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Nonfactorization theorems for Hardy and Bergman
spaces on bounded symmetric domains

by
TOMASZ M, WOLNIEWICZ (Torufi)*

Abstract, We extend the nonfactorization theorems of Rosay, Gowda and others to the
case of bounded symmetric domains and some circular product domains. We show that for such
domains D, H(D)- H4(D) (resp. AP*(D)- A%*(D)) is of first category in the Hardy space H'(D)
(resp. the Bergman space A"*(D)), where 1/p+1/q = /L.

1. Introduction. Let U be the unit disc in the complex plane. It is well
known that if 0 < p,q,/ < oo and 1/p+1/g = 1/I then every function f in the
Hardy space H'(U) can be written as a product f = g-h with ge H?(U) and
he H4(U). The same was shown to be true for weighted Bergman spaces by
Horowitz [7]. These results have no generalization to higher dimensions as
was shown by Rudin [13], Miles [11] and Rosay [12] for polydiscs and by
Gowda [5] for the unit ball. In [17] it was remarked that using just the
conclusion of Gowda’s theorem (and not its proof) one can easily obtain a
generalization of his result to classical symmetric domains of type I In this
paper we show how Gowda’s proof can be applied to all bounded symmetric
domains and also to some product domains. We obtain exact generalizations
of results of [5], namely we show that H?(D)-H9(D) (resp. A"*(D)- A**(D)) is
of first category in H'(D) (resp. A**(D)). The proofs are fairly elementary and
do not use the Lie algebra machinery, nevertheless they depend on facts that
were proved with that technique.

2. Preliminaries. Since we will sometimes refer for details to [5], we will
follow as closely as possible the notation of that paper. There will be,
however, some additional notation and definitions.

A domain D in C" is called symmetric if each of its points is an isolated
fixed point of an involutive biholomorphic automorphism of D. Below we list
main well-known facts about bounded symmetric domains.

The group Aut(D) of holomorphic automorphisms of D acts transitively
on D. Each ®eAut(D) can be extended to a holomorphic mapping of a
neighbourhood of D. D can be realized as a circular convex domain such

* This paper was prepared while the author was employed at the Warsaw University.
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that the isotropy subgroup I'q(D) of the component of identity of Aut (D) is
a closed connected subgroup of the unitary group % (n). The Bergman-Shiloy
boundary bD of D is a real-analytic submanifold of C" of real dimension at
least n on which I'y(D) acts transitively, so on bD there exists a unique
normalized I'p-invariant Borel measure o,,. In the above-mentioned realiza~
tion o, is the normalized Hausdorff measure for bD. Every bounded symme-
tric domain is a product of so-called irreducible factors. For a deeper
discussion of this subject we refer the reader to [15].

Let B(z, w) be the Bergman kernel for a domain D < C" and let B(z)
= B(z, z); then B(z) > 0, zeD. For ae R and 0 < p < oo, the Bergman space
AP*(D) consists of all functions holomorphic in D and such that

1/ 1lpe = (lj;l,f(Z)l”B(Z)w“dV(Z))”" <0,

where v is the 2n-dimensional Lebesgue measure on C" We will only
consider the case when B~*dv is a finite measure so we define

Ap = {aeR: [B(z)™"dv < ©}.
D

If D is a symmetric domain then ae Ay if and only if A™*(D) % {0} [16,
Cor. 2]. .

In the sequel, unless otherwise stated, we will always assume that D is
balanced, ie. zeD=JizeD for 1eC, |4 < 1.

Suppose D is such that rD €D for r <1 and u is a probabilistic
circularly invariant measure on the boundary @D of D. For 0 <p < co the

Hardy space H”(D, p) consists of all functions holomorphic in D and such
that

Ifll, = sup (17 @2)?du(@)"" < co.
O<r<1 gp

It was shown in [1] that if f €HP(D, w) then f has radial limits u-almost
everywhere on AD. The function f* thus obtained is in I? (¥ and || f*|| 1o

= fll,.

DerinitioN. We will say that a paic (D, w) satisfies condition (A)
(D, we(A) for short) if;

(1) D is a balanced domain such that rD €D for r<1;

2 pn i_s a probabilistic circularly invariant regular Borel measure on D
such that if K €D then for every nonnegative function u continuous on D
and plurisubharmonic in D we have

u(z) < Cx [u(z)du(z)
b

for zeK,

with some constant Cy.
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ExamPLE. (i) Let D be a balanced domain with C*boundary and such
that rD € D for r < 1. If p is the normalized Hausdorfl measure for aD then
(D, we(A) (cf. [14]).

(i) If D is a bounded symmetric domain then (D, op)€(A). This can
easily be seen from the well-known properties of the Poisson kernel for D.

The following can be proved by standard methods:

Facr 1. If (D, we(A) then:

(i) Every bounded sequence in HP(D, w) has a subsequence uniformly
convergent on compact subsets of D;

(i) H*(D, p) is a Banach space for p> 1 and an F-space for p < 1;

(iii) The analytic polynomials are dense in H”(D, u).

An analogous fact holds for the Bergman spaces 47*(D), ac Ap.

Remark. If D is strictly pseudoconvex and balanced then our HF(D)
coincides with the one defined by -harmonic majorants.

In the sequel we will need some well-known properties of the Bergman
kernel B(z, w).

Facr 2. (i) B(z, w) is holomorphic in ze D and B(z, w) = B(w, z).

(i) If v(D) < oo then for all zeD we have B(z) > 0.

(iii) If ®: D;— D, is biholomorphic then

Bp, (z,w) = By, (®(2), ® (w))det d”(z)defdi’(w), z,weD;.

(iv) If v(D)< oo and D is balanced then for every weD, B(0, w)
=(v(D)" .

(v) If D is balanced and rD €D for r <1 then for every weD the
Junction z+—>B(z, w) can be extended onto a neighbourhood of D, in fact
B(r 'z, rw) = B(z, w).

In the above @' denotes the complex Jacobi matrix of &. The real
Jacobian will be denoted by J&. Recall that J& = |det ¢'|%. To complete the
notation let T stand for the unit circle in the complex plane C and m for the
normalized Lebesgue measure on T C(X) will be the space of all continuous
functions on X, H (D) the space of all holomorphic functions on D and A (D)
= C(D)~ H(D). I will stand for the identity mapping of C".

3. Main results, If X and Y are two spaces of functions on D then XY
will denote the set {f~g: feX, ge Y}

THeoREM 1, Let D < C" (n > 1) be a bounded symmetric domain, a e Ap,
0<p,q,] <oo and 1/l = 1/p+1/q. Then A™*(D)- A**(D) (resp. H?(D)- H*(D))
is of first category in A**(D) (resp. H'(D)).

THEOREM 2. Let D < C" be a balanced domain and Dy = U xD. Then
Theorem 1 holds for the spaces AP*(D,).
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Tueorem 3. If (D, W) e(A) then Theorem 1 holds for the spaces H”(U x D,
m X p).

Theorems 2 and 3 remain valid for any bounded symmetric domain in
place of U but for dimensions higher than one they are trivial corollaries of
Theorem 1.

Theorem 1 has an analogue for symmetric Siegel domains of type II. It
can be obtained from Theorem 1 by an application of suitable isometries of
Bergman and Hardy spaces.

In [3] it was shown that every fe H'(B,) is an infinite sum of the form

Y. gihy with g, h,e H*(B,). In [2] the same was proved for Bergman spaces
i=1

on bounded symmetric domains. It is not known whether these results hold
for Hardy spaces on general bounded symmetric domains or even on the
polydisc.

4. Proofs and other results. The proofs for Bergman spaces and for
Hardy spaces are very similar but the H” case is a little more complicated so
we will usually restrict ourselves to this case.

If K(z) is a holomorphic function in a balanced domain D then K(z)

o0
=) Ki(z), where K, is a homogeneous polynomial of degree i and the
i=0
series is uniformly convergent on compact subsets of D. For such expansions
we have:

Lemma 1. Let 0 <t < o0, There exists a constant M, such that if D is
w0

balanced, ae Ay (resp. (D, p)e(A)) and K (z) = Y Ki(z) then

I=N-1

IKMla < M, [IK]l,a  (resp. || Kxll, < M,IIK]L).

The proof uses only the circular invariance of measures and is a
standard application of integration by slices (see the proof of Lemma 2 in
5D

LemmA 2. Suppose p is a finite regular Borel measure on some compact

set X and suppu =X. Let feC(X), |f(x) <1 on X and x| f0o] =1}
=0. Then for 0 <<t <

Jim 171 i = 0.

We omit the elementary proof,

ProposiTioN 1, Let D= C'(n > 1) be a bounded symmetric domain,
weAp,0<pg,l < oo, 1)l = 1/p+1/q. Then the product map (h, k) ~>h -k from
/}1‘”‘" (D) x A%*(D) to A" (D) (resp. from HP (D) x HY(D) to H'(D)) is not open at
the origin.
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Proof. We will follow an idea originating from Rudin [13] and applied
in all proofs of nonfactorization theorems. The proof of [5, Lemma 3] should
be referred to for some details.

Recall that I'o(D) = #%(n). It is known' that I'o(D) contains a toral
subgroup of dimension at least two but we will only need the fact that it
contains a circular subgroup other than {AI: Ae T}, which is true for every
connected closed subgroup of #(nm) nmot equal to {I} or {AI}. Let
TedrrkjeTIy(D) be a homomorphism onto such a subgroup. Then there
exists a unitary matrix V such that for every A we have

M0
ky =v* [ - ]V
0 A

where s;€Z, 51 <S5 ... <8, §; <5, Define k; =1~ "*kj. Then ke, (D)
and passing to the new variables defined by V we get

ky(z1se02n) = (21,A"%25,...,A™2,)

where 0<my <...<m, and 0 <m,. )
Let A4; = {zebD: |z] = max|z/}. A, is a level set of the real-analytic
b

Ze.
function |z;|* on the réal-analytic manifold bD so it is either of measure zero
or equal to the whole bD.

Suppose at the beginning that A; = bD for every i. We may assume that
|zl = 1 on bD for every i, so bD = T". But bD is a compact manifold an_d
dimbD 2 n so bD = T". This implies that D = U", for instance because D
=conv (bD). For the polydisc our proposition was proved in [5] so we omit
this case and will assume that o (4;) = 0 for some j. Since bD = supp(u) we
deduce, by Lemma 2, that for t > 1

(1) izl /2] =00 as N— oo,
Let
o {n if m;=0,
U ifm>o,

and F(z) = azl "'+ 2z where a is such that
@ Pl < 211201,
(in Gowda’s proof s =1, j =2, a =1). Assume F(z) = H(z)-K(2) and let H
= f H, K= f: K, be the homogeneous expansions. Then, as in [5],
wrli:i%g Hy = Am“o/e gef K,=0for 0<i<N~—1 and

AKy(2) = 2V~ (aH () 2}~ *)/A.


GUEST


icm

90 T. M. Wolniewicz

Hence
AKy (ky(2) = 2" 2}~ (aHy (ks @) 2P 1) 4.
Assume for a moment that m; = 0. Then
AKy(k; @) = 2 = (ay (i @) 27 "™ 2Y 1) A,

Therefore z}' is the constant term of the polynomial A1~ A4Ky (k; (2)) and, by
subharmonicity,

©) 21 < [|AKy (k; @) dm (3.
T

Now, if m, >0 then
AKy (ky (2) = 2" 2 = (aH (ky (2)) 2) 1) A,
The expression aH, (k; (z))z} ! is a polynomial in 4 of degree not larger than
m,. Hence for every t > 0 there exists a C, such that for N > m, we have

@ 2t = Iz dm(3) < € ] |AK y (ks ()] dm (3.
T

By the I'g-invariance of p, both (3) and (4) imply
llzfl < C 1Al IK Ml

Since A = H(0), by subharmonicity we get |A| < ||H||, and, by Lemma 1,
IKnlle < M, ||K|;, so that finally

‘ IzMlle < M,C. ||l ||K]l,.
Taking t = min(p, q) we get
| lzflle < MLCIIH, K],
and so, by (2),
IHN IKIAFL 2 M,C)™ 2]z

By (1), the ratio on the left-hand side can be arbitrarily large, which proves
our claim.

Remark. By using a fairly strong result describing rational inner
functions on bounded symmetric domains ([10]) the proof could be slightly
simplified. Namely, if D = C" (n> 1) is irreducible then there are no linear
nonconstant inner functions on D so for every i, |z attains its maximum on
a set of measure zero.

PrOPOSITION 2. Suppose D;, i = 1,2, are balanced and axedp NAy, (resp.
(Dy, m)€(A)). Then the product map from A" (Dy x Dp) x A**(D, xDj) to
A(Dyx D) (resp. from  HP(Dy x Dy, g x t3) x HY(D, XDy py X i) to
H'(Dy xDy, 4y x p13) is not open at the origin,
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Proof. The argument is very much like the one just presented so we
will merely emphasize the important points.

Let X; =suppy. We will show that D, < convX,. Since convy; is
closed it is enough to show that D, < conv X ;- Assume to the contrary that
zo€ D, \conv X,. Then there exists a linear functional ¢ such that Qg =1
and |p(z) < ¢ <1 for zeX,. Since (D, u;)e(A) we get '

L= (zo)l < C(zo) _f lo™ (@) dy (2) < C(zo)CN
Xy

which gives a contradiction. Hence for each i we can find a linear functional
¢y such that |¢;(z)| < 1 for ze D; and |¢;(z)| = 1 only for z = iw, where Ae T
and w; is some fixed point of X;. Write E; = {Aw;: de T}. It may happen that
w(E) >0 for both i. In this case assume additionally that ¢;(w) =1 and
put, for fe H'(Dy x Dy, py x i) and &,neU,

(PG = f(Ewi,nw,).

Then P is a bounded operator from H'(D, x D,) to H'(U?). 1t is enough to
check the boundedness for feAd (D, xD,), and indeed,

[ 1f 9l du du,

Dy x oDy

> |
Eq XEy

= [ [IfCzn9ldm@)dm(n)du; () dps(s).

Ey XEy T

IS (2, 9)l' dpy dp,

Since zeE; and seE,, the inner integral does not depend on z or s and
we just get p, (Ex)ﬂz(Ez)“Pf”'Hz(Uz,-
Now for ge H'(U?) let

(89)(z,9) = g(01(2), 92(5)).
Then S is bounded to H'(D, xD,). Indeed, if again geA(U? then
j' Ig (‘P1 (2), ¢4 (S))l' dy (2) dpg ()
Dy

g x e
= [ [19(Ces(2)ne.(s))] dm (&) dm(n) du, (z)dps (5)-
any XDy p2

The inner integral is bounded by ”9”;1«1}2) so [|S|| < 1. Since PoS = Idyyz),
it follows that P is onto the space H'(U?), hence open. That reduces the
proposition to the case of the polydisc.

Therefore we may assume that u, (E,) = 0 and use ¢; as we used z; in
the proof of Prop. 1. ‘

LEmMMA 3. Suppose D is a domain in C", ae Ay (resp. (D, p)e(A)) and
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E D is a peak set for A(D). Let Ag(D) ={feA(D):flg =0}, Then:

(@) u(E)=0;

(i) Ag(D) is dense in AP*(D) (resp. H?(D, w)), 0 <p < o0;

(iii) If for some zoe D and woe E there exists a sequence D, Aut(D) such
that ®,,(zo) — wo then for every zeD all cluster points of {®,,(2)} lie in E.

Proof. Choose an f'e A(D) which peaks on E. Then, by the plurisub-
harmonicity of log|l1— f| and the circular invariance of u we get

—oo <log|l—f(0) < 01)10211—"/'(2)1 du(2)

so u(E) =0, which proves (i We also get /¥~ Q pae on dD. Let

he H"(D, ) and take ge A(D) such that [lh—gl|, <e. Then (1—fN)g— g in

HP 50 |1~ fMg—h|, <e for large N and obviously (1—f")ge Ay(D).
Now suppose &, (z) - {¢E. Then |f(§) <1 and f(wo) = 1. Let

d(z,w) =sup {o(g(2),g(W)): g: D~ U, geH (D)}

be the Carathéodory distance in D (cf. [8]; ¢ is the hyperbolic distance in U).
Then d is Aut(D)-invariant. If « <1 then af: D — U and

d(z,20) = d(Bp, (@), B, (20)) = 0 (S (P, (2)), 0.f (P (20))) ~ @ (. (), ),

and ¢(xf(¢),«) can be arbitrarily large if « is close to one, which gives a
contradiction.

Lemma 4. Let D < C” be a domain, not necessarily balanced but starlike
with respect to some zoeD, and let h(z) = P(2)/Q(2) be a rational function
defined and nonvanishing in D. Suppose g is a continuous branch of the
argument of h. Then

|9(2) ~¢ (zo)| < m(deg P+degQ),
Proof. We may assumriv that Q = 1. Let deg P = N. Assume first that
D = C. Since then P(4) =« [T (A~4), 4 ¢D, we easily find a branch of the

=1
argument satisfying the claim. Any other branch must have the same
property.
Now return to the general case and for zeD define

zeD.

D, = {AeC: A(z~z)+zo€ D).

Then D, is.a domain in C, starlike with respect to the origin, P, (3) = P(A(z
—2g)+2o) is a polynomial nonvanishing in D, and deg P, < N. Moreover,

9:() = g(A(z—20)+2o) is a continuous branch of the argument of P,, in
particular )

|9 (2)—g(zo)l = lg.(1)~g, (0)) < ndeg P, < nN.

icm°®
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Now we' return once again to bounded symmetric domains. For simpli-
city we will assume that v(D) = 1.

As we have mentioned, Aut (D) is transitive on D; but proving this as in
[6, p. 170] one concludes in fact that for any two points z, we D there is an
involution @ e Aut(D) which interchanges them. For aeD we will denote by
&, any involution interchanging a with the origin.

Define also

K.(@,7) = ('1’)(3—“(5)—)'—

Lemma 5. () K, (a ,(2)K,(a 2)=1.
(@) [f()BE)*dv() = [f(P.(2)Ke(a,2) B(z)*dv(2), feC(D).
D D

(iii) If webD and a—w then for fe C(D)
i{f(@(z))B(Z)_“dV (@) —f(w).

a+1
) , a,zeD,aeAp.

(iv) There exists a C depending only on D and o such that for every
aeD there exists a function y,e A(D) such that

max {1, K,(a,2)} < [, (2 < C{l1+K,(a,2)},
Proof. Using Fact 2 (ii), (iv) we get
1B(a,2)*/B(d) = J®,(2),

zeD.

so .
|B(a, 8. @2)*/B(a) = J8,(2,(2)) = J (87 ") (8,(2)) = (I8, (2))~*
which proves (i). Next
K,(a,2) B(z)™* = J®,(2)(B(a,2)*/B(a) B(2)f = JP,(2) B(®,(2)™*

and (ii) follows.

Since bD is I'y(D)-homogeneous, every point of bD is a peak point for
A(D), and (iii) follows by Lemma 3 (jii).

To prove (iv) we will first show that B(z, w) has in D xD a bounded
continuous branch of the argument. Let D, be a Siegel domain of type II
biholomorphic to D, ®: D — Dy the Cayley transform (ie. a biholomorphic
map of D onto D;) and B, the Bergman kernel for D,. B, was explicitly
computed by Gindikin [4] (cf. also [9]) and is a rational function in z, W,
nonvanishing in Dy xD,. Since Dy is convex, by Lemma 4 every branch of
the argument of B, is bounded in D; xD,. Using again Fact 2 (ii), (iv) we get

B, (9(2), $(w)
B, (#(2), ®(0)) B, ($(0), ()

B(z,w) = J®(0)
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so any branch of the argument of B must also be bounded. This shows that
there is a f such that if aeD then one can find a Ae T such that

Re(iB(z,&/) 20 for zeD
(recall that B(z,a) extends onto a neighbourhood of D). Then

A\ 2+ 1)/p
Valo) = (1 + AE(EL‘.Q..)

satisfies the claim with C = 22@+1/8 (¢f, [5, Lemma 57)),
Remark. If we replace B(z, w) by the Cauchy-Szegt kernel C (z, w) and
define

K (a,2) =|C(a, 2)*/C(a, a)

then K(a, z) is the Poisson kernel for D and Lemma 5 extends to this
function with doy, in place of B(z)~*dv. (i) and (iv) follow easily from their
analogues for the Bergman kernel because for irreducible D one has C(z, w)
= B(z, w)’ for some y [9]. The remaining assertions are consequences of the
well-known properties of the Poisson kernel (cf, [15] or [9]).

The proof of Theorem 1 can now be finished exactly as in [5]. Instead
of the point e; we use any point webD and apply Lemma 3 to get the
density of A, (D) in H?(D). .

In the proofs of Theorems 2 and 3 we use Proposition 2 for D, = U and
an analogue of Lemma 5 for a = (a,,0,...,0), ¢; € U. For such a there exist

involutions &,. Instead of Lemma 1 (iii) we prove that if feC ("["/ xD) and
fluyxp = 0 then for a—(1,0,...,0) we have [fo®,~ 0. Also, 4y,x5(U xD)
is dense in H” and in 47 The rest of Gowda's proof can be applied with
minor modifications.
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