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PHILIPPE TURPIN (Paris)

Abstract. We give fixed point theorems for nonexpansive maps T operating in star-shaped
subsets B of generalized Orlicz spaces L?(Q, .o/, p), under suitable compactness and boundedness
conditions on B (compactness for the topology of pointwise convergence in the case of sequence
spaces ). The operator T is nonexpansive either for the modular 0, (X} = [@(x)dp, xe L*, or
for the associated Minkowski functional vy (the Luxemburg norm when ¢ is convex). In both
cases ¢ may be an arbitrary convex or concave strictly increasing Orlicz function (unbounded
for v,-nonexpansiveness), or even have a less regular behaviour; it may also depend on the
integration variable (L* is then a “Musielak-Orlicz space”).

1. Introduction. We give fixed point theorems for nonexpansive mappings
T operating in star-shaped subsets B of Orlicz spaces I of sequences or in
Orlicz spaces L*(, /. 11) of measurable functions (and even in more general
Musielak-Orlicz spaces, where the function ¢ may depend on the integration
variable). We do not limit our study to the case of locally convex spaces: @
may be far from being convex.

One can find in [L] a related work in the case of sequence spaces ¥
with ¢ convex. See also [Ki] for a recent “state of the art”.

A subset B of a vector space E is said to be star-shaped when there
exists a “center point” ueB such that (1—lu+AxeB for every xeB and
every real number Ae(0, 1).

We say that a mapping T B~ B is nonexpansive for some functional
F: B—B— R, when T satisfies

F(Ix-T)) € F(x~—y)

for every pair (x, y) of points of B.
Our mapping T will be nonexpansive either for the modular @, defined
in the case of Orlicz spaces by

0p (X) = [ @ (| x()]) p(dew)
]

or for the Minkowski functional

Vo (x) = inf {1 > 0: g, (x/2)< 1!,
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When ¢ is convex, v, is the Luxemburg norm of L* ([KR]).

When ¢(1) =17, 0 <p <o, the nonexpansiveness conditions for g, or
v, are both equivalent to the nonexpansiveness for the usual norm (p-norm
when p < 1) of LP(Q, &, ).

In spaces /¥ of sequences, the set B where T operates is assumed to be
compact for the topology of pointwise convergence. More generally, in
spaces L*(Q, 7, i) we assume that from every sequence of points of B we
can extract a subsequence converging almost everywhere to a point of B fin
other words, B is sequentially compact for the topology t of “local conver-
gence in’ measure”). Of course, B is sequentially t-compact if it is compact
for the natural topology of L(L2, .o/, p).

In sequence spaces /* this T-compactness condition on B seems to be
quite  satisfactory (it is eg. fulfilled by the “balls" B*(r)
= l‘x: Zw(P(Ix(w)D < r} ,0<r< Sup; >0 ¢ (1))

In function spaces things are less simple. In L7(0, 1), p > 0, for example,
7-compact bounded sets are in fact compact in L'(0, 1) for every re(0, p).
When 1 < p < o, we may also notice that they are compact for the weak
topology of L?(0, 1); this is of course false for p = 1: the subsets of L*(0, 1)
which are both t-compact and weakly compact are norm-compact.

In L'(0, 1), weak compactness would not fit our purpose, since D.E.
Alspach ([A]) has given an example of a weakly compact convex subset B of
L'(0, 1) and a nonexpansive mapping T: B— B without fixed point (see,
however, [Mau], [ELOS], [Ki], p. 129, for positive results). On the contrary,
in L7(0, 1) with 1 < p.< 0, by the classical theorem of Browder, G&hde and
Kirk ([Ki], p. 123, or [G]) and the uniform convexity of the norm, a
nonexpansive mapping leaving invariant a closed bounded convex set has a
fixed point. So, in the case of convex subsets B of L7(0, 1), 1 < p < o0, our 1-
compactness assumption is far too strong. But our sets B are star-shaped;
they need not be convex.

The first author initiated this work in [LD1] and [LD2], considering
Orlicz spaces of sequences /*; ¢ was convex and satisfied the condition 4, at
0, or concave with [? locally bounded (a little more in fact). In the first case
the mapping T was nonexpansive for the Luxemburg norm Ve, and for the
modular g, in the second case.

Here, besides the generalization to Musielak-Orlicz spaces L?(Q, &/, 4)
with arbitrary measure spaces (R, .7, y), we extend this study to wide classes
of functions ¢, which include not only arbitrary concave or convex (or p-
convex, p > 0) Orlicz functions but also more general ones; and this is done
in both cases of g,-nonexpansiveness and of v,-nonexpansiveness. Let us
remark that these functionals g,, v, are often not subadditive: then the
nonexpansiveness condition does not refer to a metric.

These generalizations cover the case of non-locally bounded spaces
L?(Q, o/, ) (such as the space of sequences I with ¢ (1) = }logf|™" near 0),
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and also of spaces L?(2, </, u) where ¢ does not satisfy the condition 4,.
However, in this last case the star-shaped set B where T operates has to be
contained in the closed subspace L§ of L? generated by the set of simple
functions and is subjected to a strong boundedness condition, chiefly in
Theorem 10.1.

A curious phenomenon appears in non-locally bounded Orlicz sequence
spaces I°: every strict g,-contraction on a ball is constant (Theorem 12.2).

We shall mainly meet two types of growth conditions on ¢:

— The hypothesis that ¢ has “non-null growth exponents”, which is a
little stronger than the necessary and sufficient condition of local bounded-
ness for L?(Q, .o/, p), and which is fulfilled by every convex (or: p-convex)
function .

— The conditions “BL,”, drawn from a paper by H. Brézis and E. Lieb
([BLJ), which generalize both subadditivity and convexity (and p-convexity).

Without giving too precise statements, we can summarize this paper in
the following way.

The set B is as above. When T2 B — B is nonexpansive for g,, it has a
fixed point if ¢ is strictly increasing and

— either ¢ is subadditive (Theorem 3.1);

— or (1) @ has non-null growth exponents and (2) ¢ satisfies the
condition 4, (Theorem 6.1) or the condition BL, (Theorem 8.1); (1) can be
omitted under some supplementary assumption on B (Theorem 9.3);

— or B is compact for the topology of L?(, .o/, u) (Proposition 9.1).

When T is nonexpansive for v,, it has a fixed point if ¢ is strictly
increasing, unbounded and satisfies the condition BL, (Theorem 10.1).

Finally, under a strong nonexpansiveness hypothesis on 7, ¢ may be
arbitrary (Theorem 11.1).

As in [LDI1], [LD2], we use asymptotic center- techniques.

A key result (Lemma 6.3) asserts that, when a sequence of measurable
functions x, converges a.c. to a function ce L§(R, .«/, p), then the functional

R(x)= sup limsupg,(s(x—x,)), xeL§(Q,/, p),

[{ R |

attaing its minimum value at the unique point ¢ (unless R(x) = + x). Here ¢
is arbitrary. Under conditions BL,, we have a similar result letting s take the
value 1, and also for the analogous functional defined with v, (Lemmas 8.3,
9.5, 10.4).

The inequalitics given in these “asymptotic center lemmas™ appear
alrcady in [LD2] in special cases. Related estimates can also be found in
[BL], in another context.

Our fixed points always come out afier the following three steps.

First we find nonexpansive mappings T,: B - B which converge point-
wise to T and turn oul to have fixed points x, (or almost fixed in Theorem
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11.1) converging ae. to a point ¢eB. Then we prove the inequality
R(Te) < R(c), for R or for a similar functional, and we conclude in the third
step, using the suitable asympiotic center lemma, that we must have T¢ =,

Contrary to the case of nonexpansive mappings in Banach spaces, the
first two steps are not obvious. Indeed, by Theorem 12.2, in non-locally
bounded spaces it may be not possible to approximate T by strict g,-
contractions T,. Moreover, even when this is possible, the lack of t}':e
subadditivity of g, and v, often creates new difficulties in the course of the
proof.

2. A few definitions. Star-shaped sets and nonexpansive mappings have
been defined in the introduction.

2.1. Musielak~Orlicz functions. A Musielak-Orlicz function (abbreviated
to “M.O. function”) on a (positive) measure space (R, .o/, u) will be a
mapping @: R, x2— R, where R, = [0, + ), enjoying the following
properties. For every te Ry, o(t, *): Q— R, is measurable, and for every
e the function ¢ (-, ): R, - R, is increasing, left-continuous and strict-
ly positive on (0, o), null and continuous at 0. We sometimes extend o, w)
to + o0, letting

®(00, W) =sup {p(t, ): teR.].

If x: Q- R, is measurable (for the o-field .«/) we denote by @(x) the
function defined on Q by

) =o(x(),"): 0 - ¢(x(), »),

which is still «/-measurable.

When ¢ does not depend on the variable w in €, we say that ¢ is an
Orlic= function.

2.2. Musielak—Orlicz spaces. To a M.O. function ¢ on a measure space
(2, o, p) we associate the modular ([MuO))

(%) = rI)(ﬁ(lxl)ﬂ = [o(x (@), ©)u(do),
Q

where x is a measurable complex-valued function on (2, <, 1), or a u-class
of such functions, and the spaces

LQO,(Q: ‘“71 ,“)s Lip(g, ‘dr N)'

The ﬁrst‘(rcs.;p. the second) space is the set of the y-classes of measurable
functions satisfying 0,(tx) < oo for every (resp. for so me) real number

t>0. They are linear spaces, and are endowed with linear topologies as
follows. The sets rB®(r), r > 0, where

BY(r) = (xeL?(Q, o, 1): 0,(x) < r]

»
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constitute a basis of zero-neighbourhoods in L?(£, .7, u), and the topology
of L§(R, o/, y) is the induced topology. A sequence (x,) in L?(R, </, y) tends
to 0 if and only if limg,(tx,) =0 for every real number t.

When the measure space is the set N of nonnegative whole numbers
with the counting measure, we get the Musielak—Orlicz spaces of sequences

g, r

associated to the modular g,(x) =3 %o 0(x,], @), x =(x,)=0-

23. The functions t, 4, r >0, Aeof;. These functions are useful when
the measure space (2, ./, u) has atoms (i.e. sets a e .o/ satisfying u(a) > 0 and
u(a) =0 or u(a\a) =0 if o’ =4, a'e, or p-classes of such sets). Let

Ay ={Aded: 0 <p(d) <ow).

For every real number r > 0 and every Ae «/; we define a function 7, 4: A
— [0, +o0] determined, up to a negligible function, by the following condi-
tions. For every atom a of y included in A4,

T 4@ =supfteR.: o(r,a)u(a) <r)

where 1, 4(a) and ¢(t, a) are respectively the essential values of 7, , and
@(t,") on a. And ‘

T4 = +0

a.e. (almost everywhere) on the .o/-measurable subsets of 4 which contain no
atoms of .

So if x is a measurable function on (2, &/, ) and g,(x) <r then, for
every Ae s, |x| <1, 4 ae. on A

Of course, when g is o-finite, a measurable function 7, defined in the
same way on the whole of Q could replace in the sequel the family of
functions 1, 4, Ae.;.

2.4. The topology of local convergence in measure on (Q, o, p). This is
the topology of convergence in measure on every set 4e.o/ of finite measure.
We shall consider subsets B of L”(Q, </, 1) sequentially compact for that
topology. Since every function in L¥(R, ./, p) is null outside of some set of
o-finite measure, that means that every sequence of points of B contains a
subsequence converging a.e. to some point of B.

2.5, Bounded sets. A subset B of L?(Q, &/, ) is said to be bounded when
sup {g,(ex): xe B} tends to 0 as te R, tends to O (i.e. when it is bounded in
the sense of topological vector spaces).

We will rather use conditions like sup {o,(x—¥): (x, y)e B xB} < o0,
which are in general not equivalent to the boundedness of B, except when,
for example, ¢ is convex (or p-convex) and satisfies the “strong condition
4,”, defined in Section 5.
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3. Fixed points for ¢ -nonexpansive mappings with ¢ subadditive.

TueoreM 3.1. Let ¢ be a Musielak-Orlicz function on a measure space
(Q, .o, p) and let B be a star-shaped subset of L?(Q, o/, y) sequentially
compact for the topology of local convergence in measure and satisfying

sup{g,(x): xeB} < o0.

We assume that, for almost all weQ, @(+, w): t — @(t, w) is subadditive
(ie. o(s+t, w) < (s, W)+, w) for s, t in R,) and strictly increasing
on R,.

Then a map T: B— B has a fixed point if it is nonexpansive for g, ie. if

0o (Tx—T)) < g, (x—y)

Jor every (x, y)e B x B.

Remark 3.2. Since ¢ is subadditive, the spaces L?(L, ./, u) and
L3(Q, o/, w) are both equal to [x: g,(x) < oc}.

Remark 3.3. L?(Q, .«/, u) need not be locally bounded, nor need B be
bounded. This is for example the case for the Orlicz space of sequences /9,
where ¢ is the subadditive Orlicz function defined by ¢(t) = — 1/logt for
O<t<e ! and () =teiflt >e ", the star-shaped set B being a ball B’ (r),
r>0.

Lemma 34. If ¢ is subadditive and A < L"(Q, <7, ) is sequentially
compact for the topology of local convergence in measure with A # @, then a
map S: A— A has a fixed point if

1) 0p (Sx—8y) < g, (x—~)
provided xe A, ye A and x # y.

Indeed, let )
2 a=inf{p,(Sx—x): xeB!,

Using our remark in 24 we see that there exists a sequence (x,) of
points of A satisfying

(3J ’ a = lim O (an - X,.)

and such that the sequence Sx,, n > 0, converges a.e. to a point ce A.
Using the notation @ of 2.1, we have, since ¢ is subadditive,

|3(1Se —Sx,)= G (jc—Sx,)| < F(Se~c))

and .the leftjhand side tends ae. to @(Sc—c|) (the functions (-, w) are
continuous since they are subadditive). So, applying the Lebesgue dominated
convergence theorem, we get

4 0 (Sc—¢) = lim (g, (S¢ — Sx,)~ g, (¢ — Sx,)).

e ©
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But since the mappings ¢(-, w) are subadditive, the modular is also
subadditive and we have

0y (Sc—~8x,) € g,(c—x,) < 0, (c—Sx,) + 0, (Sx,— ),
whence by (4), (3), (2)
2o (Sc—0) < lim g, (Sx,—x,) = 6 < g, (S%¢—Se)

and in view of (1) the comparison of the first and last member gives Sc = c.

Proof of the theorem. The set B is star-shaped with respect to some
center u.
If 0 <A <1, the mapping T,: B— B defined by

Tox=u+A(Tx—u), xeB, .
satisfies g, (T, x—T; ) <g,(x—y) if xeB, yeB and x # y. Indeed, we have
0 (T, x— T, y) = 0, (A(Tx— T)) < g, (Tx — T3) < g, (x—).

Since the functions ¢(-, w) are strictly increasing, the second or first inequa-
lity is strict according as Tx— Ty is null or not. Therefore T, has a fixed
point and by compactness we find real numbers 4,€(0, 1) tending to 1 and
points x,€ B converging a.e. to some point ce B and satisfying T, x, = x, for
every n. The modular ¢, being subadditive, we have

log (Te—=X,) =2y (Ty, = X)| < 20 (Te—T;,,0) = @, (1 ~2)(T—w) — O,
whence

lim sup g, (Te — x,). = limsup g, (T; ¢ —x,)
L] n
= ﬁmsuPéw(n"C— T}.nxn) < limsup Qw(c_xn),

these upper limits being finite.
But as in the proof of Lemma 34 we have by the dominated conver-
gence theorem

0 (Te—c) = lim (@, (T& — X,) — 0o (¢ = X))

The preceding inequality shows that this limit must be null, so Tt =¢
and ¢ is a fixed point for T.

4. Functions ¢ with non-null growth exponents.

4.1, We say that a M.O. function ¢ on a measure space (Q, &, p) has
non-null growth exponents when, for every r >0, ¢ >0 and every 4 in the
(open) interval (0, 1), one can find a real number o < 1 and an «/-measurable
function a: Q — R, satisfying g, (#) < & and, for each e o (cf. 2.3) and for

5 ~ Studin Mathematicn t 6/2
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almost all we A,

)

(o(w) <At t <71, 4(0), teRy) = o(At, ) S ap(r, w).

¢ is said to have non-null asymptotic growth exponents when, for every
r >0, there exist real numbers A and « in (0, 1) and a function ¢: Q — R, in
LP(Q, o, p) satisfying (5) a.e. on every set Ae.o/;.

Of course the first condition implies the second one.

We denote by A, () the least number « > 0 satisfying (5) for every
Ae./; and for almost all weA. In other words,

b p(2) = Sup ess supsup {o(it, w)/o(t,0): A 'o(w) <t <1, 4 (@)}
€ f we

In order to justify the terminology, les us explain what we call “growth
exponents” and “asymptotic growth exponents”: if h,,(4) = A#*"4 they are
respectively the nonnegative numbers

Pe,r,2 = SUP [lp(a’ r, '1) oelf(Q, o, M, Q(p(a) < 8}:
po=supiplo.r, 2): e L%(Q, . 1, Le(0, 1).

The conditions on ¢ defined above express respectively that all the exponents
P, € >0, 7> 0, 1&(0, 1), or all the exponents Pr> r > 0, are not null. The
word “asymptotic” refers to the fact that p(o, r, ) tends to sup;p (o, r, 4) as
.}. tends to O by the submultiplicativity of h,, (see below) and increases as o
increases.

The p,’s are known in standard Orlicz spaces (see 4.4 below).

In fact we should speak of lower exponents because they give a
minorization of the “rate of growth” of Q.

4.2. For example, (5) is fulfilled if, for some real number p > 0, the
mapping -t "o, ) is increasing on the interval (0(®), 1, 4(@), or if
1,4 (@) < o (w). We have indeed in this case @ (At, ) < o (t, w) when At
- and t lie in this interval.

So ¢ has non-null growth exponents if, for some real number p >0, and
for every set Ae .o/, the function (-, w) is p-convex on (0, 7, 4(w)) (ie. if
@(t'?, w) is a convex function of ¢ for /7 7,4 (@) for almost all weA.

43. Let us notice that ¢(o0, w) = +co for almost all w in every set
Ae/; if ¢ has non-null asymptotic growth exponents.

Indeed, on the atomless part of A, T,,4 is a.e. infinite and (-, w) is ac.
unbounded by (5). In the same way, if a < 4 is an atom, the boundedness of
¢(-, a) would contradict (5) for large r since @(oc,a) < oo if and only if
T,,4(a) = +co for some reR...

44. Let us now assume that ¢ is an Orlicz function (i.e. independent of
w) and that pu is either the counting measure of the set Q, with € infinite
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(case(a)), or an atomless measure with sup {u(A4): Ae.of;] = + o0 (case(b)),
or an atomless measure with 0 <sup {u(A4): Ae.o/;} < oo (case(c)).

Then the functions t, 4 take essentially a constant value ,. In case (a),
7, =sup {t: () <r}, in cases (b) and (o), 7, = + 0.

And it is easily seen that (5) can be replaced by

sup {@(An/p(t): s/A<t<rt,) <o

where s = inf {essinf, .40 (w): Ae.s/;}. The conditions on ¢ give s=0 in
cases (a), (b). In case (c), the condition “0,(0) small” becomes “s small”.

Finally, for measure spaces of ‘the above types, an Orlicz function ¢ has
non-null growth exponents if and only if it is strictly increasing and unbounded
on R, and satisfies, for every A= (0, 1),

6) limsup ¢ (At)/o () < 1
t
where t tends to 0 in case (a), to 0 or +co in case (b), to +oo in cuse (c).
The necessity is clear (¢ has to be strictly increasing on R, even in case
(a) because sup,7, = + o). :
For the converse, we have only to establish the inequality
sup {@(An)/e(1): a<t<b) <lfor 0<a<b< 40w, 0<l<1 and ¢ strict-
ly increasing (this is not obvious when ¢ is discontinuous): it is enough to
show that we have limsupg(it,)/e(t,) <1 if (t,) is a sequence in [a, b]
converging to a point 1. For that purpose we remark that if it <c¢ <d <t
then, for large n, ¢ and d lie between A, and ¢,, whence

et elt) < @0/eld < 1.

One gets similar criteria for the nonvanishing of the asymptotic growth
exponents p,,r > 0, of an Orlicz function ¢, in the above three cases: (6) has
to be satisfied only for some Ae(0, 1), even small, and ¢ need not be strictly
increasing.

Let us observe that, in these three cases, the asymptotic growth expo-
nent p, of an Orlicz function ¢ is independent of r (for r < ¢ (o) in case (a)
and is a well-known index, denoted by ¢, in [MaO] and by «,, in [LT]: p, is
the limit as A -0, of log k(A)/log A, where k(A) is the left-hand side of (6).

4.5. We now return to the general case.

These growth conditions will be used in the lemma below.

Let ¢ be a M.O. function on (£, .7, ). For every A in (0, 1) we define
an increasing function 0(4,'): R, — R, by

(7) O(4,r) = sup {0, (Ax): xe L7 (2, o, 1), g,(x) <r}.
We have clearly for every measurable function x on (Q, ./, ) with g, (x)
finite,

(8) 0, (%) < 0(4, g, (x)).
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Lemma 4.1. If ¢ has non-null asymptotic growth exponents, then we have,
Jor every reR.,
©) limO(4, r) =0.
1-0
If ¢ has non-null growth exponents, then, for every reR., and every
Ae(0, 1), the sequence of the n-th iterates 0"(4, ) of 0(4,") satisfies

(10 lim 6"(4, 1) = 0.

Proof Let r >0 and ocLl?(2, o, ), with ¢ > 0. We consider the
function h,,(1) defined in 4.1. Writing

P (A't, 0)fo(t, ©) = (p(At, W) (X't, w))(e(X't, W)/t w)

for 0 <4 A <1 and o(w)/(A) <t <1, () we easily prove that h,, is
submultiplicative on (0, 1).
If 0<s<1and Aes/; we have ae. on A

(11) @ (sit, 0) < b, (D) @ (t, 0)+ ¢ (s0 (), ®)

for 0<t <1, 4(0), teRy. If xeL?(Q, o, ) and g,(x) <r, then |x/ <1,
a.e. on every Aef;, whence

20 (53%) < by y (2) 0p (X)+ 4 (59) < by (A7 + g, (50),
(12) 0(sh, r) < h,, (A)r+o,(so).

Now, since ¢ has non-null asymptotic growth exponents, ¢ can be
chosen in such a way that h, (1) <1 for some Ae(0, 1). This gives
lim; ¢ h,,(4) = 0 because h,, is submultiplicative. Moreover, lim,.q 0, (s0)
=0 and we get (9).

Let us now assume that ¢ has nom-null growth exponents. We first
observe (10) can be readily derived from (12) when we can take ¢ = 0 in %).
Indeed, we now have h,,(1) <1 for every Ae(0, 1). This remark can be
applied for example when ¢ is an Orlicz function in the above cases (a) or (b)
(but not (c)) of 44.

We now prove (10) in the general case. Since 0(4, r) < r the sequence
0"(A, r), n > 0, is decreasing. We have to show that its limit ¢ > 0 is null,
Denoting 0(4, s,) = inf,, (4, 1), we have 6(4,a,) = a. Indeed, if t > a then
t > 0"(4, r) for some n, whence (2, 1) = 6"** (4, r) > a. So it suffices to prove
that 0 satisfies

0(A, s.)<s if s>0.
Let

q = sup{g, (Ax)/g, (): §/2 < g,(x) < 2s}

with sup @ = 0. Since ¢ has non-null growth exponents and s > 0, we have
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@ = h,,5(4) <1 for some nonnegative function o satisfying g, (o) < s/4. For
every Ae o/, and for almost all we A, we have (obviously if it < o(w) or,
else, by the definition of h, (1)

e (A, w) < ag(t, @) +(1—20)p (0 (w), )
if 0<t < 124(w), whence, for s/2 < g,(x) <25 and f = (1+a)2,
0, (Ax) € 0, (x)+(1 — o) s/4 < Bo, (x).

This gives g < p. Since <1 there exists t satisfying s <t <s/f. We
have g, (Ax) < qo,(x) < Bt if 5/2<g,(x) <t and g,(Ax) <s/2 < pt for
0,(x) € 8/2 since > 1/2. So

0(, s4) < O(A, 1) < Bt <s.

This completes the proof of the lemma. )

Remark 4.2. By (9) we see that when ¢ has non-null asymptotic growth
exponents then the ball B*(r) (cf. 2.2) is bounded for every reR..

In particular, L?(Q, ./, p) is locally bounded.

5. The condition 4,. A M.O. function ¢ on (@, &, u) satisfies the so-
called condition 4, (resp. the strong condition 4,) when, for some (resp. for
all) real numbers r > O there exist a finite constant H > 0 and an integrable
function g: (R, o, 1) — R, satisfying, for every Ae o/ and almost all we A4,

(13) (t< 1, 4(w), teRy) = @2, 0) < Ho(t, 0)+g(w).

Of course, the strong condition 4, does not differ from the usual one
when u is atomless since in this case the functions 7, , are essentially infinite.

Moreover, let us assume that ¢ is an Orlicz function and, as above, that
the measure u is either the counting measure of @, Q being infinite (case (a)),
or atomless with sup {u(4): Ae o] = +oo (case (b)), or atomless with this
supremum finite (case (c)). Then it is easily seen that both the condition 4,
and the strong condition 4, reduce to the usual condition

lim sup @ 2t/ (1) < 0o

where ¢ tends to 0 in case (a), to 0 or + o0 in case (b), to +co in case (c).
Let us return to the general situation.
I ¢ satisfies the condition 4, and g,(x) <o, x measurable on
(2, «#, ), then @,(Kx) < oo for every scalar K. We have therefore

L3(Q, o, p)y= L (R, o, p.

Indeed, if r > 0, there are only a finite number of atoms 4 such that
0,(x1) > r. On every set Ae.; containing none of these atoms we have
I¥ <1, ae So the condition 4, gives g,(2x) <oco, and therefore by
induction @, (Kx) < 0o for every K.


GUEST


166 E. Lami Dozo and Ph, Turpin

If ¢ satisfies the strong condition 4, we have, for every set B of
measurable functions on (2, &, u) and for every real number K,

sup {g,(x): xeB} < o0 = sup{g,(Kx): xeB} <.

We also have the following statement.

LemMa 5.1. If ¢ satisfies the condition A, and if (x,) is a sequence in
LP(Q, o, 1) satisfying tim,g,(x,) =0, then lim,g,(Kx,) =0 for every real
number K (i.e. for the topology of L7(RQ, </, u)).

It is enough to prove the result for K = 2 and, for this, to prove that
liminf g, (2y,) = 0 for every subsequence (y,) of (x,). Since g, (,) tends to 0
and (¢, w) > 0 for ¢ > 0, some subsequence (y;) of (y,) tends to 0 u-ae. Let
r >0 be given by the condition 4,. When n is large we have ¢,(y)) <r
whence |y, <7, a.e. on every Ae.oZ;. This gives by (13)

Iy <HG(yi)+g A F2Iyi,
04 (2y) < Ho, (v + fg A §Q21Iyiyp

where the last term tends to 0 in view of the dominated convergence
theorem. So g, (2y;) tends to 0.

6. First fixed point theorem with non-null growth exponents condition.
Tueorem 6.1. Let B be a star-shaped subset of a Musielak-Orlicz space

L§(Q, o, p), sequentially compact for the topology of local convergence in
measure and satisfying

(.B) sup{g,,,(x—y): (xa .V)EBXB} < 0.

We assume that the M.O. function @ has non-null growth exponents (for
example, ¢ convex, or p-convex, 0 < p <'1) and satisfies the condition 4,.

Then a mapping T: B— B has a fixed point if it is nonexpansive Jor g,.

The condition 4, may be replaced by the more general assumption that T
satisfies the following property (of uniform continuity type): (x,), (v,) being
sequences in B, and (e,) a scalar sequence, the condition

(%) Xy=-Yn€8,(B—B) with lime, =0
n

implies

(%) . VKeR,, limg,(K(Tx,~T,)=0.

Proof. We first observe that (+) implies (#) if o satisfies the condition
4,. Indeed, since ¢ has non-null growth exponents B—B is bounded
(Remark 4.2) so g,(x,~y,) tends to 0 if (%) is true. Then g, (Tx,~ Tp,) tends
to 0 and the condition 4, gives (v¥) (Lemma 5.1).

4 In the rest of the proof, ¢ is no more supposed to satisfy this condition
2
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As in the preceding theorem, we start by proving the existence of fixed
points for the mappings 7,: B— B defined for 0 <1 <1 by

T, x=u+A(Tx—u), xeB,

B being star-shaped with respect to the point ueB.

This will be given by the following lemma.

Lemma 6.2. Let X be a Hausdorff topological space endowed with a
mapping j: X x X — [0, +20]. We assume that, for every ye X, the mapping x
—j(x,y) is lower semi-continuous. We also assume that j satisfies

R =sup {j(x,x): xeX} <o

for some x,€ X and that a sequence (x,) converges in X provided lim J (X Xy)
=0 as n and p tend to .
Then a mapping S: X — X has a fixed point if we have

(14 J(8x, 8y) < 0(j(x, y))

Jor every (x, y)e X x X and for some increasing function 0: R, — R, satisfying
lim, 0"(r) = O for every reR.,, where 0" is the n-th iterate of O for every
positive integer n,

Proof. If §” is the nth iterate of S we get by induction on n, for any
whole numbers n> 0 and k >0,

J (857" x0, 87 x0) < 07 (j(S* Xo, Xo)) < 0"(R).

So lim, j($**"xy, $"x) = O uniformly in k > 0 and the sequence S"x,, n = 0,
has a limit xe X satisfying by lower semi-continuity

j(xa S"XO) < gn(R)’
whence lim, j(x, $"xo) = 0 and
J(8x, 8"x0) < 0(j(x, $"7 1 x)) < ji(x, §"* xo)

tends to 0 (the assumptions on ¢ give () <r for 0 <r < o). Consequently
lim, S"xo = Sx (because the sequence y,, = S"xq, Yanr1 = Sx fulfils the con-
vergence condition of the lemma), whence Sx = x.

Now we apply the lemma, taking for S the mappings T, for X the set B
endowed with the topology 7 of local convergence in measure and for j the
mapping (x, y) - @,(x—y) of BxB into R, . Let us check that the hypothe-
ses of the lemma are fulfilled.

Since ¢ is left-continuous g, (x~y) is lower semi-continuous with respect
to x.

If lim,g,, (x,) = O then x, tends to O for 7. Indeed, it suffices to show that
0 is a cluster point for t of any subsequence (y,) of (x,). But (y,) has a
subsequence (z,) such that ¢(jz,(w)|, @) converges to 0 ae. and this implies
that z, tends to 0 a.e., and therefore for T


GUEST


168 E. Lami Dozo and Ph. Turpin
Consequently, if lim, , 0, (x,—x,) = 0, (x,) is a Cauchy sequence in (B, 1)
and converges since (B,t) is sequentially compact.

Finally, as T,x—T,y = A(Tx~ T}), the functions 6(4, ‘) of Lemma 4.1
satisfy

0, (Tx—T,3) < 0(1, ¢, (Tx~ TH)) < 0(4, ¢, (x—))

and play the role of the function 6 of the above lemma since ¢ has non- null
growth exponents,
Hence there exists x,eB satisfying T, x; = x,, for each 1 in (0, 1).
Now let us pick a sequence of positive real numbers A, < 1 tending to 1.
If T,=T, and x, = x, ,the mappings T,: B~ B satlsfy, for every (x,y) in B
><B and K in R,,

(15) T, X, = X,

(16) 05 (Tx—T,)) < g, (x~),

17 2 (K(T,x=T, ) < ¢, (K(Tx~Ty)),
(18) lim g, (K (T~ T, ) = 0.

In (17) the left-hand side, equal to g, (K4,(Tx—T})), is majorized by
0o (K (Tx—Ty)) since 4, lies in (0,1). If K = 1 the nonexpansiveness of T gives
(16) And Tx—-T,x =(1-4)(Tx—u) satisfies (18).

We claim that the conditions (15)~(18) entail the following inequality, for
every ce B:

(19) sup limsupg, (s(Te—x,)) <

O<s<]

sup limsup g, (s(c—x,)).

O<s<t

This will be proved by using the following modular inequality. For
strictly positive real numbers s;, s and finite-valued measurable functions A
Vi, i=1,..., k, we have

k

Z ﬁ”h

t=1

sup; ;|| since sy is the barycenter of the s y,'s

(20)

&
2,(sY) < Z O (silyl) if y= Z Vi §" =

Indeed, we have s|y| <
with the weights s/s;.

In order to obtain (19) from (15}-(18) let us pick numbers r, s in the
interval (0 1). For every xeB let

X, = U+r(x—u).
If K =3s/(1—5) then s! =v1+3K‘1. Hence, using (15) and (20),
00 (s(Te—x,)) < gy (K (Te—T2,)) + 0, (K (Te,— T, c,))
o= Tx,) 40, (K (T % — Tyx).

iom®
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Since ¢,—x,, =r(c—x,) we derive from (16), (17), (18)

lim sup g, (s (T — x,))
< 0, (K (Te— Te,))+ limsup g, ( (¢ — x,)) +sup g, (K (T, — Tx,)).

Now we let r tend to 1. From the “uniform continuity” property of T it
follows that the last term tends to O, since x,,—X,=(r—1)(x,—u) is in
(r—1)(B—B). And the same is true for the first term. Hence,

limsupg, (s(Te—x,)) < sup limsupg, (r(c—x,)
N n 0<r<li "
which gives (19).

Finally, in view of the compactness assumption on B, the sequence (4,)
can be chosen in such a way that the corresponding fixed points x, of T;
converge p-a.€. to a point ceB.

Then the following lemma shows that the functional

X— sup hmsupQ(,,( s(x—x,))
0<s<1

attains its minimum value at the unique point c¢. By (19) we must have
Tec =c.

LeMMA 6.3 (first asymptotic center lemma). Let ¢ be a M.O. function on
(2, o/, W and (x,) be a sequence in L"(Q, o/, p) converging u-a.e. to a potnt
cely(Q, o, p). Then, for every xeL§(R, o/, u), we have

sup limsupg,(s(x—x,) 2 g,(x—)+ Osig 1 hm"sup 0, (s(c—x,)).

0<s<1 n
Proof. A number se (%, 1) being chosen, it suffices to prove the inequali-
ty

(21) 0, (x—c)+limsupg, (ste=xy)).

limsup @, (x— x,) >
n

Indeed, this will give for 0 <s <r <1

limsup g,, (r (x— X,)) 2 @ (r(x—c))+limsup 0, (s(c—x,))
n . n
and when r and s tend to 1 we get the lemma because, ¢ being left-

continuous, g,,,(r(x—c)) tends to g, (x—c).
Thus let K = s/(1—s). We consider the decomposition
Flx—xd) = futgn  Jo=@(x—x] A Klx—(|).

Since ¢ is left-continuous and K = 1, liminf, f, > @(x—c|). Hence

(22) liminf [ fyu 2 @, (x—c).
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On the other hand we have
gn = Glx=x,| v K|x~c|)~ G (K |x=c}.
From s™! = 1+K™" we obtain slc—x,| < |x~x, v K |x—¢| (as in (20)). So,
gu 2 (Flsle =X~ F(K |x~c])),
= @sle—x,)) = FK|x~cl) A Fsle—~x,).

But ¢ (K fx—cf? is summable and @(s|c—x,)) converges u-a.e. to 0 S0, by the
Lebesgue dominated convergence theorem, we have

lim [ @ (K [x~cl) A @F(sle=x,)) = 0
and

(23) " limsup fg, 1 2 lim SUP @, (s (¢ —x,)).
" "n

From (22) and (23) follows (21).

7. The conditions BL,. These itions are derivec a simile
.introduced by H. Brézis kand E. Ifl(«)erl;dtl[ll(;;?])d“’ derived from a similar one

7.1. We first define the strong condition BL,.

For a given real number k> 1 we say that a M.O. function ¢ on
Q. «, y} satisfies the strong condition BL, when, for every r > 0 and ¢ > 0
there exist a positive real number 4 « 1 and an integrable functior;
g: (Q. ./, W) — R, satisfying, a.e. on every ‘set Ae ./,

(24) OSki <1, 4(0) = oft, 0) < @ (A, w)+ep (kt, w)+g(w).

) [f)f course, the strong condition BL, implies the strong condition BL, if

\ 7.2 If @ fulﬁl§ the strong condition 4, then the strong conditions BL,,
>1, are all equivalent to the strong condition BL,.

. Ilndeed, the strong f:onfiition 4, implies that for every r > 0 there exists

th.rea. n}lmber s> 0 s.a‘tlsfymg, for every Ae.v,, 2, 4 €7, a6 on A. Using
lsh}t- Is readily verified that the strong condition BL, implies the strong

condition BL, for every h 3 k/2 and, iterating, for h = 1,

e 7.2. >AlM.O. Junction ¢ on (Q, ./, p) satisfies the strong condition BL, for

o ;; k> a;Z jj"?r some :easumble R..-valued function o on (82, ./, ) with
» na for every Ae .o, the i . is ,

for aimon T e h mapping @(+, w) is convex on [o(w), + o)

Indeed, let k > 1, ¢e(0, k™) and let 2= (1 =ak(1~t). Then 1e(0, 1)

Nonexpansive maps 171
and if teR,. and Ae.«/; we have ae. on A

k=1 1—4
ol(t, w) < m(p (2 v o(w), ®)+ m(p(kr,a))

< ¢ (A, w)+ep(kt, ©)+ (0 (w), ®)

where g(w) = ¢(o(w), ) is integrable.

From this we deduce that for 0 <p <1, p-convex Musielak-Orlicz
functions satisfy the strong conditions BL, for every k > 1. More generally, if
a M.O. function ¢ fulfils the strong condition BL, then, for 0 < p < =, the

.M.O. functvion ¥ (t,w) = @ (t", w) satisfies the strong cpndition BL, with A

= ke,

7.4. On the other hand, a M.O. function ¢ on (2, .7, u) satisfies the
strong condition BL, (hence BL, for every k = 1) if for some R, -valued
measurable function ¢ on (@, .o/, ) with g,(0) < oo and some positive real
number p (and a.e. on every Ae.o/y), the mapping t — 1t~ P(t, @) is decrea-
sing for ¢ = o{w) (for t > 0 when o (w) = 0), in particular when t — ¢ (t'/", @)
is concave on [o(w)?, +o0).

We have indeed for Ae(0, 1)

oft, )< @ (t v (o (w)/4), a)) < A7 (A1) v o (w), w)
< oA, 0)+@A"P=1) p(t, w)+ A" (0 (@), w)

so that (24) is satisfied with k=1 when A is close to 1.

Let us also observe that ¢ obviously satisfies the strong condition BL, if
the function ¢(c0, *) is integrable on (2, .7, u). ’

7.5. We now suppose that ¢ is an Orlicz function and that y is as in one
of the cases (a), (b), (c) of Section 4.4, i.e. respectively the counting measure
with Q infinite, atomless and (roughly speaking) unbounded, atomless and
bounded.

Then the functions v, 4 take essentially a constant value.t, (infinite when
1 is atomless) depending only on r and the function g in (24) can be assumed
to be identically null in cases (a) and (b).

We therefore easily get the following statements. :

For a given k > 1, ¢ satisfies the strong condition BLy (for p) if and only
if we have
(25) lim lim sup (o (&)~ @ (i) ek =0, Ae(0, 1),

Asl ]

where ¢ tends to 0 in case (a), to 0 or + oo in case (b), to -+ oo in case (c), ¢
being furthermore continuous on R, in cases (a) and (b) (¢ need not be

continuous in case (c)). .
One sees in particular that ¢ satisfies the strong condition BL, (and
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therefore BL, for any k) if and only if we have
(26) limliminf @ (At)/p(t) =1, Ae(0, 1),
iar1 t

where as above ¢ tends to 0, to ,%, or to + o according to the case, ¢ being
continuous on R, in cases (a) and (b).

It is easily checked as above that (25) holds for any number k > 1 if ¢ is
p-convex for some p > 0 in a neighborhood of 0 in case (a), of 0 and +oo in
case (b), of +oo in case (c); and that we have the stronger condition (26) if
the mapping t — t™Po () is decreasing for some pe R.. in a neighborhood of
0, 0 and +o00, or +o0 as above.

Let us observe that for a p-convex Orlicz function, in cases (a), (b), (c),
the strong condition BL, is equivalent to the condition 4, (this is a
consequence of 7.2 and of the fact that (26) implies the condition 4,). So, the
condition (CV) of [LD2] means in fact that ¢ is convex and satisfies 4, at 0,

We may also remark that (26) holds if lim, ¢ (4¢)/¢ (t) exists and is non-
null for every 1e(0, 1), in other words if ¢ is regularly varying (in the sense
of Karamata ([Ka])) at 0, 0 and +00 or +o0 according to the case.

Indeed, this limit will be equal to A for some p > 0, being an increasing
multiplicative function of 1.

If lim, ¢ (At)/(t) = O for some Le(0, 1), then ¢ clearly satisfies (25), i.e.
the strong condition BL, with k = 1/4.

7.6. We now define the weak condition BL,.

We say that a M.O. function ¢ on (Q, .+, y) satisfies the weak condition
BL, for some real number k > 1 when, for any real numbers r > 0 and
¢ >0, there exist finite positive constants H, K and an integrable function
g: (Q, ./, u) — R, satisfying, a.e. on every Ae .o,

1
27 O<ss<r s;rm(w)

= o(t, ) < o5, @) +ep ki, w)+Ho (K (t—s), w)+g(w).
For example, ¢ obviously satisfies the weak condition BL, if, for every
Aedy, ¢(-, w) is subadditive on (0, k™1, 4(w)) for almost all we A.
7.1. The strong condition BL, implies the weak condition BL,.
The converse is true for a M.O. function with non-null asymptotic growth
exponents: in this case we say, more simply, “the condition BL,”.

Indeed, let us assume that (24) holds (with 0 <4 <1 and we A) and that
we have 0<s<t< k™', 4(w). Since t < (t—s)(1—1) if it >5, we have

‘ A
o, w) < p(s, w)+o (I:—i(t—s)’ w)

and (27) is fulfilled with H=1 and K = /(1 J).

e ©
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Conversely, let us assume that ¢ has non-null asymptotic growth
exponents and satisfies the weak condition BL,. With 0 <kt <7, 4(w) and
s = At, Le(0,1), (27) yields

o(t, w) < p(At, w)+eplkt, )+ He(K(1-2)t, 0)+g ().

Applying (11) in Section 4, where the function h,, satisfies h,,(0+) = 0, we
have for A close to 1

Ho(K(1=2t, o) <ep(t, o)+ (o), o)
with @(o(-), ) integrable. So (27) implies a relation similar to (24).

8. Second fixed point theorem with non-null growth exponents condition.

TuroreM 8.1, Let ¢ be a M.O. function on (R, o/, 1) with non-null growth
exponents and let B < L§(Q, o, i) be star-shaped and sequentially compact
for the topology of local convergence in measure. o

Moreover, for some real number k 2 1, we suppose that ¢ satisfies the
condition BL, and that we have

(B sup {o, (k(x=)): (x, ) eBxB} < .

Then a mapping T B — B has a fixed point if it is nonexpansive for g,,.

By 4.2 and 7.3 we have the following special case.

COROLLARY 8.2 If ¢ is convex (or p-convex, p > 0) and B < LG(Q, ‘91‘, )
is as above, satisfying (By) for some k > 1, then a map T: B—~ B has a fixed
point when it is nonexpansive for Q,. -

If we compare this with Theorem 6.1 when ¢ 'is convex and. fails to
satisfy the condition 4, we see that the uniform continuity agspmptlon onT
in Theorem 6.1 has been dropped, but the boundedness condition () of that
theorem has been strengthened: we need () for some k > 1. .

Proof. As in the proof of Theorem 6.1 we consnfuct mappings T,: -B
— B and points x,eB satisfying (15)-(18) and converging p-a.e. to a point
ceB. '

If 0<s <1 and K = s/(1—s) we have as in (20)

(2 (S(’R""‘xn)) < le(K(Tb'“ T;,C))'f' Qtp(T:lC"' T;I'xn)

and (16), (18) give
sup limsupg, ($(76—x,)) < limsup g, (¢ — X,
n n

0<y<]
But B satisfies (f,) and, by 7.7, ¢ satisfies the strong condition BL,.
Hence the left-continuity statement of Lemma 8.3 below gives
sup limsupg, (s(Te~x,) < sup lim sup g, (s (¢ — x4)
0<s<i L} 0<s<1 n

and, by Lemma 6.3, we therefore get Tt =c.
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Lemma 8.3. We assume that, Jor some real number k 2 1, a M.O. function
@ on (Q, o, p) satisfies the strong condition BLy. Let (x,) be a sequence of
points of L?(Q, ./, p) tending to 0 p-a.e.

Then the mapping s — limsup, g, (sx,), defined on R, is left-continuous at 1
if sup, g, (kx,) < ov. It is also right-continuous at 1 if sup,e, (k'x,) < o for
some real number k' > k.

If o satisfies only the weak condition BLy, we have the same conclusions
under the further requirement that (x,) be bounded for the topology of
LP(Q, o, .

Proof. Let & > 0. If r = sup, g, (kx,), we have k|x,| <1, 4ae. on every
Ae.d. So the strong condition BL, yields a number de(0,1) and a
nonnegative integrable function g on (£, .o/, ) satisfying

P(xl) < Al +e@ klx)+F(x) A g,
o (xa) < 0, (Ax,) + 60, (kx4 [ @ (1)) A g

In view of the dominated convergence theorem, the last term tends to 0
and we get

limsup o, (x,) < limsup g, (Ax,)+&sup g, (kx,).
: n n n

This gives the left-continuity. For the right-continuity we find in the
same way that for k/A < k' ‘

limsup g, (x,/4) < limsup Qp (x,)+esup g, (k'x,).
n n n

Under the weak condition BL,, we have for some constants H, K and
for every se(0, 1)

G (1) < Gls|x))+o@ (kx,)) + HF (K (1 —5)|x,))+g A F(|x,)),
lim"sup 2,4(x,) < limsup g, (sx,)+&sup 0y (kx,)+ Hsup g, (K (1) x,).

'If (:vc,,) is bounded the last term tends to 0 as s — 1 and we get the left-
continuity. The right-continuity is proved in an analogous manner.

9. Mappings with a nonexpansive compact approximation property. As in
Theorem 3.1 the spaces considered in this section need not be locally
bounded. But here, the functions ¢ are no more subadditive. They are
submitted to much weaker conditions. Even in locally bounded spaces, we
need not the restrictive assumption on growth exponents of Theorems 6.1
and 8.1. The counterpart is that B has to fulfil some compact approximation
property, easily satisfied in spaces of sequences (Theorem 9.3),

Th_e ma\in problem is to approximate T with nonexpansive mappings 7,
possessing fixed points.

@ ©
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In Theorems 6.1 and 8.1, the condition on the growth exponents chiefly
served to yield mappings T, satisfying the “G-contraction” condition (14) of
Lemma 6.2, and therefore endowed with fixed points.

Theorem 12.2 below will show that, in non-locaily bounded spaces, there
is generally little hope to obtain mappings T, with this “f-contraction”
property, especially in spaces of sequences. ‘

The difficulty was solved in Theorem 3.1 using the subadditivity of ¢.
Here, we find mappings T, with compact range (for the topology of the space
L?), and consequently possessing fixed points, by Proposition 9.1 below.

ProrosiTioN 9.1. Let B be a star-shaped subset of L?(2, &/, 1) compact
Jor the topology of L?(Q, o/, ) and satisfying g,(x—y) < oo for every pair
X, y in B.

We also assume that, for almost all weQ, the function ¢(-, w) is strictly
increasing.

Then a mapping T: B— B has a fixed point if it is nonexpansive for 0p-

Remark 9.2. It is known ([RS]) that if B is a compact star-shaped
subset of an (F)-normed space (E, || -||) satisfying ||tx|| < ||x|| when x # 0 and
te(0, 1), then every mapping T: B — B nonexpansive for ||-|| has a fixed
point. This gives the above statement when ¢ is subadditive (and strictly
increasing), because in this case g, is an (F)-norm with the required property. "

Proof. As in Section 3, the mappings T;: B — B defined for Ae(0, 1) by
T, x = u+A(Tx—u) satisly for x, y in B

(%) ep(Tix—Ty) <o,(x=y) if x#y.

The operator T, is continuous for the topology 1, induced by
LP(Q, o/, p). Indeed, if x, x, are in B and lim,g,(x—x,) =0, then ¢ (T, x
— T, x,) tends to 0. From this it follows as in the proof of Theorem 6.1 that
T, x—T,x, tends to 0 for the topology of local convergence in measure, and
hence for the topology 1, by compactness.

Consequently, by Fatou’s lemma and the left-continuity of ¢, the
mapping x - @,(T; x—x) is lower semi-continuous on (B, 1,). Since (B, t,) is
compact this mapping attains its minimum at some point x, & B. So,

0n (T{T, X)) =T, x,) 2 0, (T, X3~ X;)
whence T, x; == x; by (%)

We deduce from this that T has a fixed point.

Indeed, by compactness we can find a sequence (4,), 0 <4, < 1, conver-
ging to | and a sequence (x, converging to a point ¢e B for the topology
To With 13 X, = x, for all n. But, just as T;, the mapping T is continuous for
the topology t,. So,

Te—¢ = lim(Tx,~ T x,) = lim(1-4,}(Tx,~u) = 0.
" n
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Now we consider a Musielak-Orlicz space [°(y) = L?(N, #(N), ) of
sequences on the set N of nonnegative integers, for the weight u = (Upoen-

For every integer n>0, let P, be the finite rank projection of I (y)
defined by

an=(x07x11"-3 Xy 010,-“)1 XEIV'(,U).

We recall that a subset B of ¥ (u) is said to be bounded when 0, (€x)
tends to 0 as ¢ — 0 uniformly for xeB.

TueoreM 9.3. Let B be a subset of f§(4) compact for the topology of
pointwise convergence, star-shaped with respect to some “center-point” u and
satisfying

u+P,(x—weB, n=0,1,...,

Jor every xe B. We assume that, for every we N, the function ¢ (:, ) is strictly
increasing.

Then a mapping T. B— B has a fixed point if it is nonexpansive Jor ¢,
and if either the condition (c,) or (c;) below is fulfilled:

(cy) B is bounded in I”(u) and ¢ satisfies the strong condition 4 2 (for p).

(c2) For some real number k = 1, ¢ satisfies the weak condition BL, (for
W and we have

sup {0, (k(x—y): (x, yeBxB) < w0,

CoroLLARY 9.4. Let us assume that the functions ¢(-, @), weN, are
strictly increasing and unbounded, and that ¢ satisfies the strong condition 4,.

Then every mapping T: B — B nonexpansive Sor g, has a fixed point if B
is a ball (cf.-Section 2) B*(r), re R.., and if ¢ satisfies the weak condition BL,,
or if B is a ball BY(r) for some M.O. function ¥ on N Jor which B¥(r) is
bounded ‘in I (y).

Indeed, these balls fulfil the compactness and stability requirements and
they are contained in [(y) since I§(y) = I (u) by the condition 4,.

Let us add that the ball B (r) is bounded in 1 (u) if, for every o > 0, one
can find a real number 2 > 0 and a nonnegative element o of # (4) satisfying
@A, ©) <o (t, @) provided weN, t > o(w) and Y (t, ) p, < r. Indeed, if
(% = B¥(r) and « > 0, then, for n large, we have

0 (x/n) < a0y (x,)+ 0, (a/n) < 2ar
and g, (x,/n) tends to 0.
In particular, if the ball B?(r) itself is bounded in (), ie. if the
asymptotic growth exponent p, of Section 4.1 is not null, it has the fixed

point property for g,-nonexpansive mappings, without need of the stronger
assumption of Theorem 6.1, nor of the condition BL;.

When ¢ (strictly increasing and unbounded at each point ) satisfies the
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weak’ dondition B'L,,, k =1, but not thé strong condition” 43,

it (R ENTIN
B={xeC" g, (m) < M,n=1,2,.1""""

where lim, M, = +co. Indeed, B is included in ¥(u) and compact in CV.

Proof of the theorem. For every integer n > 0 the set B, =u+P,(B
—u) is contained in B, star-shaped (with respect to u), compact for the
topology of [”(u) and the mapping

T,: x-+u+P,(Tx~—u), xeB,
i

is nonexpansive for g, and maps B, into B,. By the previous proposition, T,
has a fixed point x,eB,. Since B < I, lim, T,x = x for all xe B, for the
topology t,,. ‘ .

Under the condition (c,) we continue exactly as in the proof of Theorem
6.1 since the conditions (15)-(18) hold and B is bounded (which, together
with the condition 4,, gives the uniform continuity requirement for T). We
also need that g, be bounded on B—B: this follows from the strong
condition 4, and the boundedness of B. .

Let us now assume the condition (c,) is satisfied. g o

Passing to a subsequence (simultaneously in (x,) and (7)) we can assume
that (x,) tends for pointwise corvergence on' N to some ‘point ce B and we
show that ¢ is a fixed point for T

First we have

[
i 1

TRt

(28) lim sup g, (e ~x,) < limsupg, (c—x,).
n n

Indeed, , , o
0 (Te —x,) = 0, (Te— T )+ 0, (Thc— T, x,) S

because x, = T, x, and, by the definition' of T;, Te - T;c-and T,c=T,%, have
disjoint supports. The first term tends to 0 and the second ‘is majorized
@, (¢ —x,), whence (28). L " o . g e
Now the following lemma gives T¢ = ¢ if we apply it to. x = Te.
LeMma 9.5 (second asymptotic center lemma). Let ¢ be a M.O. function
on a measure space (8, ./, y) satisfying the weak condition BL, for some real
number k > 1, o L e
Then if x and ¢ are points of LE(Q, o, 1) . and (x,) is @ sequence in
L"’l(ﬂ, o, 1) converging ae. te ¢, we have : .

(29) limsup g, (x—x,) 2 g, (X—c)+limsupg,(c—%) "

if sup, g, (k(c—x,)} and sup,g, (k(x—x,)} are-finite. SRR
Proof. When (x,):is bounded or ¢ satisfies the strong ponc}li-tio"ﬂ BL,

(29) is a consequence of Lemma 6.3, and Lemma 83. ¢ I ¥ .

6~ Studin Mathemmicn 86/2
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When ¢ (t; w) is continnous with respect to ¢ and the function g of the
weak condition BL, is null, (29) can be derived from Theorem 2 in [BL].

Let us prove (29) in the general case. We have
B0)  @lx—x)) = Flx—x] A 2|x~cl) + (F(x—x,) — F(2]x—c])).

-Since ¢ is left-continuous and x, tends to ¢ a.e., we have by Fatou’s
lemma

(31 liminf [ @(x—x,| A 2|x—chp 2 [(x—c)u = g,(x~c).

On the other hand, the function
o h= =~ p@lx—c)s — Bl )
tends to 0 a.e. (if x(w) # c(w) we have for n large |x —x,| (w) < 2|x~¢|(w),
whence ¢(|x —x, (@), )< ¢(2|x—c|(®), ) and
| fo <@ =x) = Fllc x|+ F(2lx—e).

Let &> 0 be given and let r be thé lower upper bound of the g, (k(c
—~x,)s and g, (k(x—x,)Js, n > 0. By the condition BL, there exist constants
H, K and an integrable nonnegative function ¢ satisfying

1606~ B(sh| < 8@ (ks v I1D)+ HB(K Is—t)+g
if ¢, s are measurable functions on (2, o, ) with g,(s) v ¢, (f) € r. So
T <s¢(kz(|x—x,,|’v le=x)
iy ATHEK [x—c)+g+F(2lx—c)].
On the right-hand side, the function in brackets is integrable because x and ¢
are in L§(Q, &, p), so the ‘integral of the second term tends to 0 as n — oo

by dominated convergence. We therefore have limsup, {fu it < 2er. Finally,
lim, §fyu =0, we have : :

() limsuvlj(fﬁglexnl)~rﬁ(llx—cn)m=ﬁr{l:ﬂpjrﬁ(lwx..l)u

and (29) follows. from (30), (31), (32):
" The dbove method can be generalized.

It B = L*(Q, o/, y) let us say that a sequence of mappings 1,: B~ B is
a nohexpansive compact approximation of the identity for 2, when the t,'s are
nonexpansive for g, the sets v,(B) being relatively compact in B for the
topology of L*(€2, o, y), and if, for this topology, t,x tends to x for each x
in B.

ProrosiTiON 9.6. Let ¢ be a M.O. function on (R, o, y), the mapping
@(+, ). being strictly increasing and continuous Jor almost all wef.

Let Bc L§(R2, o, 1) be star-shaped and sequentially compact for the
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topology. .of, local convergence in .measure. We also suppose that. B has a

nonexpansive compact approximation of the identiry (t,) for Qg

- Then a mapping T: B — B, nonexpansive Jor ¢, has a fixed. point under
either the condition (c,) or (c;) of the previous theorem.

Proof. The sets 7,(B) are included in star-shaped . subsets B, of B,
compact for the topology of L?(R2, «/, u). The mappings T, = 1,0 T have the
same properties as those of Theorem 9.3, except -the condition (17) -(in the
proof of Theorem 6.1); but (16) suffices, using the condition 4, of the
hypothesis (c,). The only change occurs in the proof of the inequality

limsup g, (T x,) < lim sup 2,(c—x,)
n n :

where x, = T,x, tends a.e. to ¢, under the hypothesis (c,).
Let u, = Te—x, and v, = Tyc—x,. If £ > 0 is given, the condition BL,
yields a summable nonnegative function g and constants H, K satisfying

| () = & (0] < @k un] v ko) R
+H¢'(K (lun'_ vnl))+g A I(ﬁ ('un')'— (;j (Ivnl)l .
We integrate and let n tend to +oc. On the right-hand side g, (K‘(u,,

~1u,) tends to 0 because u,—p, = Te—T,c. The integral of the last term
tends to 0 by dominated convergence. Indeed, both u, and v, converge a.. to
Te—c, s0 @(lu,))— @ (lv,)) converges ae. to 0: the continuity assumption on ¢
is used here. Finally,

limsup f|@(1u)— G (lo| 1 < esupe, (kju,) v klv,).

‘Hence the left-hand side is null and

limsupg,(Te—x,) = limsupg,(T,c—x,) < limsup g, (c~x,)
" n [

since X, = T,x, and T, is nonexpansive, , ‘

ExampLe. The t,'s may be truncations Tu(X) = sg(x)(f, A |x]), where x
=5g(x)|x}, if we can find a sequence of functions f, > 0 in L3, 7, 1)
tending a.e. to + oo such that v,(B) c B. The required conditions are easily
checked, B being as in the proposition. For instance, 7,(B) is compact in
L*(Q, ./, p) by the dominated convergence theorem. ,

10. Mappings nonexpansive for the Minkowski functional v,. We now
consider the functional N

Vo(X) = inf{a > 0: g, (x/a) 1}, xel?(@ o\ p), -+ .
and examine mappings T: B — B nonexpansive for v,,,,'i.e.\satisfying
v‘,(?}c—-’ly)sv,,(x_—y), x, y in B.


GUEST


180 E. Lami Dozo and Ph. Turpin

The function v,: L (R, .o/, y) — R, is the Minkowski functional of the
ball B*(1) (cf. 22) of LP(RQ, o, p): it is pqsitive]y homogeneous and
v,(X) <1 < g,(x) <1. When ¢ is convex v, is the Luxemburg norm of
L (Q, o/, w. ‘

THeoreM 10.1. Let ¢ be a M.O. function on (R, <, ), the function
o(:, w) being strictly increasing and unbounded for almost all weQ. _

Let B be a star-shaped subset of L%(Q, , p), sequentially compact for the
topology of local convergence in measure and satisfying the conditions

(i) sup {v,(x—): (x, y)e Bx B} < o0,
(ii) sup {g, (K (x—y): (x, Y)eBxB} <o for all KeR,.

We also assume that ¢ satisfies the strong condition BL, for some k > 1
(if B is bounded the weak condition BL, suffices).

Then a mapping T: B— B has a fixed point if it is nonexpansive for v,.

This theorem covers a wide range of cases (Section 7). It applies for
example to every function ¢ convex, or p-convex (0 <p < 1), or concave
—subadditive when B is bounded —unbounded and strictly increasing. The
space L?(Q, ./, u) need not be locally bounded.
' The inequality (i} is equivalent to

(i) -sup {0, (e(x—)): (x, Y)eB xB} <1 for some ¢ > 0.

If ¢ satisfies the strong condition 4, then (i) implies (ii).

When ¢ has non-null asymptotic growth exponents, then (i) is equiva-
lent to the boundedness of B (Remark 4.2). .

Remark 10.2. On an atom a of p, ¢ may be bounded, provided we
have ¢ (o0, a)u(a)>> 1, and we need that ¢(t,a) be strictly increasing in ¢
only when ¢(t, a)u(a) < 1.

Proof of the theorem, First we establish that if 2&(0, 1) the map-
ping ‘T;: B~ B defined as previously has a fixed point.

It suffices to check that Lemma 6.2 can be applied, with § = T}, j(x, y)
=V,(x~y) and X = B endowed with the topology t of local convergence in
measure, - ' : ’ ! ' o

The functional x -, (x~y) is lower semi-continuous for v since by
Fatou’s lemma and the left-continuity of ¢ this is true for the modular Qo
" For a sequence (x,) in L(Q, 7, 1) the condition limv, (x,) =0, ie.
0, (x4/a,) < 1 for some null sequence of numbers a, > 0, implies lim x,, = 0 for
T (in other words, B?(1) is bounded for 7). Indeed, if >0, Ae./; and A,
={we4: |x,(w)| > e}, then ,[4,,(0(8/4.., Ju<1 for every n, which by Ego-
rov's theorem implies lim, u(4,) = 0.

So, if (x,) is in B and v,(x,~x,) tends to 0 as n, p tend to =, the

o
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sequence (x,) is a Cauchy sequence of (B, 1), hence convergent in (B, 1) since
B is sequentially compact for 7. .

. And the condition (14) of Lemma 6.2 is satisfied since
} V:p(’GX—’EY) = A'th(Tx—Y:V) < /lvlp(x'—y)'

So, by this lemma, T, has a fixed point.

“Using the sequential compactness of B for ¢ we find a sequence of
positive real numbers A, <1 converging to 1 and a sequence of points x,& B
converging a.e. to a point ceB and satisfying T,y Xn = X

We want to show that ¢ is a fixed point for T,

We first prove the inequality

(33) limsupv, (Te—x,) < lim supy, (¢ —x,).
n n
Since we have
Vuz(T;.n (:—-x,,) = vqp(?}.,,c'“ 7}.,, X,) = lnvw(’fb— Txn) < vqa(c—xn)
it suffices to show that, if Te # ¢, the following holds:
lim(v,,,(Tc—x,,)—w,p(T}"c——x,,)) =0,

But both sequences T¢— x, and T,,c—x, converge a.e. to Te—c, which is
assumed non-null, and their difference (1 =24,)(Te—u) converges to 0 for the
topology t, of L(Q, .7, ). So it is enough to apply the following lemma.

Limma 10.3. 11 0¢ X < L2(Q, o, p), if X is sequentially compact for the
topology © of local convergence in measure, with sup v, (x): xeX) < oo, and jf

the function (-, w) is strictly increasing Jor almost all w e, then the mapping

Voi & — Ry is uniformly continuous for the uniform structure induced on X by
L (82, o, w).

Proof. Let b =sup {v,(x): xeX), ¢ >0, and
Z={Ax: (e+b)"' <A<, xeX, g,(Ax) < 11,
Clearly, Z is sequentially t-compact and 0¢Z. We also have
(34)  a >0 if  a( = inf {0, (2) — 0, (rz): z&Z} and re(0, 1).

Indeed, we can find a sequence (z,) in Z converging a.e. to a point
z&Z (whenee z 5 0) satisfying

a(r) = lim [(§(Iz,)~ G(r|z,) p.

Since ¢ is strictly increasing and left-continuous, Fatou’s lemma gives for r
<s <l

a(r) 2 [liminf(@(|z)~ Frlz)) > [(@(2) ~ F(slzh)u > 0.
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Now, let x, y in X satisfy

0y (;%(%x)) <a(n),
where re(0, 1) and n > 0 will be chosen later.
If A(x) = (e+v,(x))"! then A(x)xeZ and (34) gives
0, (FA(%) %) < @, (A(X) X)~a(r) € 1~a(y)
whence, using the modular inequality (20),

% (ﬁ;uﬂﬂs 0 (A9 %)+, (;z(x)<y~x>)< 1

since 4(x) <&™'. So, if r and #n have been chosen in such a way that
1+n<r(l14¢) we get

Vo (y) < %(1+r/)(e+v,,(x)) <V, (X)+e(l+e+b)

whence

[V (1) = v, (%)) S e(1+e+b)

and the lemma is proved. .

So the inequality (33) holds. But this implies Tt =¢ by the following
lemma, because ¢ being a.e. unbounded, Vo(Tt—¢) >0 if Te—c # 0.

Consequently, ¢ is a fixed point for T

Lemma 104 (third asymptotic center lemma). Let x and ¢ be two points
of a Musielak—Orlicz space L% (R, o, ) satisfying v, (x—¢) > 0 and let (x,) be
a sequence in L§(Q, o, 1) converging a.e. to ¢ and satisfying sup,,Q:f‘K (¢
—X,)) < 00 for every KeR... '

Then, if ¢ satisfies the strong condition BL, for some k > 1, we have

limsupv, (x —x,) > limsup Vple—x,)
n n

if the left-hand side is finite (when (x4) is bounded, the weak condition BL,
suffices).

Proof. Let « = limsup,v,(x—x,), which is assumed to be finite. By
Lemma 6.3 or Lemma 9.5 we have

a>oa

xX—c . 1
= il:[: [Q,,, (—;——-) +lim "sup Qe (Z (c— x,,))] .

1 > suplimsupg, <~1~ (x~ x,,))
n a
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This shows first that we have 13 sup,.,g,((x—c)/a), whence « > v,(x
—¢), and therefore o > 0. Lemma 8.3 gives therefore

12 g, ((x—0c)a)+ binf limsup g,, ((c — x,)/b).

Since ¢, ((x—c)/a) > 0 we have for some b <a

limsupg, ((c—x,)/b) < 1

whence

limsupv,(c-x,) < b <a.
"

Remark 10.5. When ¢ does not satisfy the strong condition 4,, we
cannot omit in Lemma 10.4 the hypothesis that sup, g, (K (¢—x,)) is finite for
every Ke R, as shown in [L], p. 533 (under the strong condition 4,, this
assumption is a consequence of the finiteness of lim sup, v, (x —x,)).

Of course, when B is compact for the topology t, of L?(Q, ., p),
Lemma 104 is immediate, without need of that hypothesis, nor of the
condition BL, (because x,—c¢ for 7,). So we can conclude as follows.

Remark 10.6. When B is compact for the topology 7, of L*(R, o/, u),
Theorem 10.1 is true under the sole assumption that ¢(-, @) is strictly
increasing and unbounded for almost all weQ.

If ¢ is furthermore convex, then v, is a norm, and the result is well
known: in a normed space, every compact star-shaped set has the fixed point
property for nonexpansive mappings (see a generalization in [RS]).

Now, under the hypotheses of Theorem 10.1, B is automatically t,-
compact if u(Q) <o and if ¢ is an Orlicz function satisfying, for some
number k > 1, lim ¢ (t)/¢ (kt) = 0 as t — + oo (which is of course incompat-
ible with the condition 4,); the function ¢(r) = ¢ —1 is an example. This
follows from the equi-integrability of the sets {F(K(x—))): (x, y)eB

xB},KeR,, given by (i) and the assumption on ¢. :

So, Theorem 10.1 is of interest chiefly under the condition 4,, or in the
general case, for unbounded measures u (e.g. in sequence spaces [?).

11. A strong condition of nonexpansiveness. Strengthening the nonexpan-
siveness assumption of the greceding section, we get a fixed point theorem
for arbitrary M.O. functions ¢.

For r>0, let v, be the Minkowski functional of the ball B*(r) of
L2 (€2, o, p):

v, (%) = inf {a > 0: g,(x/a) <r}, xel?(Q, o, .

TugoreM 11.1. Let B be a star-shaped subset of a Musielak—Orlicz space
L3R, o, y), sequentially compact for the topology of local convergence in
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measure and satisfying, for some real number R > 0,
(35) sup {vE(x—y): (x, y)e B xB} < 0.

Then a mapping T: B — B has a fixed point if it is nonexpansive for every
Junctional v,, 0 <r <R.

The condition (35) signifies that B—B is absorbed by B?(R).
It is easily checked that T fulfils the nonexpansiveness condition of the
theorem if and only if we have, for x, y in B and teR,,

(36) 2, (t(x=Y) SR = g, (t(Tx—Ty) < g, (t (x—)).

‘ Proof of the theorem. We again consider the mappings (see Sec-
tion 3) T;: B— B, 0 < A < 1, and their iterates T, n positive integer. We have
for re(0, R) and x, y in B

Vo (Tx=Thy) = v, (Tx— Ty) < Ay (x—)
whence, for every whole number n > 0,
Vo (T " x— T x) < A, (T; x — X).
So, choosing a point x in B and putting Van = T'x, we have
WV, (T y3,n—=y10) =0, r>0,
whence
limgtp(K(’I}..VA,n—'yl.n)) =0: KER+'
By compactness we find a sequence (4,) in (0, 1) tending‘ to 1 and a sequence
{x,) in B converging a.e. to some point ¢ in B and satisfying
limg, (K(T, x,—x,) =0, KeR,.
Let us prove that ¢ is a fixed point for T If meR, is the supremum

ili (35), let £e(0, c0) with e ' > m and let 0 <s <t <g If K is defined by
571 =1t"'42K"! the modular inequality (20) gives

0o (s(e=x)) < ¢, (K (Te—T;, 0))+¢, (H(Tye=T x,)
+00 (K (T3, x,—x,)¥

The first term on the right-hand side, equal to 0, (1= LYK (Tt —u)),
converges to 0, and so does the last term by construction of the x,’s. From

t&(0, ¢) follows g, (t (c~x,)) < R and by (36) the second term is majorized by
4 (t(c—x,)). So

limnsupgw(s(Tc——x,,)) Slimsupg, (t(e—x,)), 0<s<t<s,
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whence

suplimsup g, (s (T¢ — x,)) < suplimsup g, (s (¢ — x,)),
s<e n s<g n

the left-hand side being finite (at most equal to R)'. So Lemma 6.3 gives
0, (¢(Te—c)) =0, and therefore T¢ = c.

12. Strict contractions in non-locally bounded Orlicz spaces. If B is a
subset of a Musielak-Orlicz space L?(Q2, </, u) we say that a map T: B
— L*(Q, o, ) is a strict contraction for the modular g, when we have

Q(o(ﬁ“’l}))skglp(x"y)’ (x> y)GBXBn

for some positive constant k < 1.

First, in the following proposition we observe that the Banach fixed
point principle applies to these contractions, even when g, is not subaddi-
tive: this is a special case of Lemma 6.2, where we take for X the set B
endowed with the topology t or 7,. We have a similar result for strict
contractions for the Minkowski functional v,, with ¢ (oo, w) = 0 a.e. and B
sequentially t-complete (or z,-complete when B?(1) is bounded). It was used
for the T;’s in Section 10.

ProrosiTioN 12.1. Let B <« L?(Q, &, 1) be sequentially complete for the
topology t of local convergence in measure (or the topology 1, of L*(Q, o, p)
when ¢ fulfils the condition 4,) and assume that

sup {g, (x—xo): xeB} <o

for some point x,€ B.

Then every strict contraction T: B— B for ¢, has a fixed point.

We want to show that there exist few examples of strict contractions
for g, in non-locally bounded spaces, chiefly in Orlicz sequence spaces I?
(for instance when ¢(f) = — 1/logt on some interval (0, a), a < 1). So, as an-
pounced in Section 9, it is generally not possible in these spaces to use the
Banach principle (or Proposition 12.1 above) to get approximating fixed
points for a mapping nonexpansive for g,.

Following [HOS] we say that a set B < ¥ is coordinatewise star-shaped
with respect to a center u = (4))2, when it fulfils the following condition:
For every element x = (x;)% o of B and for every sequence of real numbers ¢
with 0 <t < 1, the sequence (u;+1; (x;—w))= o is an element of B.

TueorREM 12.2. Let I be a non-locally bounded Orlicz space of sequences
(for the counting measure on N), and B a subset of ¥ coordinatewise star-
shaped with respect to some center u and satisfying @,(x—u) <o for every
xeB.

Then a mapping T: B — I is constant if it is a strict contraction for g,.

We recall ([Ro]) that # is not locally bounded if and only if the Orlicz
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function ¢ satisfies

(37) limsupp(it)o(H) =1, O0<i<l
150+

(ie. if and only if (6) in Section 4 holds for no A in (0, 1)).

Proof. By translation invariance we may assume that the “center” u of
Bis 0. Let x = (xo, x4, ...) be a point of B. We want to prove the equality
T(x) = T(0). .

Let us show that the function

F(to, ty, .‘.) = T([oXo, tlxl, ...),

where 0 <t; <1 for every ie N, is constant with respect to each variable
t; separately. The variables ¢; being fixed for jsi, let Fi()
=F(to, .., ticiit, tipy, .. ), 0<t <1, and let F} be the nth component
of F, for every neN. If 1, t' are in [0, 1], we have

P(Fa(t)—F,(0]) < 0, (F' (1)~ F (1)) < ko (1t' —t] |xi)

whence |Fi(r)—FL ()| < |x;| |t'—¢| since ¢ is increasing and 0 < k < 1. Hence
F, is absolutely continuous on [0, 1], in particular differentiable almost
everywhere. Let s be a point of [0, 1) at which F! is differentiable, with
derivative 1. For t >0 small enough we have

@(A1/2) < o(F,(s+1)—Fy(s)l) < ko(t Ix]).
If x; =0 then 4=0.If x; #0 and A’ = |4/(2|x]) we have
limsup @ (A't)/e() <k < 1.
t—=0+

From (37) follows A’ =0 and therefore A = 0.

So F, is constant on [0, 1].

As n is arbitrary, F' is constant on [0, 1], for every ie N. So F(0,0,..)
=F(1,0,..)=F(,1,0,..)=...,ie. T(Px) = T(0) for every integer n = 0
if Py =(xp, ..., X,, 0, ...). But

0o (Tx—TP,x) < kgy (x—P,x) =k ¥ ¢(|x])
i>n
tends to 0 as n— oo since 2, (X) < c0.
80 g, (T(0)—T(0) =0 and T(x) = T(0).
. CoroLLARY 12.3. If U is a connected open subser of a non-locally bouﬁded
Orlicz sequence space 1, every strict contraction T: U — [° for g, is constant.

Indeed,.T is locally constant since the neighbourhoods u+rB®(r), r > 0,
at every point u are coordinatewise star-shaped (with center w).
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Remark 124. This corollary is generally false in function spaces.

For instance, let ¢ be an Orlicz function. If R, is endowed with the
Lebesgue measure and 0 <k <1 the mapping T;: x(w)— x(w/k) of the
Orlicz space L?(R.) into itself is a strict contraction for g,: it satisfies

0o (T x—Tiy) = kg, (x—y).

However, if ¢ is an Orlicz function satisfying (37), L?(R,) contains
nontrivial star-shaped subsets B without nonconstant strict g,-contractions
B — B: it suffices to embed I# in L?(R.) by a linear injecticn f preserving
the modular g, (for instance, f(x) =Y x1¢ 41y if x = (x)Zo).
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