable Sfunction
S X — C whose points of discontinuity form a p-null set. w

The proof can be found eg. in [3] (to be exact: [3] treats ordinary
limits and assumes that pu/’s are probabilistic; the above lemma can be
proved similarly). '

(3#10) TueoREM. Let i, denote the closed linear span of the set of all
eigenvectors of (A)y and let H#, = H(A)OH,. Put o =(A)y|H, and denote
by & the spectral measure of s. Let f be a Borel function f: a(d)—C (f
real-valued if unbounded) whose points of discontinuity form a set of measure
&-null (eg. a countable set). Then #, < #(f(A)), H#, reduces (f(A)e and
) = (f(A)a! H#,. ‘

Proof. With no loss of generality we can assume that f is real.

Assume first that f is bounded. Then Proposition (3.3) implies that
S (A))a | #(A) commutes with (A)g, thus (f(A))a(#,) < #,. So, since
f(A))y is selfadjoint, #, reduces (f(A4))y and so does #,. Thus it suffices to

prove that
(S (D)t a) = (f (), a)

So let us take o = [(x,)] e #,. Denote by E the spectral measure of 4. We
have

Q]
(¥%)

for any aeJ,.

g (Ao, 2 = li;ryn (g(d)x,, x,) = lim f9 (W) (E(dA) x,, x,),

G(Aa, a) = [g(3) (E(dA)a, x>

(*) So Theorem 4.3 of [21] is false as stated. Theorem (3.10) in this paper is its correct
version. - :
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for any Borel-measurable bounded function g. If we take g continuous then
Corollary (3.7) implies that the left-hand sides of (%) and (xx) coincide. Hence
{E(-)a, &) = w-limg (E (-} X,, X,). Thus by Lemma (3.9Yb) the right-hand
sides of () and (), with g replaced by f, are equal, so {f(#)u, a)
= {(f (A, @).

Let now f be arbitrary as in the assumptions. Let
F,={lea(A): If().)l n}, G,={lecg(A): dist(i, F,) <1/n},

G= U Ran 8(\G,).

No point of continuity of f belongs to (\s=;G,, which implies that

(N2, G,) =0, 50 9 is dense in 4, and serves as an essential domain for
f(). Let ¢, be a continuous function, ¢,: (A)w[O 1], such that ¢,(4)
=0 for AeF, and ¢,(A) =1 for AeG,, n=1, 2,... Then arguing as in the
proof, of Theorem (3.5) we show that f (/)% is an essentlally selfadjoint p.u.
of f(A), which ends the proof. m

We have already mentioned that the ultrapower of the spectral measure
of a selfadjoint -operator need not coincide with the spectral measure of its
ultrapower. We can ask, however, whether there exists a simple formula
which expresses the spectral measure £(4) of an ultrapower in terms of the
ultrapowers  of spectral projectors of the “initial” operator. The answer is
affirmative for 4 closed (and thus for 4 open too).

(3.11) ProrosiTiON. Let A be a selfadjoint operator in H, E its spectral
measure and & the spectral measure of (A)y. Then for any closed subset F of R
we have

) ' é(F) = s-lim (E(G)a #(A)

where G, is any decreasing sequence of open netghbourhoods of F such that
NZ1G, =F.

Proof. First let us notice that ultrapowering is monotonous, i.e. for any
B,, B,e B(H), selfadjoint and such that (B x, x) < (B, x, x) for all xeH, we
have {(By)ya, ) < (B, a) for all ae(H)q. Thus the (E(G,‘)) form a
decreasing sequence of selfadjoint projections, so s- -limy -, o, (E (Gy))y exists and
defines a selfad]omt projection in (H)g. By virtue of (3.3), #(A) reduces
(E(G))a» S0 in order to prove (%) it suffices to verify

(x4) (P, @) = hrp <(E(Gk))w, a) for all aes#(A),
Let ae #(A), a = [(x,)]. As in the proof of Theorem (3.10) we show that
(), a) = w-limg <E(") X,, x,>. So, Lemma (3.9)a) yields for each ke N
<(E(Gk))4'a’ (X> = h;/n (E (Gk) Xns xn) = (J(Gk)ay a)
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and similarly
<g(6k)a: ay = <(E(Gk))’lla’ 0‘>-
But (E(Gy)a 2 (E(Gy)s since (), is monotonous; thus
(E(GYa, ay > (EGYwa, 2) = (&(F)a, ay.

The left-hand side converges, according to the assumptions, to (&(F)a, oy,
which proves (xx). m

Both (3.10) and (3.11) can be extended to the case of a family of
commuting selfadjoint operators, as in Theorem (3.5).

Proposition (3.11) gives us, in particular, an explicit expression for the
orthogonal projection on the space of all eigenvectors of (4)s corresponding
to a fixed Aeo(4):

8(1A) = s-lim(E((A—s, A+¢)))q.
2]0

This formula applied to (R(—1, 4%)), and A =0 allows to compute the
projection onto ker(R(—1, A%))q = #(4A%) = #(4)* (see Remark (3.6)),
and thus also the projector onto J#(A) itself:

PmA) = S‘}i_f‘ll(E([*I 7]))@-

It also shows that the family of projections (E(d))y is not only different from
&(4) but even does not define a strongly c-additive measure:

s-lim(E((A—e, A+¢)))q = E(IA]),
10

which is, in general, larger than (E({A}))sy (see the example above).

4. Applications. In this chapter we demonstrate how ultrapowers and
their properties can be used in the spectral analysis of differential operators.
The main object of interest is the Schridinger operator with an almost
periodic potential; however, most of the results can be extended to a wider
class of uniformly elliptic selfadjoint operators with almost periodic coeffi-
cients, First let us present the function spaces we are going to use.

Let ¢, (x) = ¢, for A, xe R* (Ax denotes the scalar product of 4 and x),
and write

Trig(RY) = { Y, 4;e;: meN, ;€ C, e R}
=1

The space of trigonometric polynomials can be embedded in various function

- spaces with translation-invariant norms; the closures of Trig(R*) with respect

to these norms constitute spaces of almost periodic functions of various
types. We have:

~CAP(R*) —the closure of Trig(R") in C,(R"), the space of all bounded
continuous complex functions on R* with.sup-norm. If fe CAP(R¥) satisfies
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& feC,(RY), aeZk, then, in fact, 0* fe CAP(R for all multiindices a. We

then write fe CAP®(R¥). Both CAP and CAP® are closed under pointwise

products: f, ge CAP (resp. CAP®) implies f-ge CAP (CAP™).
—SPAP(RY—the closure of Trig(R¥) with respect to the uniform

L?-norm:

1<p<+o0.

Al =sup (| 1fON"dy)"

xeRE |x-y/<1
SPAP is called the space of Stepanov a.p. functions; we have obviously
CAP = SPAP. The Stepanov space admits also unbounded elements, e.g.
periodic locally LP-functions.
Let

. . 12
Jﬂ(R"):{feLﬁ,c(R“): 1f1 = lim ( ! = [f(x)fzdx> < +oo}
T =00 (JJkT x|

<T

where @, denotes the volume of the unit ball in R¥, and let
M*(RY = M*(RY/{S: 1f1=0}.

M?*(R% is a Banach space with norm I-1 (see [23]). For fe .#%(RY the
equivalence class represented by f is denoted by [f]. The formula CAPs f
— [ f ]eM? defines a continuous mapping, which is injective, since If1 =0
implies f = 0 if fe CAP. Thus we shall sometimes treat CAP as a subspace
of M?; this also refers to subspaces of CAP: Trig and CAP®. The closure of
CAP(RY in M?(RY is denoted by B2(R¥) and called the Besicovitch space.
B*(R% is a Hilbert space with inner product

Aas1 lal> = Tuﬂ—l— [ f(0g) dx;

Wy |x| €T

the limit exists for all [f], [g] (see [2]). The classes le,], Ae R, form an
orthonormal basis in B*(R¥), so B*(RY) is not separable.
Now, given fe CAP®(R¥, we define

%W [f]=[-41].
It is not difficult to verify that ‘llo is a correctly defined symmetric operator;

moreover, U [e,] =|4?[e,], so U, is essentially selfadjoint in B2(RY).
Let p>2 and let VeS?AP(R" be real-valued. Then

4.2) YIf1=1V/]. feCAP=(®Y,

is a well-defined symmetric operator in B?(R%). Thus QI0+V is symmetric
and so closable. We define

43) A=Wyt 7.

Uis called the Schrédinger operator with potential V in B?(R¥) (see also [7]).
—4 and V also define selfadjoint operators in L*(R¥) with Cg& (R (the

@)
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‘space of smooth compactly supported functions) as their essential domains.

We shall denote them simply by —A4 and V. If we assume p=2for k<3
and.p > k/2 for k > 4, then V is (— 4)-bounded, with relative bound 0 (briefly
V < —4, see [25], vol. 4). By virtue of Kato-Rellich’s theorem ([25], vol. 2),
—A+V is selfadjoint.

Let now [f]eB?(RY and put

Ji(x) =n"921 (x) o (x/n)

where e C? is a fixed function such that 0< p < 1, @(0) =1 and fo?=1
We have,

A7 <n™*
Xx/nesuppp

f () *dx

so (f)e!®(L*(RY) and, given a free ultrafilter % in N,
44) Falf] =11

is a correctly defined continuous mapping, #4: B*(R¥) — (L (R")y.
In fact, #4 is an isometry:

1.. .
{Futs Fueyy = lim?je“"“)"(pz(x/n)dx = lim [&"*~M* o2 (x) dx
Y @

=lim(¢?) (n(u—2) = &},

where = denotes the Fourier transform and 6} is the Kronecker symbol.

Put # =Ran £y, Lo= Fa U £3' W= F0u¥V F3', A = §,U87"
where 2, 7, Ware defined by (4.1)4.3). ./, (resp. o/, #) is easily seen to
be a p.u. of —4 (resp. ~4+V, V) in #. This allows us to prove the
following:

(4.5) Taeorem. Let V&S? AP(RY) be real-valued, p>2ifk <3, p>k/2 if
k= 4. Then the Schrodinger operator W (with potential V) in B*(RY) is
selfadjoint and o (W = o (—A+V).

Proof. Let &, ¥, o be as above. Then /, is essentially selfadjoint,
since so is W,. Moreover, #" < A, since V < —4 and for feCAP%, «
=[(f)], we have #u = [(Vf,)] and o =[(—4f)]. So o = Lo+ W is
selfadjoint, which proves the first statement and also yields (see Corollary

37

(W =0(H) ca(—4+V).

The converse inclusion can be proved in a similar manner. In [15] J.
Herczyfski proved (following an idea of Shubin [28]) that there exists a
sequence of functions i,c CAP(R*) such that, given any ¢eCg(R¥), we have
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¥, * e CAP®(RY) and
tim b, * gl = [lgf 2, Hm 1V (Y, * @)=Y, *(Vp)l = 0.

n—o
This proves that, given any free ultrafilter % in N, there exists a unitary
mapping Iy, L*(RY) — (B?(R9)q such that Iy ,(— 4+ V) Iy}, is a selfadjoint
pu. of U (see also [30]). =

Theorem (4.5) was first discovered by Burnat for the case k=3 and V
periodic ([7]). For the case of strongly elliptic selfadjoint pseudodifferential
operators in R* it was proved by Shubin ([5]). Shubin’s theorem applied to
—A+V gives (4.5) for Ve CAP®(RY); in the present form it was proved by
Herczynski ([14]).

Let us notice that Ran ¢,, where ¢, is defined by (4.4), is contained in
(L*(R%)*, the space of sequences weakly converging to 0, so Proposition (3.8)
together with Theorem (4.5) gives

(4.6) CoroLLARY (cf. Avron-Simon [1]). The spectrum of —A+V in
L?(R¥), with V satisfying the assumptions of Theorem (4.5), is essential. m

Here are further applications of unbounded ultrapowers. We do not give
detailed proofs—they can be found in [20] or [30].

“Crystal layers”. Let X be a Banach (Hilbert) space. As at the beginning
of the present chapter, we define SP AP(R¥ X) (B%(R*, X)), the spaces of a.p.
functions with values in X (cf. [147). Let

X ={felp.(R): I1|im [ If)IPdy =0, f real-valued},
x| o0 |x~yp| €1

be equipped with the norm |[||-]||, and let V'eS?AP(RY X), with p=2 if k
+1<3 and p>(k+1)/2 if k+1>4 (we always assume k > 1). Then, as in
B*(RY (= B*(R", C)), we construct a symmetric operator 2 in B?(R¥, L?(R})
corresponding to the formal Schrddinger operator — 4+ V' (for the physical
interpretation, see [14]). Denote the corresponding selfadjoint operator in
L*(R**Y) also by —4+ V. In the manner analogous to that just presented we
prove that 2 is unitarily equivalent to a certain selfadjoint p.u. of —4+V
and conversely. Consequences: U is selfadjoint, o(¥) = o (—4 + V), Gy, (—4
+V)=0Q. ,

Spectral cutting. A real function W eC?*(RY) is called a spectral cut-off
Junction if it is a smoothened characteristic function of a subset of R*
containing an open cone (for details see [6]). Let Ve CAP(RY) be real-valued
and let A be the operator in B*(R¥) defined by (4.3). Put ¥, = yV. Then
there exist a free ultrafilter %, a closed subspace # of (L*(R¥), and a
unitary mapping J: B*(R¥) - o such that JAJ ! is a selfadjoint p.u. of —4
+ ¥ in . Consequence: ¢(~4+V¥) =o(—4+V¥,). For the construction
of % and J, see [30].

All results presented. can be (and have-been) proved without the theory
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of ultrapowers; however, once the theory is established, it provides concise
and elegant proofs (which can be compared to profits gained by employing
nonstandard analysis in the proofs of classical theorems). The machinery of
the functional caleulus of ultrapowers also yields results which seem to be
new:

(4.7) Tueorem. Let A and U be selfadjoint operators in L*(R¥) and B*(R¥)
respectively such that for every free ultrafilter % in N, FaWFy' is a partial
ultrapower of A (with ¢4 defined by (4.4)). Suppose that @ is a bounded
continuous function on a(A) such that ¢(A) is an integral operator with kernel
K satisfying

(%) [K(x, Y < ¥ (x—y)
where Y is a function such that

{¥ A +|xHdx <+ oo.
R

Then
e(M[f]=1K(, »f)dy]

Jor any [/]eB*(R.
Proof. We only give an outline; the details can easily be filled in by the
reader, or found in [20].

The formula B[] =[[K(, y)f(3)dy] defines a bounded linear opera-
tor B: M?(RY) — M*(R"); we prove this by means of inequality (). Given a
free ultrafilter % in N we extend J, to a bounded mapping J,: M?(RY
— (L*(R%)y by the same formula (4.4). Then J, fails to be injective, but we
have for F, Ge M*(R¥

F=G iff (JuF=J,G for all free ultrafilters % in N).
The latter fact can be proved from the general equality

lim a, = suplima,
n—+e wu

where a,, is a bounded numerical sequence and the supremum is taken over
all free ultrafilters % in N. Applying Corollary (3.7) and again (*), we deduce
that

jq,(p(m)[[eljj =fnw55[[exﬂ
for all % and all Ae R*. Both ¢(2) and B are bounded, so we have ¢(2) -
= BIB*(R"). w

(4.8) CoroLLARY. Let p>max{2, k/2} and VeSPAP(R", V real und
bounded from below. Let W be the Schridinger operator with potential V

2 - Studia Mathematica t. 87 z 2
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defined in B2(R¥). Then for t >0 and [f]eB*(RY
e [f] = [IK.C. ) f ) dy]

where K, (x, y) is the integral kernel of e™*"4*¥) in L*(RM.

For the proof we need only an estimate of the type described in
Theorem (4.7). It can be found in [12]. m ‘

Theorem (4.7) can be applied also in the case of 2 and A generated by
the same uniformly elliptic formally selfadjoint differential operator with
CAP® coefficients; the function ¢ is assumed to be rapidly decreasing at co
along with all its derivatives (the required estimates have recently been found
by Kozlov and Shubin [18] and used to prove a theorem analogous to (4.7)).
Analogous results hold for operators in B*(R%, L*(R}).

Let us return to the operator A, defined by (4.1). If we identify
feCAP® with [[f]] then A, becomes the “true” Laplacian, acting in a
certain subspace of the space of distributions in R*. This shows that certain
partial ultrapowers of —4 can be identified with its distributional extension
restricted to suitable subspaces. The same holds for selfadjoint uniformly
elliptic differential operators with CAP® coefficients. It turns out that a
similar observation can be made for a comparatively wide class of abstract
selfadjoint operators.

Let & « H c @' be a Gelfand triple (see [13]), i.e. H is a Hilbert space,
® — H a dense linear subspace, equipped with its own topology which is
stronger than that of H and which makes @ nuclear, and ¢’ is the adjoint
space. Let A be a selfadjoint operator in H such that & < D(4) and
A(®) = @. Denote by A’ the operator adjoint to 4[®, A': $' — &, which

" can be regarded as an extension of A. Then, given any free ultrafilter % in N,
we can find a x-weakly dense subspace ¥’ of ¢’ spanned by a certain family
of generalized eigenvectors of A (i.e. eigenvectors of A’) and a linear mapping
J: ¥' = (H)q with the following properties:

(i) J is injective.

(i) of =JAJ"" is an essentially selfadjoint partial ultrapower of A4
in # =RanJ. Almost all elements of o(4) (with respect to the spectral
measure of A) are eigenvalues of o (s0 o(#7) = 0(A)) and the multiplicities
of the spectra are equal.

(i} If A has absolutely continuous spectrum then there is a sequence (r,)
of positive numbers, r, — + o0, such that

Vie¥ A(f)elf:

Twh=f radfy— Af

(the convergence in the x-weak topology in ¥"). For details see [20].
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Generalized Nash-Moser smoothing operators and
the structure of Fréchet spaces

by

VINCENZO B. MOSCATELLI* (Lecce) and
MARILDA A. SIMOES (Niteroi)

Abstract. In [3] E. Dubinsky related the Nash-Moser Inverse Function Theorem to the
structure theory of Fréchet spaces via the smoothing operators of Nash-Moser type. Motivated
by this, we introduce very general families of smoothing operators and show what implications
their existence has on the structure of a Fréchet space.

Introduction. In recent times, some quite unexpected connections be-
tween two apparently unrelated topics in Functional Analysis, namely, the
Inverse Function Theorem and the structure theory of Fréchet spaces, have
begun to be noted (cf. [3]). The unexpectedness is due to the fact that, as
everyone knows, the Inverse Function Theorem and linear analysis do not
mix well. A crucial point of contact comes from the so-called Nash-Moser
Theorem, which is an Inverse Function Theorem in Fréchet spaces based on
a refinement of the old Newton’s iteration method. (As is well known, the
usual Banach space theorem does not go over to Fréchet spaces.) The
technique, invented by J. Nash [12] in his solution of the isometric embed-
ding problem for Riemannian manifolds, assumes the existence of an approp-
riate one-parameter family of smoothing operators on the space. The method
was later fashioned by J. Moser [11] into an Inverse Function Theorem in
Fréchet spaces which became known as the Nash-Moser Theorem, and wide
applicability of the method and its subsequent generalizations (cf. e.g. [8])
was claimed by various authors over the years (see the survey article [5] by
R. S. Hamilton). However, the impressive results of D. Vogt [20] (cf. also
[4]) show that in the nuclear case, which is the most important. in the
applications, only a very small class of Fréchet spaces can support a family
of smoothing operators of Nash-Moser type. In particular, the nuclear space
H(D) of analytic functions on the open unit disc D of the complex plane does
not belong to such a class and in [3] smoothing operators supported by this
space were found and, through their use, an Inverse Function Theorem valid

* The research of this author was financed by the Italian Ministero della Pubblic::
Istruzione.
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