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Weighted norm inequalities for some classes ¢
of singular integrals

by
K. S. KAZARIAN:(Yerevan).:

Abstract. In the paper truncated Poisson kernels are considered-and the classes of weight
functions ¢ for which the operutors generated by these kernels are uniformly continuous in
weighted L”(y) spaces, 1 < p < oc, are described. These results can be used to describe the
classes of those weight functions y for which the system of functions resulting from the
trigonometric system by removing finitely many fhembers is an Abel basis in L”(), 1 < p < oo,
to solve the Dirichlet problem with weighted metric, and to study weighted H”(y) spaces (see

[19D).

0. Introduction. In 1961 M. Rosenblum [ 2] obtained the following

TrHEOREM A. Let Y (x) be a nonnegatwe 2m-periodic function, P,(x) =
(1—=r% [1=2rcosx+r*]"! the Poisson kerrel and lgp< 0. Then there
is a constamt ;>0 independent of f such thar

17 Bae=) £ dllp o 2 T Ple=0fdxPy@aie

C,,[If”LF_M](,,,) 0<r<1)
if and only if Y sattsﬁes condition (4,): for every interval I = R*,
m-—l jl/ldt [|I| ! " ll(p-l)dt]p—-1 < Bps
1 7 .

B, is independent of I and
[|1|~1j¢-1/w Ve 1d°resssup[|/x(t)]“ for p=1.

Related work was done by Hardy and thtlewood [8], Babenko [1]
Hirschman [10], Gaposhkin [5], Edwards [4], Chen [2], Helson and Szegs
[9]. Condition (4,) in the above form was first formulated in the famous
paper of B. Muckenhoupt [207, where the following theorem was proved.

THeOREM B. Let Y/ (x) 2 0 be a weight function defined on the real line and
1< p<co. If M(f)(x) is the Hardy-Littlewood maximal function:

M(f)(x) = SUPIII"_'flfIdt,
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then there exists a constant C,> 0 independent of f such that
“M(f)”L‘}.w) <

if and only if W satisfies condition (A,).

Then important weighted norm inequalities were proved by R. Hunt,
B. Muckenhoupt, R. Wheeden, R. Gundy, R. Coifman, Ch. Fefferman, Wo-
Sang Young ([11], [7], [3], [12]) and others. The measures considered in
those papers have an essential restriction: if feL”(y), p=>1, then f is
intégrable with respect to the Lebesgue measure.

Cp”f”L'ﬁN/)

1. Formulation of the main results and notation.

DrerinttioN 1. We say that a weight function (x) > 0 has a p-th (1< p
< o) power singularity at a point x, if for every interval I with x,el,
1LY (if p=1 then 1/(p—1) = c0).

DeriniTion 2. We say that a weight function  (x) >
< o) power singularity of order o (@ =1, 2, ..
that

Ohasapth(1<p
.) if there exists J, > 0 such

(e — X0}~ Vfi(x) L(llt,p— 610), xq+30),

(x - xo)pa/l/l(x) € L(t:{(op:ﬁlo), xg+dg).

As usual, LE (L% (dp)) consists of all f for which j|f|”tlx < oo (| |f1Pdu

oo); if du(x) =y (x)dx we write LE(Y). When the set on whxch the
functions are defined is obvious from the context, we simply write I?(}).

We prove inequalities which show that the truncated Poisson kernels in
general play the same role in weighted L” spaces with weights having pth
power singularities as the Poisson kernel in weighted L” spaces with weights
without such singularities. Analogous results for other kernels follow pre-
vious papers of the author ([14], [15], [16], [18]).

For the definition of the truncated Poisson kernels suppose that we have
fixed an arbitrary collection of distinct pomts X = {x;}j- in the interval
[-m m) and natural numbers 9 = {o;}i-,. We write A=Y3 19 and
for the given X and N define the fundamental interpolation polynomials
T(x; 4, %) (1<€j<s, 0K A< a—1):

IfA =2N+1(N=0,1,...) then T(x;,
mial of order at most N such that

(1.1) T®(x;, 4, x} = 8;0,;, - &, the Kronecker delta, 0 < h < aj—1,

where T™® denotes the derivative of order h and T = T,

If A=2N (N=1,2,...) then besides (1.1) we also assume that the
order of T(x;, A, x) is less than N or the ratio of the coefficients of cos Nx
and sin Nx in these polynomials is equal with opposite sign to the ratio of

A, X) is a trigonometric polyno-

icm
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the coefficients of sin Nx and cos Nx in the trigonometric polynomial

(1.2 IT sin"4(x—x)).
1<jss
When the coefficient of cos Nx or sin Nx in w(x) is zero then accordingly the
coefficients of sin Nx or-cos Nx in the polynomials T{(x;, A, x) are zero.
In the case 4 =2N we have put the additional condition in order
to obtain the uniqueness of the polynomials T(x;, 4, x) (1 <j<s,0<
We will study the following kernel:

s o1
(1.3) Pyy,(x, ) = P(x—t)— ¥ JZ PR (x;—1) T (x, 4, 1)
j=1 i=0
where a
PR(E) = —P L&), POE) =P

det
. The following theorem is true:

THeEOREM 1. For a 2m-periodic weight function ¥ and 1 <p <cc the
Jollowing conditions are equivalent:

(a) There is a constant C,> 0 independent of fe Lf_ . a(y) su.ch that

W) [ [S G Pag, (x,) ol 0<r<1.

< :
g S Collfllp )

(b) There is a constant B, > 0 independent of 1 and y (0 <y < 1) such
that

(43)

(B,) for every interval I < R1
le (1)

Ip = 1 p—1
v iy | ks [Ta] en
where |o|(I} = [y || () dt;

(B2) for every y (0 <y <1) and natural/ (1<j<y)

—x;\"L e
pom | n//dt[ { [(sint x’) w(r)
0; < 2
JY ij

where O, = {t: [t—x;l <y}, 05, = [t: lt—xj| =y} n[-m, 7).

(¢) The following representation is true: y (x) = | (x)|Pw(x). where w(x) is
‘a weight function which satisfies condition (A,) and w(x) is defined by (1.2).

Tueorem 2. For a 2m-periodic weight function y(x) > 0-ihe following
conditions are equivalent:

(@) There is a constant C; > 0 independent of f'e Lj_ .4 () such that (1.4)
is true for p=1.

L 1
p—1 P
v ®1- ‘] dt] <B,,
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(b") There is a constant B, > 0 independent of I and y (0 <y < 1) such
that ]
(B)) for every interval I = R

1
(49) el lf wdt'esifltlp [l ()¢ (x)] < By,
(f33) for every y (0 <y <1) and natural j (1 <j<5)

) [wx):r‘]sﬂl,

X~ X;
2

y I x//dt-esssup[lw(x)l sin
Ojy €05, :
where O;, and Of, are the same as in (B.).

(c') The following representation is true:

s

¥ () =T]

j=1

. =1 XX
sin™ -2
2

0;(x)w(x)

where w(x) is a weight function which satisfies condition (A,), and for every
interval I with center at x; (1 <j<s), [II™' [ywdt < C; for every natural j

(1<j<s) 0; is a nonnegative bounded 2m-periodic function and there exists
Cj > 0 such that for every x; <x' < x" < x;+n and - X' <X <x;
[6;(x)]™" [sin$(x'~x))| < C;[6;(x")] " [sin4 (x" —x;)|.

With the help of Theorems 1 and 2 one can prove the basicness of some
concrete subsystems of the trigonometric system in weighted L” spaces. Also,
one can study weighted H” spaces and solve the Dirichlet problem in
weighted metric (see [16], [17], [187, [19]). We note that V. F. Gaposhkin
[6] and R. L. Wheeden and J.-O. Strémberg [23] have also obtained results
* concerning weights with pth power singularities.

Cp, B, will be absolute constants. We omit subscripts or use the same

subscript in different contexts when we believe that no confusion can arise.
We also write

[fIf17°dx]’ Eesssup(f(x) and & (x) = 1 —2rcos x+r2.
E xek .

2. Some auxiliary facts. We say that w(x) > 0 satisfies the doubling
condition if {pw(x)dx < Cf;w(x)dx for any interval I. (I* denotes the
double of I and C is a constant independent of I.) Consider the maximal
function

1) M (£)(0) = sup([w(x)dx) IS GIw(3dx,

where the supremum is taken over all intervals I a¢. The following theorem is
a modification of Theorem B (see [20]).

Tiurorem C. Let w and  be nonnegative functions with w,Y eL,.(R') and
w satisfying the doubling condition. Let p > 1. Then there is a constant C
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independent of f such that
k JIM¥ (NI dr < C fIf [Py dt
R . R

if and only if there is a constant B, >0 such that for every interval 1

(A3 (!wdt)_l .Ifl//dt[(!wdt)_l j(%p)ﬁdz]w <B,.

1
Using the ideas of R. Coifman and Ch. Fefferman [3] it is possible to
give an easy proof of this theorem (see [16]).

G. Tomaselli [25], G. Talenti [24], and M. Artola (we quote following
[21]) obtained the following result.

Tueorem D. If 1 < p < o, there is a finite B >0 such that
(2.2) [[1U) [f@def dx]" < B[ [1V(x) f (a7 dx]""”
0 o 0
if and only if

Ho D = sup[ 1V (3] [[1V (o) *ax]*" <o,
a>0 g 0

where p~t4q~' = 1. Furthermore, if B is the least constant for which (2.2)
holds. then D < B < p'"q*"D for 1 <p <o, and B=Dif p=1 or .
The following theorem, dual to Theorem D, was proved by B. Mucken-
houpt [217]. )
TueoreM E. If 1 < p < o, there is a finite B >0 such that
(23) [J IU(x) {

if and only if

FOdeax]" < B[ [V () £ (P dx]™”
0

(Hy) b= sup [EIU(X)I"dx]I/p[TlV(x)I_“dx]”" <o,

where p~'+4™' = 1. Furthermore, if B is the least constant for which (2.3) is
true, then D < B < pPq*/aD.

Write
zj-—l

(24) B,i(x, ) = P,(x—1) T(x;, 0, x)— 3 PP (x;—1) T(x;, 4, x).
A=
We have the equality

2.5) Y T(x;,0,x) =1,
i=1


GUEST


102 K. S. Kazarian

which for A = 2N+1 immediately follows from the theorem of uniqueness

" of interpolating trigonometric polynomials, and for A4 =2N we may also
observe that Y3i., T(x;, 0, x)—1 cannot coincide with Cw(x). From (24),
(2.5) and (1.3) we obtain

(2'6) Pa’,*)l,r(-xa f) = Z Brj(xa [)'
j=1

This equality allows us to consider only the kernels B,;(x,t) (1 <j<s) in
the proof of Theorems 1 and 2.

3. Factorization of the kernels B, ;(x, t) (1 <j < ). For brevity we will
only consider the case A =2N+1. The proof for the case A =2N is
analogous and differs only by somec technical modifications. Now we settle
several basic lemmas.

LemMAa 1. Let A=2N+1 (N=0,1,..

.). Then for every j (1 <j<5s)

G.1) B(x,1) =P,(x—to(x) [G;(r)sinx—zxj+G;/(t)cosx-;xj}

and there is a constant C >0 independent of r and t such that
(32) | (Gt < CT& (=17,
(3.3) Gy (] < CTE, (1= )] ™™,

Lemma 2. Let A=2N+1 (N=0,1,...), 1<j<s and x;=0. Then
there are positive mumbers 0 <ry <1, 0 <a <1 and constants 0 <c¢' < (',
C >0 a, <afil—ry) with the following properties:

(i) If «; is odd, then

(34) Bu.(x:v f) = _:%;“_(_t)

Gy (1) sin 22 6y (x) P (x —1),

where for 1 >r>rq and some positive numbers 0 < §. < 8/ < C’

(3:5) Gy (0] > C ]

if il <a(l—r),

(3.6) S=rP+(+ 1)1 < x*¥t) < (C'+ Dt +8/(1—r)?
ifO0<t<a(l—r), and

(3.7) &(1—r)?
foz>t= —a(l—r).

(ii) If a; is even, then

HC+FD SO <@+ D t+6(1—r)?

(3
Slnr()

68 By, = N .x~fm

G,;(t)sin

w{x) P, (x—1),

icm
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where for 1 >r >r,
39 |G, (0) = CLEW1™*  if 1] <a(1~7)
and there is a point b,, |b,| < a;(1—7r)% such that
(3.10) - xf () < —2a(l-r) if te(b, a(l—n),
3.11) > x¥*(t) > 2a(l—r) if te(—a(l=n),b,).
LemMa 3. Let A =2N+1 (N=0,1,..), 1<j<s, and x;=0. Then
there are positive numbers 0 <ry <1, 0 <a <1, and a constant C > Q with

the following properties:
(i) If «; is odd, then the representation (3.4) holds, where for || < 1—r,

1
(3.12) (1+81+1)r<x;“(1)<2r ifO<1—r<a,
J
1
(3.13) 2!<x}‘(r)<(1+8x+1)r if ar < —(1—r) <0,
i
(3.14) G,;(0) = Clsint/2]” %" if 1—r <ay].

(i) If a; is even, then representarion (3.8) holds, where estimates (3.12),
(3.13) for x}¥(t) are true, and

(3.15) G,; ()] = Csin1/2 ™"

For the proof of Lemmas 1-3 the following lemma will be needed.
Lemma 4. Let P.(x) be the Poisson kernel and k a natural number. Then

2 C(ZU

if 1—r <alil.

(316  (1—-r3) ' PP (x) =

sm VCOSk-ix [ér(x)]-%kﬂ-i-ll

k-1

+ 3 sin¥xo ([, (0]%),

i=0

(317) (1_r2)~1P£2k—1)(x) Z C(Zk ”(”‘)SIHZH—IJCCOS" i—1 [ (A)] (k+i+1)

i=0

+ Z sinZ*t!xo
i=0

([ ()1~ **0),

where CY satisfy

(.18)  CP**V(r) = —(k+i+1)2rCPR (1) +2(i+ 1) CEY ()
(k=0,1,...; 0<i<k; CEH()=0),
(3.19)  CP*+D(r) = (2i+ 1) CE**V (1) — (k+i+2) 2rCEF 1 (r)
(k=0.1.... 0<igk+1: C® =0, C* V() =0),
(3.20) signC}f’(r)CfL'l(r)=—-l G=1,2,...; 0<i<[j2]-1,0<r<1)
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Proof. Equalities (3.16) and (3.17) are proved by induction using
differentiation. Tt {s only necessary to observe that in equality (3.16)

kt+i—1

> [& 917 Zd(z"’(r)cos‘x,

j=2

o([& ()]~ **) =

and in equality (3.17)
. k+i-1
o([& ()]~ **) = Z [& (077 Z dif*= 1 (r) cos' x,
where dZ*~ 1 (r), d* (r) (0 < 1< k) are polynomials in r of order at most 2k.
Formulas (3.18) and (3.19) 1mmed|ately follow from (3.16) and (3.17). Relation
(3.20) is easily proved by induction usmg formulas (3.18), (3.19).
Proof of Lemma 1. Write
a;=1
(21 Ty(x, ) =T(x, 0,9 = [Po(x—1]"" Y. PP (x;—1) T(x;, 4, ).
A=0
It is obvious that for fixed t and r, T;;{(x, t) is a trigonometric polynomial of
order N+1 and has a zero of order o; at x; (1 <i<s, i s j). From the
definition it is obvious that T;(x;. ) =0. Assume that for a nonnegative
integer k (0 <k <a;—1)

Ei‘;\,"]:j(x, r)

=0 (0<v<hkh).

X=-\'j

We will show that

dk+1

deTT"‘j(x’ I) 0.

x=x;

From our assumption we have

+1v

k-1 k 1
=Z<+ )P‘v)(J t)dx"“ = T,y(x, 1)

x=x; v=0

dk+1

T Tij(x, 1)

x=xj
e+ 1
= Pr(xj'—t)';k'TI Tpy(x, 1)

=)
Since (d“*'/dx*" ') B, (x,1) |4u ;=0 (0<k<o—1) and P(x;~t) %0 (0 <r
< 1), we have (d**!/dx**1) Tj(x Dlx=x; = 0. Thus we have proved that

4

3.22 —_T,
(322 oo Tt 1)

=0

X=Xj

(Og VSD!J—-I).

Hence it easily follows that the sum

T, 1)+ [P (x =017 PE7 Y (= 1) T(x;, 2,1, x)

icm
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for fixed r and r has a zero of order «; at x; (1 <i<s,i#j), of order a;—1
at x; and is a trigonometric polynomlal of order N+1. Thus

(323 Ty(x, ) + [P (x =017 P77 (4~ 1) T(xp, 25 —1, %)
= w}(x)sin" "~ ! x;xj L,(x,1),
where
(3.24) @j(x) = n sin™*
A 1ks s
(3.25) Lj(x, ) = B4 (r)+[f,z (r)cos (x—x))+ B3 (1)sin (x— x)).

By formulas (3.16) and (3.17) it is easily seen that

(3.26) Ba() < CLE (=11 (0 <r<1,1=1,2,3).
From equality (3.23), since
3-27) T(xj, =1, X) = byej()sin™ ™1 222
where
zj—l
(3.28) b= Gy L '

we obtain

B.29)  Tx, 1)

= o) (x)sin® " %[L,,.(x, f)—b, [P, (x—1)] " P~ (x,— )]

Using equality (3.25) we obtain
(330)  Ly(x,0)—b;[P,(x—0)1" P& (x;—1)

1+r

= BaO=by 7z B (1)

+cos (x— xj)[ﬁ,z(t)+2b1 oy A ,—z)cos(t—x,)]

+sin (x— xj)[ﬂ,s(t)ub, S POV (x, -—t)sm(t~xj):|.

In view of (3.22) and (3.29) we have

Ly (xj, 0 —b; [P, (=017 PP (x;=1) = 0.
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The identity (3.30) thus implies

G310 Bu=b;7

1
+I ' 1)(xj~t)

= — ‘:/5,2{/)+~h — pe” ’(xj—z)cos(h—.\'j)].

By equalities (3.30) and (3.31) we get
. ~ (xj— 1
(332) Lrj(xa T)_bj[Pr('x_t)] ! PrJ )(xj_’)

= G.(t)sin? T—+G”(t “4sin(x — X)),
where

(3.33) Gi(t) = =2 B (04 2b; —— P4 (x, — 1) cos (i —x,) |,
T —p2 J J

334 Gl= 2[/3,,3(r)+2hjr_f;5 PETH (= npsin (@ —x,,):i.

Relations (3.21), (3.29) and (3.32) then force (3.1). Estimates (3.2) and (3.3) can
easily be obtained from (3.26), (3.16) and (3.17). Lemma 1 is proved.
Proof of Lemma 2. Write

(3.35) xr(n) = —2arcte [G/(1)/G(1)],

where Gy (1) and Gy (1) are delined by (3.33) and (3.34). Then we have
(3.36)

X=X

G, (1) sin¥x+ G/ (t)cos 3x = sign G.(t) [(G;(r))2 +(GL’(r))2] Y25in 3

= G,, (t) sin (—

If 2j—1 =0, then from (3.23) and (3.25) it is obvious that f,,(!) = f,3(t)
= (). Hence in this case from (3.34) and (3.33) we get G, (1/G,(1) = —1g1.
Thus (3.35) implies
(3.37) =2 for a;=1.

If %;~1 = 0, then we will first find the representation of f,, (t), B, (1). By
(3.21). the left side of the identity (3.23) is equal (o

aj—1

T(0,0, x)~[P(x—1)]"* Y PH(=1)T(0, A, x).

=0

©
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On the other hand, T(0, 4, x) (0 <A< a;—1) and co}(x)sin“fqléx, where
wj(x) is delined by (3.24), are trigonometric polynomials of order N. Hence
writing cos(x—t) = €0os xcos ! +sinxsin, dftel the corresponding operduons
on both sides of (3.23) we get

a:j—z
=cost Y pEPY (1)

=0 .
r H2?
+ ez ging 3 W PO (—1),

] -r v=()

(3.38) Bu(r) =

where 7, 0% (k =2, 3,0 <v <z—2) are some real numbers. To specify
the value of '1&3’—1 we first show that

zj-l
(3.39) T, 2;—2, x) = ( ,7)'((0 (O)sindg)” w}(.\‘)

- -0
x8in ~—9m-——,
8 5 5

where ge [—n, m) and ¢ 5 x; = 0. The existence of such a ¢ follows from the
fact that T(0, 1;—2, x) is a trigonometric polynomial of order N with real
coefficients and ) 5., %,—2 =2N-1. lt 15 trmal that ¢ # 0. For the polyno-
mial delined by (3.39) the condition T (0 2;—2, 0) = 1 is true. The value
of ¢ is defined from the condition e ! "0, x; ;—2,0) = 0. Observe that the
following four functions are linearly mdependenl on [—m m):

. i—2 - X2
(3.40) wi(x)sin¥ *dxsindx, wj(x)sin¥ " jxcosix,
1 Loap=2
wj(x)sin¥ by, @j(x)sinYT 7 fxcosix.
For every 0 « r = 1 the same is true of the functions

a;—1
(341) {ii’-«w)( 1); _'rz sintPt”(—t)}

cos 1PV (~1);
}‘2 r ( ) 1

v 0
From Lhe formula

- . .
cos (X —1)sin~ ;»3‘ = —cos3x(isinscosbo+Lcosrsindol+...

and (3.39) we find that on the left side of equality (3.23) the coeflicient of the
expression
— . a;—2
P72 (—f)costcos 3 xwj(x)sin¥ " §x
is equal to
x;- 2
P

1—72 ( '))' [w-’ 0)]"
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In order to find the coefficient of the same expression on the right of (3.23)
we use the linear independence of the functions (3.41) and (3.40). By the
equalities

sin§xcosx = $(sin3 x—sin4 x),
sinfxsinx = 4(cos x—cosdx)

and by (3.38) and (3.34), this coefficient is equal to

(3)

""2' 1—r2 7’]“!..2.
Hence
@i~ 1
3 T -1
(342 12 = = gy L0

Now we estimate G, (£)/G,(t) in the neighbourhood of the point x; =0,
Let o;—1 be an even number. Assume that ay > 1, the case a; =1 being

already considered. It is trivial that Pf‘j_z)(x) is an odd function, and by

(3.19), 57 (M, €577 (r) have the same sign. Hence (3.33), (3.34), (338),
(342), (3.28) and Lemma 4 imply that there are positive constants 0 < ¢
<C, a>0 and nonnegative numbers &/, &" (6! < C, |6y] < ') and
1 >r, >0 such that '

B4 G (I=r+(+1)tgr < G (10/Go(t) < (C'+ Dtgi +8, (1 —r)?
for 0<r<a(l-n, 1 >r>r,, and
(B44) S (1=rP+(C+D)tgt <G/ (Gu(1) < (¢'+ Dtg i+ (1 —r)?

for ~a(1-r) <1 <0, 1 >r>r, Using estimates (3.43), (3.44), the formula

(x+Mx+1’

and (3.35) we easily obtain the assertions (3.6) and (3.7) of Lemma 2., Observe
that in general the constants in (3.44)-(345) and in (3.6)~(3.7) are not the
same. Decreasing 4 if necessary, by (3.33), (3.34), (3.36) and (3.16) we get the
assertion (3.5) of Lemma 2.

If o;—1 is odd, then by (3.33), (3.38), (3.16) and (3.17) it is trivial that
the function G;(z), for r sufficiently close to 1, is monotone on the interval
(—a(1=n), a(l-7)). Since a;—1 is odd, from Lemma 4 and the same condi-
tions as above we derive that G,(?) is zero at a point b, which belongs to
(—a(l—r), a(l—r)), and |b) < a,(1—r)* for some positive constant a;. By
Lemma 4 and (3.34), (3.38), we have

346) G O/[202, C P (V& (1] Y*] - 1

(3.45) arctg(x+p) = arctga +arctg

asr—1, —-=0.

icm
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By (3.18) and (3.20) the coefficients Cy?~?(r), C59™ " (r) have different signs.
Hence (3.28), (3.42), (3.33), (3.34), (3.38), (3.46) and (3.35) imply inequalities
(3.10) and (3.11). Evidently, one can choose a and r, so that all the
conditions of Lemma 2 are simultaneously true. By (3.35), —tgdx* (D)
= G, (t)/G/(t). Using (3.36) we now obtain (3.8), where
(347 G,;(t) =G, (1) sign G,(1).
Now (3.9) follows: immediately from (3.46). The proof of Lemma 2 is
complete.

Proof of Lemma 3. We will estimate x}(r), defined by (3.35), when ¢

belongs to a neighbourhood of x; =0 and r—1—.
Let a; be an odd number. By (3.19) we have

(aj—1)/2 - (25— 1)/2 -2
(3.48) ity = Y @i+
i=0 i=0
e _
- % 2= +ist)cu M)
i=0
(@~ 1)/2—-1 @2
=—1j Z CfJ (1)

i=0
Relations (3.42) and (3.28) imply
(3.49) 3y = —(—1)b;.

Writing &, (1) = (1 —r)?+4rsin®4t and setting r =1 in (3.33) and (3.34), we
deduce by (3.38). (3.16} and (3.17) that there is-a § >0 such that

(2= 1)/2

(350 o(1-1/20))4b; ¥ Y7V (1)cost/|dsin?yel@m 2
i=0
< — 0,64 (1) < 05 (14 1/(22)) 4b;
(uj—il/Z o
x ¥ CHTP(Dcostasin T
i=0
22+ 1 (aj= 1)/2 Ja—
351 —L—[4b Gl
( ) 29(J+2[ J 1=Zo ! ()
(@j=1/2=1 -2 (= L2 1
—as T G (W] osin® bl
i=0
(aj—1)/2
Ill(f) 2IXJ+3 J (@;—1)
< <2ty ¢t
sinz 2«,-+2[ / z=zo
et s 3 a2+ 1
~um@, Y GI(W]o/Msin? g
i=0
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for |1 < &, where o; = sign[b; Y% " €7 (1)]. By (348)-(3.50), therc is a
6y > 0 such that

da;+6 Git) da;+2 .
- ot < < - tgt for 0<1 <4y,
(.52 By —1 5 ST S Sarl DR
do;+2 Gy (1) 4o+ 6
— < < - tgt for =8, <t <O0.
(353) B, 15 SGn S Bay—1t !

Obviously, if 0 <d'<a < 1, 1—r < aft] and |t| < &' then

l—a () 1
e & e .
I+a* &) 1-d?

Hence, for a >0 small, by (3.52), (3.53), the definitions of G.(:), G, (1) and
equalities (3.35), (345), we easily infer (3.12) and (3.13), where 1—r, < 6.
Writing

Gy(1) = sign G, (1) {[G, (0> +[G (]2 V3,
from equalities (3.1), (3.34) and relations (3.16), (3.17) and (3.33)-(3.35) we

derive (3.14).
Let «; be an even number. Then by (3.18)

(25— 2)/2 . (aj=2)/2 ) _
354 Y '=- Y 2(~L2- +i+1>C}°‘f (1)
i=0 i=0
(azj—-l)/l (aj—ll/l

+ v_zo 2iCHTH(1) =~ ZO T ).

Hence, as above, we obtain (3.12) and (3.13). Relations (3.1) and (3.36) imply
equality (3.8), where G,;(r) is defined by (3.47). In order to estimate G'(0
from below, we use (3.34), (3.38), Lemma 4 and equalities (3.54) and (3.51).
The proof of Lemma 3 is complete.

4. Proof of the implications (2) = (b) and (a’) = (b"). Both proofs will be
done simultaneously. If we stipulate that p > 1 resp. p = 1, it means that we
are in the course of proving (a) = (b) resp. (a) = (b).

If (a) resp. (2) is true, then (2.4), (2.2) and (1.4) easily imply that there are
positive numbers 1>R; >0 and &6>0 such that for every
felf-wn@) (p>1resp. p=1)

@D S IBalx Vg <GS ap g (Ry <7 <1, 1<i <),

where 4; = (x;~6;, x;+5,).

Let 1 <j <s. We will show that there is a positive constant &; > 0 such
that (b) resp. (b) is true for every interval contained in 4;=(x;—&;, X;+¢))
Without loss of generality assume that x; = 0.

icm®
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First we consider the case of %; odd. By (3.4) and (4.1), for every

SeLf_wn(h)
@2 [6,(") j’ P (x—) f (o (9 sin =) gy

3 :
2 <3G0S ”L["__ ")

LE )
J

for Ry <r <1 and A =2N+1; G,;(1) satisfies (3.5), and (3.6)~(3.7) are true.
Write
R ]

. — i a o T Loin v — v )
4.5) &= mln[4(c,+1)(l o) 2AC+1) 2 min |x;—x{, 4, 5}

iz
1<iss

umin(c’,‘ 1)

‘e I

ry = max |:r0, 1-

where the constants satisfy (3.543.7); the value of &' will be specified later.

_ Fix an interval Q and a number ry such that

(4.6) Q=(0,d)<(0, 1), n=4(C+1)s,
By (4.4)-(4.6), (3.6) and (3.7) we infer that
4.7) if 1eQ, xe(0, g).

a(l—rg) =d.

- < x-fo(.l) <r

For clarity we first consider the case a; = 1. By (3.7) we then have x} (t)
=2t. Let Qy, Q, be the left and right halves of Q, and 0¥, 0{® the left and
right halves of Q,. If a function f is zero outside Q, and f(x)w(x) > 0, then
by (3.4). (3.5) and (4.4)-(4.7),

P

48 | } B, (x, 1) f(x)dx]| > C( [ f()w(x)sin

P
| 2 g dx>xa(ll)(t),
jQfi+2 2

where 1y is the centre of Q and Xo{M(t) is the characteristic function of
QY. Hence. by (4.2) and (4.3),

ywmmg

1
olh

X—1y

4.9

I3
— | f(w(x)sin dx> < B, [ |fPydt.
Q262 02

Setting f(x) = signw(x) in (4.9) we obtain

(4.10) [ wdt<C, [ .

Q(ll) Q> .
As above, for every function f such that f(x)w(x) >0 and f(X)w(x)=0
outside Q'",

(4.11) ! jfcodt><Cp 1y de.
Q(ll)

ydt (
Qo Vgt o
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If p> 1, then by (4.10) and (4.11), setting f = (jool/yy)""*~ Ysign e, we get

1
P\p=1 p=1
f wdr[ | (ﬂ)" 1‘“] <Gy | lofdr).
olb o W olh
Thus, for o; =1, we have proved that i satisfies condition (A',;"') for every
interval Q) = (0, d/2) = (0, %)

The proof of (4.12) for o; odd is analogous. Let, as above, 0., Q, be the
halves of @, and Q" = (0, d') = (0, ¢) an interval such that

(4.13) 109110l = 1/[2(C'+ 1))
Defining ry from the equation a(1—rp) = d', by (44) and (4.5) we will have
(4.14)

Thus if we fix a function f such that f(x)w(x)=0 and [f(x)w(x)=0
outside Q,, then (4.7), (4.2), (4.3) and (3.5)~(3.7) yield (4.8). Hence, as above,
inequality (4.10) follows. Observe that by (4.14), (3.6) and (4.13), x—xX*(1) <

4.12)

(1=r*(C'+1) < amin(¢, (1 =rg).

—|Qi/4 for xeQ'Y, teQ,. Thus for every f such that f(x)w(x) =0 outside ‘

0 and f(x)w(x)> 0, by (4.2), (4.3), (3.5), (4.6) and (4.7) we obtain

i ¢dr(

Q22

14
(4.15) i fwdr) <C, | If1Pwd.
|Q<ln|“}“ Q('ln Qiln
Hence, as above, we get (4.12) for p > 1. For p =1, by (4.10), taking into
account that inequality (4.15) is true for every fe LQ(l,,(l//), we get

(4.16) ( ‘f'l//dt)llw/l/JIILg(f& ¢ _f)lwl dr.

o of

Obviously, a similar proof can be done for every interval (—d’, 0) = (¢, 0),
If inequality (4.16) is true for every interval (0, d') = (0, ¢) and (—d',0) =
(—¢;. 0), then we easily prove it for every interval (—d', d') = (—¢;j, &)). Thus
when o; is an odd number, for every interval (—d', d') (~¢;, &) conditions
(A and (Al) are satisfied.

Now consider the case of «; even. Fix any interval Q =(—d,d)
(=%, &), and define -the number ry, by a(l—ry) =d. Observe that the
expression  sinj (x—x} (N)/sin §x¥(t) does not change sign for xe(0,¢)),
te(0, ¢;), and its absolute value is greater than some positive constant. Hence
for every f such that f(x)w(x)=0 outside Q and f(x)w(x) =0, by (3.8
(3.11) we get

| ] By, 0 £ (x| > C (_1— /() P,(x-—t‘)w(x)dx) o).
or Q7 e

icm®
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Hence (4.1) implies

@.17)

1 P
jn//dt( jfwdt) < B, [IfIPdr.
2 Ngrtteo 2
For p > 1 setting f = (w/y)Y* Vsignw in (4.17), and for p = 1 taking into
account that
sup ({ feodt/[I S| dt) = |loppll,
SeLoth @ 2 2

we conclude that for every interval Q = (—d, d) = (—g;, ¢;) conditions (b) and
(b") respectively are true.

Obviously, if conditions (4\°) resp. (4}") are true for every interval
(—d, d) =(—¢j, &), then, by changing the constants, they are true for all
intervals (d, . d;) = (—¢;, &) with |(d;, d,)|/max(|d,], |d,]) = 7 > 0, where

(4.18) t = min {1/[280;+2)], a/(1+a).
Consider any interval Q such that

\dy. )]
——— e T,
max (], 1da)

By (4.18), © < 1/[2(8x;+ 2)], hence every interval which satisfies (4.19) lies
either entirely to the right of x; =0 or entirely to the left. Without loss of
generality, we can assume that Q lies to the right of x; =0, ie. 0 <d; <d,.
Define the number ry by

(4.20)
Then by (4.18)(4.20) we get

(4.19) 0=(dy, dy) = (¢ ),

l—ry=d,—d,.

dy—d d
2dz Ld, <dex <t

1
1—rg = T <ady.

1—

Thus we can apply Lemma 3. By (4.18) and (4.19) we have §d, > d, +d,/16.
So there is a positive constant & > 0 such that for d; <d, <’ we have, by
(3.12),

4.21) x*¥(f)—x >6£;— for t,xe(dy, d,).

J

In virtue of Lemma 3 and using (3.4), (38), (3.5), (3.9), (4.19) and (4.5) we have

3 B,Q, (x,1)sign G,; (1)

= Clsindt] ™™
PoGodaty O

for x, te(d,, d,).

Hence for any function f such that f(x)w(x) >0 and f(x)w(x) = 0 outside

2 — Studia Mathematiza 86/2
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(dy, d,), we easily obtain p
n —-a; 1 n

(4.22) [ [ Bs(x, ) f(x)dx| = Cdy ™ — [ fwdx.
R 1015

Relations (4.1), (44), (4.5), (4.19) and (4.22) then force
(¥ dx)[(floldx)"" [ fodx]" < C, [1f|7 dx.
2 Q

o Q
As above, it follows that (A}’) and (4")) respectively are true for every
interval which satisfies (4.19). Thus we have proved that (A\°) and (4l)) are
true for every interval which lies in (xj=t, x;+8),

Since x; was chosen arbitrarily among x; (1 <i<s), we conclude that
(A}") and (A|"!) respectively are satisfied for every interval which lies in one
of the sets (x;—&, x;+&) (1 <i<s)

We will now show that the same is true for every interval 0,10 <o,
where o is a positive constant which will be defined later. First, we require
that

(4.23) 0<% min g =g,
1<iss

Obviously, it is sufficient to consider only intervals Q for which
(4.24) |0l <o, min inf|x—~x]|>s.
1€i<s xeQ

Fix any interval Q for which (4.24) is true. Then we easily infer that there is a
positive number R,, 0 <R, <1, independent of Q such that for every
function f which is zero outside Q

s zzj—‘l

(4.25) “gf(x) ; ;0 P (x;~ ) T(x;, 4, x)dx ) <4B, |1 llgw

for every 1 >r >R,. Now we can state the precise value of o

(4.26) o =min |#,3(1=R,)!.
Relations (1.3), (14) and (4.25) immediately imply
4.27) “(g P (x— -)f(x)dx“%(,,,) < %B,,Hf]l,_a(w for 1 >r>R,>0.

Trivially, by (1.2), (4.26) and (4.24) there is a positive constant C independent
of Q such that |Q| > C f@ lwo| dx. Hence if we take ro = 1—|Q| then as above
we infer that condition (4\)) is satisfied for Q. Thus conditions (#,) and (f})
respectively are satisfied for every interval Q, 10l <o. By increasing the
corresponding constants, it follows that these conditions are true for every
interval.

To complete the proof of the implications (2) =(b) and (a") = (b") we
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now have to prove that conditions (f,) and (f3) respectively are true.
Consider the case of a; odd. Let ¢; be defined by (4.5). Write @, =(—h, h)
and Q, =(—W, k'), where

h

(4.28) O<h<g, h ST

Relations (4.5) and (4.1) imply

(429) ” j f(x) Brj(x7 ')dx”Lah,(lb) < %Bp”fllL[p_n’"](w) (R1 <r< 1)
-

Taking r,= 1—h, for every function f which is zero on Q, and
fX)o(x)(sinx)"* =0 by (3.4+3.7), (4.28) and (4.29) we get

B f lpdt'(_[f(x)w(x)(sin%x)‘ldx)”s C, [1fIPydt,
O o8 of
where Qf = [—~=, ©]—Q,. Hence, setting

w(x)

1
m ! sign [o(x) (sinx)~ '],

fo=

we immediately obtain

1
sl -1 iy p—1
(4.30) R gt D {M’f)(ls;'zx—z)x)ﬁ]p ' de <C,.

7% oF
Since Q, = Q,, by (B;) and (f}) respectively we have

e ()

(4.31) | ol dx <
Oy Q
<C([ydx/ [ ydx)'? | lo|dx.

Qp Qp [T
Relations (1.2), (4.28) and (4.30) now imply that (8,) and (#3) are true when a;
is an odd number. .

Let o, be even and A=2N+1, O<h<g;, 1y = 1—h. Write Q
= (h,,, ah).J For every function f which is zero outside (h, m/2) and
f(x)chu(x)(sin-‘ix)'1 =0, by (4.29) and (3.8)-(3.11) we get

/2 /2
A~ [ dt (“[ F o) (sindxtdx) < C, £ IfIF W dx.
)

[

Hence, setting

1
f60 = M[ﬁsign [0 (9 (sin$ )]

¥ (x)
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we will have

1
—agp "2 e (x) (sing x)~ =1 Pt

h

Taking into account that b, < a; h?, from (4.31) we derive

1
h n HP AT ST e -1
ws [,/,dD['ﬁ’i_)(T(TLL] ,] <c,
-h

Similarly we can prove the inequality
1
h ~h ind )~ 1P E=T -1
(434) B xpdt[j l'i"—(i)if‘f“—""-ﬁ—q” dxr <C,.
~h - l)l’(x) n

Now (433) and (4.34) imply conditions (8,), (B3) for p>1 and p=1
respectively. ‘

5. Proof of the implication (b) = (a). Fix any function feL}. »m (V) and
periodically continue it on the whole real line. Write

5.1 U (f, )= | f(x)Pyy,(x, t)dx,
where Py, (x, 1) is defined by (1.3). Relations (2.4) and (2.2) imply
(5.2) Ulfi)= 3 [S)B,lx, hdx =Y Uy(f, 1).

j=1 -= i=1

We wish to estimate the norms of Uy(f. 1) in Lf_,q(¥). Fix any natural
number j(1 <j <s). Without loss of generality, we can assume that x;=0
and

(5.3) f(x)w(x) = 0.

With this assumption, we prove several lemmas.

Lemma 5. Let M'®!(f, 1) be the maximal function defined by (2.1). Then for
every 0 <r <1
2(1—r)
[ S+ By(x+1, dx| < CMI(f, 1), te[—n, n],
=2(1~r) .
where C is an absolute constant depending only on j, and w(x) is defined by
(1.2).
Proof is analogous to the classical case (see [25], p. 249): we write
F,(x) = [§ ft+1)o(r+1)dr and integrate by parts. The desired estimates are
obtained by use of Lemma 1. We omit the technical details.
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LemmA 6. For every r (0 <r <1) and te[—m=, ©t] such that 2(1~r) < |t|
(54) | ) f(x+8B,;(x+t, tydx| < CM®I(f, 1).
201 =) <|x| <t
Proof is analogous to that of Lemma 5.
Lemma 7. Condition (B,) resp. (B3 implies that for every
felf-rq() (p>1 resp. p=1) '

65 | vl f f(x+r)B,j(x+r,ndxr‘dxgc,_j |f P dt.

1} <1=r 2(1-r)'<|x| <n

Proof. Consider the case t >0, —2(1—7)>x> —n In virtue of
Lemma 1, by changing the variable, the expression

S(x+10)B,{x+t, t)dx’ =| i

-2(1=-r)>xZ~n —nSy-t<=2{1=r)

S By, ) dy|

is less than or equal to
1—r?
1—r)P+4drsin®i(y—1)
x[sind y G.(t)+cos$y G/ (1) dy.

f Feow) {

—agy<i=-2(1-5)

Since 0 <t <1—r, by (3.2) and (3.3) we thus get
(56 | f S (x40 B,(x+t, t)dx|

—nSx€ = 2(1=r)
) C t-2(1—r) — .

< [ fOoG)sintyl™ dy.
(=Y

Now we will show that

-r t—2(1—r i/p
(5.7 lf YO _ ( (fl )f(y)cu(y)|sin%y|"‘dy)"dt
paj
O (1—p)f -n ‘

—(1-r)

) ' \n
<G[ | \rya]”.

Putting ¢ = —y and 7 =2(1—r)—t, and changing the variables, we
can rewrite this inequality in the following form:

1-r — n " i/p
(5.8) [2( | )w(j'f(—a)w(—-a) sint o] do) dr]

1-r 1=r" t

<c[ n[ If (=0 (—o)de] ™.
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Let
Wr2-n-11)"(1-n"" for 1—r<t<2(1-0)
U = {0 for te R\[1~r, 2(1-7)],
_fsind el (~0] [w(~0]"!  for re[l-r, ©],
V()= %00 for te R\[1~r, n].

Hence by Theorem E, inequality (5.8) is true if condition (H}) is satisfied.
Substituting U (z) and V(r) in (H}), we infer that (5.8) is true if

wp [ ¥R, ]
L=r

L~r<a€2(1~r) (1;_,.)P“j

[' (=" (=) dr]lm < 0.

sin?yt

D' =

This condition is equivalent to the following:
1-r i/p
sup [ f ,_w_(f)__dx]
|0 ()|

O<asi-rl a (1 —p)™
a 2(.1 r 1/q
e e ], N
"[ Lo EA LY T "] =

But (5.9) immediately follows from (f,). Hence inequality (5.7) is proved. By
(56 we now get

(59 D=

=2(1-n

.//(r)| | j(x+r)B,j(x+r,t)dx["dz]””scp[—(f[—’)|f|m//dz]””.

= -n

The proof of analogous inequalities for the other cases is similar, and we
omit it.

Lemma 8. If condition (b) resp. (b') is true, then there is a constant C
independent of feLf ..} (p>1 resp. p=1) such that

(5.10)

[ ]

1-r<j|€n

./,(t)| f(x+t)B,j(x+l tdxf”dr]”"<C[§|jf"l//dt]”"

where E, (1) = {x: |t| <whn{x: |x >2(1 r}.
Proof. Consider the case | —r <t < m Obviously
(.11 [ fG+0)By(x+t, dx = | f(3)B,(y, )dy,
£ £/
where E,(t) = {y: | <|y—t < Oy ly—t>2(1—r)). If y <0, then for
2(1-r) <t < m, y varies from t-—n to 0, and for 1—r< t < 2(1~r) it varies
from t—n to t—2(1—-r). If y > 0, then for 2(1—=r) <t < m, y varies from 2t

icm
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to t+m, and for 1—r<t<2(1—r) it varies from t+2(1—7) to t+n. For

fixed ¢ the kernel B,;(y, 1) is a 2n-periodic function of y. Thus the integral on -
the right-hand side of (5.11) does not change if we change the limits of
integration in the following manner:for n/2 <t < m, 2(1—r) <t <m/2 and 1

—r <t < 2(1—r) respectively we integrate from 2r—2x to 0; from —x to 0

and from 2t to mn; from —x to t—2(1—r) and from t+2(1—r) to =«

respectively. Hence

612 || f

0

0 n
<| .f TO)By (v, dy| + | { £ ) B,; (v, 0)dy| + | [ £ () B, (v, D) dy].
2 ) 21

(%) B;(y, ndy| <| j" SO By, ndy| + li[f (¥) B, (v, 1) dy|

From Lemma 1 we derive that

(5.13) i; £ 0)By(y, Ddy| < ca—r)|G;(r)|:J If o) Isind )~ dy

-t

+C(1-n)|G; (1) _I If o @)l(singy)~2dy

(a +1)

< C(1-n)lsinge| f |f () ()l Ising y| ™ dy.

-

By a change of variable we have

(5.14) o)w(—o)| sints| ‘do.

I If W eo)isingyl~ 1dy—ﬂf

As in Lemma 7, one can show that

(515) [jr[('/f(t))”"(l—r)lsin%tl“‘”"“’:flf(—a)w(~a)
x(sin}0) ! do]" dt]"" < C[E]f(—a)l”l//(—a)da]”p
provided that
(516) D= sup [ d=ry (x)tle/p
1-r<a<n| 1Zr|gind X|P'°‘J“’ .
|| <

Thus we have to prove that (5.16) follows from (). For 0< b <a< mit is
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trivial that

a Liah) 2K+ 1p
g T 0,
b [sind Pt k=0 iy [singePtY
Lia,by 1) 2k+ 1y
Z sin 2k 1p|~P [ v,
2kp
where L(a, b} denotes the integer part of log,a/b. From (8,) we now derive
A0,
617y oy
e |sing |7
<¢, 3 (”ibl”l_['z"“” .
k=0 |gin 2k~ 1P S |Smi'qu[‘//(x)]q/p

iSo (@07 | 2, Jsin g xfe [y (7P

L@b 1 T-a q ~-nlq
<C (2nP(!zj+1) Z [ ‘ ICU(X[ ! ] .

y (5.17) we have

[ LY oy LG N
flsingg ) LRI G

< (2nPertY o Lk W*I)
< (2m) o Y 5| =D

k=0
The inequality

b -t [
C1O LI VOIS OB0, gay de]™ < ¢, [ 1117w ar)”
now follows from (5.13)~(5.15).

Similarly we estimate the second expression on the right of (5.12).
Lemma 1 implies

(4] 0
619 | JSDVB0, 0y < Cy(l=n)Isind ™" [ |7 (o ()] dy.
Hence in virtue of Theorem D

" 0
G200 [ ] v 70)Byt 0y ™" < €, T i1y dy]”

provided that

(5.21)
D= sup [J" A=y '//(X)dXJllp[?de]w<+oo.

1~r<€asn “,Slﬂ lp(df"zj “a ['/’ (x)]q/p

icm
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We will derive (5.21) from (B,). First observe that for arbitrary intervals
I, I', I' =1, there is a constant C, independent of I and I’ such that

(5.22) Jwdx/ [y dx < C,(fle|dx/ [ || dx).
1 r 1 I
Indeed, by condition (4)°!) we have

(flol ) < [ dx ([t ™
<Gy [Wdx([dn)™ (o ey
I 1 1

and (5.22) follows. By (5.22) we obtain

n f L(n,a) a2kt 1
J"-——————~'/I() }j Isin 2t~ 2a|"PETR g gy

alsing g7 =0 a2k

L{n,a) -, '+2)a-2k+1
SCE @) yar
= ~a
L{m,a) a-2k+1

<C Z (2q)™ 7" jwdt [ ol dx/})" leo] dx)f.

Hence there is a positive number & > 0 such that for 0 <a < §
L(n,a) 1

AU . —plaj+2) 5
B — < — J N
(5.23) | pry dt <C (k§=0 Tk _jﬂ\//tlt

alsin 1]

By (B;) and (5.23) we trivially get (5.21). Thus inequality (5.20) is true.
Finally we will show that

(5.24) [j lp(tHf By, 1 dy["dt]””<C,,[ﬂf|"n//dr]””

Taking into account that

RS t y—=t . 1
SN = == SIn 2‘cosz+cos 5 sm2

V(o y=1\"" t
_____ < —
;smz (911’1 3 ) 1 {COSZ

Hence in virtue of Lemma 1

we get

o),

b

“(ozj+l)
| Femd
smyy

1§ /01 By(y. 1)dy] < C(1=r)lsind
2t

2
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Theorem E implies that (5.24) is true provided that

}u—wwmdqw

5.25 D= su
( ) 1—-r<ap<1!/2 |:1;’|Sin%xlp(aj+l)

- o () / la -
x dx 0.
2 Isind x [ (0]

One can easily observe that (5.25) follows from (f,) in the same way as
inequality (5.21). Hence inequality (5.24) is true.
By (5.12), (5.13), (5.18), (5.20) and (5.24) we immediately obtain

[ v®| | fx+nByx+t, r)dxy"dr]”"sc,,[j /17y ]
1-r E 1) -
In the case —m <t < —(1—r), the proof of the corresponding mcquahty is
analogous. The proof of Lemma 8 is complete.
Lemmas 5-8 and Theorem C complete the proof of the implication
(b) =(a). Indeed, using these results we conclude that

JHOIT 100 By (e, 0l de <27C, [ (0 [M¥I(f, 07 d

+22 [ @] [ f+DByx+t, dx| de
tj€1-r 2(1~n<|x|€n .

+27 [ @] [ fee+0)By(x+t, t)dx]dt
1-r€€n 2(1-ry<x€n

<c, [Ifryd

+4 [ YO [ Sx+0)By(x+t, 1)dx]"dr
1-r<|t S0 Eu 1)
+4C, [ Y (IMeI(f, ] de

2(1--r).$]1|$7r
n
£C, f [f1Pydte.

6. Proof of the remaining implications. First we will prove the implica-
tion (b)=(a’). In the case p=1 there are no strong cstimates for the
maximal function, therefore Lemmas 5 and 6 are useless.

Lemma 9. Let p=1 and let condition (8;) be satisfied. Then there is a
constant C >0 independent of fe Ly () such that

n 2(1-n

[vol |

-n =2(1-r)

(6.1) Jx+0Byy(x+t, dx|dt < C j If1 dt.

icm
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Proof. In virtue of Lemma 1 we get
2(1-r)

62 | |

-2(1—-r)

f(x+1)B,j(x+1, f)dx]|

2(1 -
C(l—r) (1=2rcost+r) ™% |
~2(1-n

fx+Do(x+r0)de

t+2(1~r)
=C(l=n)""(1-2rcost+r3)""*
1-2(1-n

Fa(y)dy.

Taking into account the periodicity of the functions and changing the
variable we obtain

n t+2(1—r)
63 [y@U=n"t(1=2rcost+r) " [ o ()dydt
-n t=2(1-r)
n y+2(1~-n
= [fWo®) [ $OIL-n1—-2rcost+rd*]" 1drdy
- y—2(1~r
P a2 yr200-0
< [ fMeo()1—r)"" max [(1—r)2+4rsin2%—r):l [ dtdy
2 p= k1 y=2(1~n

The weight function  satisfies condition (4\°!), hence

y+2(‘1-r) y+2(1-r
{ vdr<C [ Joldy()]wm) ™
y=2(1—=n y=201-n

From (6.2) and (6.3) we now easily derive (6.1).

Lemma 10. Let p =1 and let condition (By) be satisfied. Then there is a
constant C > 0 independent of fe L., ,() such thar

(64)

21-m <t <n

ZGI

2(1-n) <[x |1

S (x+1)B(x+1, 1) dx|dr < C} [flydr.

Proof. Changing the variable we deduce that for 2(1—-r) <[t <m

S(x+t)By(x+1, tydx = S () By(y, )dy.

2(1-n <|x| <[t 21-n <|y=tl<r|

20

(65)

In virtue of Lemma 1 we have for |y| <

(6.6) | I£ () By (y,0) dy
2(1=r) <|y—t| <[t}

~o3f2
< C[1—-2rcost+r2]"
201~ <|y—tf <ol

If () oG) P (y—1)dy.
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Consider the case 2(1—r) <t < n. By Fubini's theorem,

(6.7) | ¥ () [1—2rcost+r2]" 7

2(1-n

IS ) oWl P.(y—1)dydt

2(1~r) <|p-1| St

= [IfWeoW) | Po—0¥@O[1-2rcost+r*1" drdy,

0 Fyl»
where F.(y) = {t: y/2<t<n}nit: [y—t >2(1-r)}. By a change of vari-
able we obtain for 0 <y < 2rn

(68) [ P(t—y[1—2rcost+r*] "y (r)dt

F(»

= [ P.(x)[1=2rcos(y+x)+r2] "y (y+x)dx
F(y)

n—y —
= [ P(0[1—2rcos(y+x)+r"1""y (y+x)dx
21~r)
-2(1—-r
+

[ P.a[1=2rcos(y+x)+r1" %y (y+ x) dx,
-¥2

where F,(y) = {x: —y2<x<n—y) n{x: |x] >2(1-r)]. Integrating by
parts we easily get
n—-y —a
69 | PYy+x)[1—2rcos(y+x)+r2]" Y dx
2(1=-n)
y+x

= [ ¥(@0dt-P(x)[1—2rcos(y+x)+r2] 52,
1]

=y od -,./zyfx
— | = Pax)[1=2rcos(y+x)+r21""* [ y(ndridx
- p dX y
n-—.y . 21 y+..\‘
+ra; [ P(x)sin(y+x)[1—2rcos(y+x)+r?]"Y | w(ndedx.
2(1—r) »

The first term on the right-hand side of (6.9) is equal to

(6.10) }I//(t)dt - P, (m—) (1 = 2rcos m+r?)~ %%
y

y+2(1-n

- [ ¥@OdeP2A-n)[1-2rcosy+2(1-r]+r?]"",

From (B}) it easily follows that the absolute values of both integrals in (6.10)
do not exceed Cy/(y)|w(y)|™%, where C is an absolute constant.
It is obvious that the absolute value of the sum of the second and third
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terms on the right-hand side of (6.9) does not exceed

ytx y+x
sup [ [ y@dr( | lo@d)?]
21-n<x<n-y " ) |
n—y d i —zj/zb
* 2(1‘[—,) % }Z; P,(x)-[1—2rcos(y+x)+r?]

y y+x
+ra;[sin(y+x) [1-2rcos (y+ x)+ 217 { ]wldt}dx,
;
which is less than or equal to
y+x

C  sup [ w(de (y}xlw(r)l di)™Y,

2(1-r<xsn—y y

where C is an absolute constant, in virtue of the inequality
yt+x .
[ lo@)dr < xsin™4(y+x).
¥y
The expression obtained is in turn less than CYy(y) o).
Thus we have proved that

(6.11) | }y P (x) Y (y+x)[1-2rcos(y+x)+r?]” j/zdx] < CY (y)|w@) ™t
2(1—n)

Similarly,
(6.12)
-2(1-p
[ | Py +x)[1—2rcos(y+x)+r21" 9 dx| < Cy () o ().
—yi2

Now (6.7), (68), (6.11) and (6.12) imply

I )0 ()] P, (t—y)dy dt

201 -n <y~ <1}

<c flf(yn Y o) dy.

} Y (0 [1—2rcost+rt] %2 I

2(1=-r)

(6.13)

Analogously we can prove that

-2(1-»
(6.14) f

-n

Y (6)[1 —2rcos t+r*] >
.
x f S Do) P,(t—y)dydt <C | |f (WY () dy.
2(1~r<|y=t <[t -2n

Relations (6.5), (6.6), (6.13) and (6.14) immediately imply (6.4). The proof of
Lemma 10 is complete. :
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By using Lemmas 7-10, the implication (b) =(a’) is proved just as the
implication (b)=>(a).

Proof of the implication (b)=>(c).

LemMma 11. Let condition (f,) be satisfied for a weight function y(x) > 0.
Let w(x) be defined by (1.2} and x; = 0. Then there is a number D, > 1 such
that for every a, 0 <a < min{1,3min, .;lx—x]},

. 1
(6.15) j[ o)’ ]” /j[ P :l”ldz‘>Dp>1.

Ja L sin Py Ising 1|7y (

Proof. By (B,) we obviously have

T de@ T /I[ lo (1))

a/"rz [sint” (1) [sing 1]y (1) |
iy |eo (1)]7 = Jeo (0] T
‘”Jzﬁsin%rwa)} /l[|51nzl|”¢(l) «

a P —T:—
> 14B; oD [[I_.E@L‘l" e

AT,

=T

dt

a
xa‘ﬂ“j/(l" b [‘l// () Llr]ll(r 1
0

P 1
e g~ mo-0 (2T % [0 T
> 14 B; U= g™ P4 “(E) ) [717(7)_ dt

x[ [ w(yde ],
af2

Taking into account that

1
. w@P T Pt
.16 dt)’ < —— It ) dt,
(6.16) ()[la;(r)| t) <[‘5[!//(1‘) } ”J }n//(r)u

we conclude that the last expression is greater than

14C,a” PO DI=ny [ lo@® )" " =D, > 1.
aj2

The proof. of Lemma 11 is complete.

Fix any natural number j (1 < j < s). Obviously without loss of general-
ity we can assume that x; = 0. One can easily observe that in order to prove
(o) it is sufficient to show that the function w(x) = (x)/|w(x)|? satisfies
condition (4,) for intervals which lie in a neighbourhood of x; = 0. We will

Weighted norm inequalities

prove that w(x) satisfies condition (4,) for intervals which lie in (—
where d; = min {1,3min; ;|x;—x,}.

For intervals (b;, by) =(0, 6;), b, > b,/2, this follows immediately from
(B1). Hence we have to prove it for intervals (—a, a) = (—9;, 8;). Observe

that in virtue of Lemma 11 there is D, > 1 such that

1 1
P lo@P T [ le@P T T
@1 L—ﬁm] "[f[r*m] ‘”] > Pp> 1.

By inequalities (6.15), (6.17) and (B,) we get

LGN ’; Ve § I S
-a(sind x|™ =0 i+l |sind x|™ =0 -~a2t [singx|™Y

© g pay(i+1) a2t
<y T ya
i=0 g%

a2+l
81,“ _a/zi-i—l
+ Z -—21"‘1('“) [ Y (x)dx
i=0 g —af2i

R D
H——~—TH
SG {[f Lsmlj);?lp(xJ ]
o N

By (B1), (6.16) and (5.22) we now easily obtain

e T I el B

2a 2a -a —-a
<SG @(Jlold)” [wdwrar( | oldx)” | ydx)

< pa"(j eo] dx)~* jz//dx

The proof of the implication (b)=-(c) is complete.
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Proof of the implication (b")=(¢'). For an arbitrary natural num-
ber j (1 <j < s), define a 2n-periodic function 0;(x) by

w(t)

) () = [ for x; <x < 2,
(6.18) 1/6;(x) sl s or x; < x < x;+mn/
(6.19) 10,09 = |20 for x,—m/2 < x < x;,

sinz 1y (1) Lok 4

and continue it lincarly. We will now prove that the function
(6.20) w(x) = w(x)[n Jsin® ™" 4 0e—x) 16 (9] "

satisfies condition (A,).
Fix any j (1 <j < s) and assume that x; = 0. Obviously it is sufficient to

consider only intervals (0, a) = (0, 8;), where §; = min {1,  min; wi X = xj}.

By (6.18)+6.20) and by condition (f,) we get

(6.21) .
a o a2t © 1-q; a -1 a2
[w(x)dx = Z [ wx)dx<C} ( ) [0, (W)] [ ¥(x)dx
0 i=0 gpit+1 i=0 w2i+1

B T
_c31a22,+2[ zmﬂ 0}

By the definition of ¢;(x) we have

(622) Lej (2—‘;—1” ‘ ; (;)

- -1
< max{l, )__99)__ ,_f;;(')w }
sins £y (¢t
00/2““1,a/2') v 1‘(?/2".1:)
By (5.22) and (B;) we infer that
w(t) o) ™
sin‘t 13
,|+1 i '2"/’() L:u/zl.n)
-1 a/zl afrl a
\c( ) dt “( “) .
2|+1 (alzlj‘l-l'll ) 21 21 1

aj2i—1 (aj+1)
X j" |//(t)dt(2,_l) <.
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Hence (6.22) and (6.21) imply

(6.23) {w(x)dx < Ca.
o

By (6.18)6.20) it is obvious that [w(x)]"! is bounded. From (6.23) we now
conclude that condition (A4,) is satisfied for all intervals (0, a). The required
conditions on 6; (1 <j< s) are also easily verified.

The proofs of the implications (c)=>(b) and (c¢’)=(b') are trivial. The
proofs of Theorems 1 and 2 are complete.
The author expresses his gratitude to J. Trzeciak for his editorial care.
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Some results on the convergence of weighted sums of
random elements in separable Banach spaces

by

XIANG CHEN WANG (Changchun) and
M. BHASKARA RAO* (Sheffield and Pittsburgh, Penn.)

Abstract. Let X,, n> 1, be a sequence of random elements taking values in a separable
Banach space, 4,, n> 1, a sequence of real random variables and an, n21, k=1, a double
array of real numbers. Under some conditions, we show that Y1 am Ay Xy, n > 1, converges to
0 in the mean if and only if Y4s, @ f(4X,), n>1, converges to 0 in probability for every
continuous linear functional f from the Banach space to the real line (Section 3). The main result
in Section 3 unifies many results in the literature on the convergence of weighted sums of
sequences of random elements. In Section 4, results on strong convergence are established.
Marcinkiewicz-Zygmund-Kolmogorov’s ‘and Brunk-Chung’s Strong Laws of Large Numbers
are extended to separable Banach spaces. Using a certain stability theorem, a general result on
strong convergence for weighted sums is proved from which many results in the literature follow
as special cases under much less restrictive conditions.

1. Introduction. This paper is devoted to a study of limit theorems for
weighted sums of sequences of random elements in separable Banach spaces.
Section 2 presents some preliminaries needed in the subsequent sections.
Section 3 concentrates on the convergence in probability and convergence in
the mean of weighted sums of random elements. Let X,, n> 1, be a sequence
of random elements defined on some probability space (2, #, P) taking
values in a separable Banach space B, 4,, n > 1, a sequence of real random
variables defined on Q and ay, n> 1, k > 1, a double array of real numbers.
Under some conditions, we show that Y5, a4, Xy, 13> 1, converges to 0
in the mean if and only if Y5, a, f(4.X,), n= 1 converges to 0 in
probability for every continuous linear functional f from B to the real line
R (Theorem 3.3). This result unifies many results in the literature on the
underlying theme of Theorem 3.3. Moreover, the conditions imposed in
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