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A remark on entropy of Abelian groups
and the invariant uniform approximation property

by
J. BOURGAIN (Bures-sur-Yvette)

Abstract. Let G be a compact Abelian group and let 4 be a finite set of characters on G.
We prove that there exists K & Ly (G) with J[K||, < 2 such that K () = 1 for yed and K(y) 0
for at most C!l characters , where C is an absolute constant. In fact, for this type of uniform
approximation on G, we obtain more precise estimates in terms of appropriate entropy numbers.

1. Introduction, Let G be a compact Abelian group and A a finite subset
of the character group I' = G* (the compactness hypothesis is in fact nones-
sential and the main result may also be formulated for locally compact
groups). Given & >0, we consider functions K satisfying the conditions

)] Ky < 1+e,
2 K() =1 for each yeA,

and where [supp K| (= the size of the support of the Fourier transform of K)
is as small as possible. This problem of invariant. uniform approximation was
considered in [B~P] where an estimate on [supp K| is proved using combina-
torial methods. :
Associate with A the following invariant pseudo-metric on G:

dA(xs y) = sup "Y(x) _y(y)ls
yeA

and denote by N,(¢) the corresponding entropy numbers for 0>0. The
purpose of this note is to show the following fact.

Tueorem 1. If 0 <& < 1, then there exists K satisfying (1), (2) and
3) log [supp K| < 8 (log, (120/))log N 4(1/20).

In particular, we can find K such that (2), ||K||; <2 and |suppK| < C!4
where C is a fixed constant. As has been observed by W. B. Johnson (cf, [F-
J-8]), this exponential estimate is the best one can hope for. This is clear
from the following example (answering also a question at the end of [B-P]).

Let G = {1, —1}™ be the Cantor group and A = {e1,...,6,} the first n
Rademacher functions. Assume K fulfills (2). Then by Khintchine’s inequali-


GUEST


80 J. Bourgain
ties

n= (3

n
Jj=1

K@ <3 ol 1Kl < VP AIKIIKILY.

1Kl > (n/pIIKI)"

and hence for an appropriate choice of p we get
1K, > exp(n/2e |IKIID).

In the case of bounded groups, the estimate (3) is straightforward and
the interest of the result is primarily the circle group case G =T The
following notion (see [B]) is related to the concept of “arithmetic diameter”
introduced by Katznelson and McGehee (see [G-M]):

d(A) =minid =1,2,...: C, is 2-isomorphic to a subspace of IF}.

Here C4 is the subspace of %(G) of functions with Fourier transform
supported by 4 and [° is the d-dimensional complex I*-space. The notion
“J-isomorphic” has the usual Banach space meaning (see [L-T] for instance
for details).
Recall also that a set A < I' is dissociated provided A does not admit
nontrivial + 1, 0-relations, thus
Y'ey=0,8=01~1

ved

= &,=0if y%0.

The proof of Theorem 1 and the entropy characterizations of Sidon sets
obtained in [P] yield

CoroLLary 1. For given § > 0 there exists ' > 0 such that if A <1T isa
finite set of characters satisfying logd(A) > &|Al, then there is a subset A of
A, A dissociated and |A| > &'|A|.

The main point in proving Theorem 1 is a comparison of the entropy
numbers for various invariant pseudo-metrics on G. We make crucial use of
the spectral property of a one-point set in T

2. Inequalities relating entropy numbers. Let A < I" be a finite set. Define
also for x,yeG

dax,y)=sup  |fx)-S ).
JeC plf1S1

Let, for 0 < ¢ <2, N () be the corresponding entropy numbers. Obviously,
du(x, ) <dy(x,») and Nyl < N 4(e).
Lemma 1. If 0 <e < 2, then

@ log N 4(e) < (log (4/¢)) log N 4(1/20).
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LemMMA 2. If € > 0, then
%) NA(E)sNA(ﬁ/S)-

Lemma 1 appears in [B]. Lemma 2 seems to be new and in fact clarifies
some points in [B].
Proof of Lemma 1. Denote N ,(g) by N(o) for simplicity. Since
™ N(Ye)

N(E) = jl;];] N(2j+ 18)

where m = [log,(2/e)], there exists some & < ¢ < 1 such that

NG _ logN)

BN~ log, ) -

]

_From this fact, it is easy to derive the existence of a subset P of G with

log|P| > M
such that
(©) e<d (xy) <4e
We shall find a positive integer s such that
d 4(sx,sy) > 1/10
This will complete the proof of the lemma, because
N 4(1/20) > |{sx: xe P}| = |P| = exp M.
By (6), we may assume that 0 < < 1/10. Let s =[1/4¢]. Then
1/4 > s > 1/4—p0 > 3/20.
For any yel and xeG we can write

1=9(s%) = (1= () (1+7)+7 @0+ .., +7(5—1)x)).

if x#yin P.

if xs#yin P.

Hence
7 11—y (2) 2 s1=7 ()| =(1/Ds(s— 1)1 —y(x)*.
For x#y in P, let yeA satisfy

[y =y () = d4(x, ).
It follows from (6) and (7) that

d 4(sx,5y) = sd 4(x,y) (1 —(1/2) sd 4(x, y)) > se(1—2s0).
By our choice of s, the right-hand side is > 21/200. This completes the proof.

6 ~ Studia Mathematica ¢, 86 fasc, 1
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Proof of Lemma 2. We show that
@®) d4(0,%) < (3/4)d 4 (0, x).

From the invariance property, this clearly implies (5). We will use the
spectral synthesis property of the point 0 in the unit circle T Thus

1—é? =3 6" if 0] <x,
ke Z
where .
©) 2 led =1+0(?).
keZ

See [G~-M] (p. 417) for this result and a proof which the authors attribute to
N. Wiener. In fact, specific computations show that for all T > 0 (9) is true
with t+ 0(z?) replaced by 37/2.
Assume now xe G satisfies d (0, x) = 2sin(z/2), 0 <t < . Then for each
yed we may write y(x) = e’ where [0] <. From (9) it follows that
(10) L=y() = ¥, ey (kx).
keZ

Let feC,. Then by (10)

fO-f@=2/001-y@) =T a(L/0)rkx) =Y. e f k),

veA keZ yed keZ

If0)—f () < (kZzlckI)IlfIIw < Bt/ -

Therefore d (0, x) < 3t/2. Since © < msin(z/2), this proves the lemma.

3. Proof of Theorem 1. Fix A < T, A finite and ¢ > 0. Put = ¢/6. It
follows from (4) and (5) that

1 log N 4 () < (log (20/7)log N 4(1/20).

From the definition of d,, there is an expectation operator E satisfying
(12) rank E < N ,(n) =5,
(13) Ef=f1<nllflle i SeCy

Average E to obtain a convolution operator. Thus let K, be the convolution
kernel of the operator

[(Re-1ER,)dx

G
From (12) and (13)
(14)

(R, = translation by xeG).

1Kyl <1,
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(15) K1l < 1Ellnceer,een S (Il lly.,, = nuclear norm),
(16) If=(f Kl <nliflle  if feCoy

(16) also means that

“1—121[/1”11(,1) <.
Let ueM(G) fulfill ||y <# and fi|, =1—K,|,. Define

o0

Ky =Ki«(X 1), @ =pxpx..xp (fold convolution).
Then "
an Kl < Kl =l ™ < (X =m)7 1,
(18) K,(p=1 ifyed,
(19) Kl < (1=1) " 1K ]| < (L—1)7 1.

Finally, let

o (Ry0P i IR, () > 87
K6)= {0 otherwise.
Thus, by (19)

IK—(K,*K,xK,) < Ko ) < (1-n)728873 <
Ral<s~3

by (17)
Kl S IKAR+n < =m)73+n <1+6n=1+e.
Clearly, K still satisfies (2) and
supp K| < ST K, ()* < (1-n)~2 58 < 5%,
which together with (11) gives the desired estimate.
Remark. Let E be a finite-dimensional normed space. Define

$; (E) = max {m: E contains a 2-isomorphic copy of I},

Sq(E) = max {m: E contains a 2-isomorphic copy of /;7}.
It is proved in [B] that in general if E is a subspace of [°, dim E > 4%, then

54 (E) > &€ (dim E)"/*> where C is a constant. Combining this fact and Theo-
rem 1, the next property for invariant spaces is deduced:

51(CA8x(CQ > |Af
for a fixed constant > 0. In [B] an example is given of an n-dimensional
space E for which d(E,[?) ~ \/ﬁ and

51 (E) 5, (E) < (logn).
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Nonfactorization theorems for Hardy and Bergman
spaces on bounded symmetric domains

by
TOMASZ M, WOLNIEWICZ (Torufi)*

Abstract, We extend the nonfactorization theorems of Rosay, Gowda and others to the
case of bounded symmetric domains and some circular product domains. We show that for such
domains D, H(D)- H4(D) (resp. AP*(D)- A%*(D)) is of first category in the Hardy space H'(D)
(resp. the Bergman space A"*(D)), where 1/p+1/q = /L.

1. Introduction. Let U be the unit disc in the complex plane. It is well
known that if 0 < p,q,/ < oo and 1/p+1/g = 1/I then every function f in the
Hardy space H'(U) can be written as a product f = g-h with ge H?(U) and
he H4(U). The same was shown to be true for weighted Bergman spaces by
Horowitz [7]. These results have no generalization to higher dimensions as
was shown by Rudin [13], Miles [11] and Rosay [12] for polydiscs and by
Gowda [5] for the unit ball. In [17] it was remarked that using just the
conclusion of Gowda’s theorem (and not its proof) one can easily obtain a
generalization of his result to classical symmetric domains of type I In this
paper we show how Gowda’s proof can be applied to all bounded symmetric
domains and also to some product domains. We obtain exact generalizations
of results of [5], namely we show that H?(D)-H9(D) (resp. A"*(D)- A**(D)) is
of first category in H'(D) (resp. A**(D)). The proofs are fairly elementary and
do not use the Lie algebra machinery, nevertheless they depend on facts that
were proved with that technique.

2. Preliminaries. Since we will sometimes refer for details to [5], we will
follow as closely as possible the notation of that paper. There will be,
however, some additional notation and definitions.

A domain D in C" is called symmetric if each of its points is an isolated
fixed point of an involutive biholomorphic automorphism of D. Below we list
main well-known facts about bounded symmetric domains.

The group Aut(D) of holomorphic automorphisms of D acts transitively
on D. Each ®eAut(D) can be extended to a holomorphic mapping of a
neighbourhood of D. D can be realized as a circular convex domain such

* This paper was prepared while the author was employed at the Warsaw University.


GUEST




