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STUDIA MATHEMATICA, T. LXXXVI. (1987)

The size of some classes of thin sets
by '
RUSSELL LYONS* (Stanford, Cal)

Abstract. The size of a class of subsets of the circle is reflected by the family of measures
which annihilate all the sets belonging to the given class. For subclasses of U,, the sets of
uniqueness in the wide sense, the corresponding family of annihilating measures always includes
M, (T). We investigate when there are no other annihilating measures, in which case the class of
sets is “large”. For example, Helson sets are shown not to form a large class, while a closely
related class does. The fact that another class of sets, the H-sets, is “small” disproves a
conjecture of Rajchman. The class of sets of uniqueness (in the strict sense) is investigated in
detail. Tools used include Riesz products and asymptotic distribution.

L. Introduction. Borel subsets of the circle T= R/Z which are called
“thin” in harmonic analysis are usually sets of uniqueness in the wide sense,
or Ug-sets [10]. Recall that a Ug-set is a (Borel) set which has zero measure
with respect to every measure belonging to M, (T) = {ueM(T): lim f(n)

|n| =

= 0}, where M (T) denotes the (finite) complex Borel measures on T and
B(rn) = [e™ ™" du(f). We also denote M, (T) by R. Given two classes of thin
7 .

sets %, %2 < Uy, we may consider %, to be “much larger” than %, if there
1s a measure concentrated on some set from #; which annihilates every set in
#,, but not vice versa. This is equivalent to the statement %} G €3, where
we denote :

%t = {ueM(T): VE€%¥ |1l (E) = 0}.

In this case, it is not hard to see that every measure concentrated on a set
from %, is also concentrated on a countable union of sets from .
Now for any class % < Uy, we have R < U < * In fact, R = U [11,
12, 13]; we shall be interested here in seeing whether certain other classes %
share this property (% = R). Such classes are as “large” as U, itself. This
investigation was begun in [11]. :

* This material is based upon work supported by the National Science Foundation (USA),
by the North Atlantic Treaty Organization under a Grant awarded in 1983, and by an
American Mathematical Society Research Fellowship. :
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Riesz products will be our tools for showing the smallness of certain
classes. We shall see how Riesz products resemble the measures in R by
virtue of the gaps in and the multiplicative structure of their spectrum.

2. H™.sets. We shall write e(t) for 2™, Recall that a Borel set E < Tis
called a set of uniqueness, or U-set, if the only trigonometric series
o0
Y cqe(n) which converges to 0 for all t¢E is the O-series:c,=0. It
'1'1as Tong been known that U-sets are Ug-sets and that countable unions of
closed U-sets are U-sets ([20, I, Chap. IX, § 6]). Rajchman [18, 19] intro-
duced the first class of uncountable U-sets, which he called H-sets. These are
Borel sets E < T for which there exist a sequence {m] of positive integers
tending to co and a nonempty open arc I < T such that for all xeE and all
k, nxé¢l. It is clear that H-sets are contained in closed H-sets, hence that
countable unions of H-sets, denoted H,-sets, are also U-sets. The converse,
conjectured by Rajchman, was finally shown to be false by Pyatetskii-
- -Shapiro, who introduced the classes H™ ([17], [1, Chap. XIV, §§ 15, 16],
[20, I, Chap. IX, § 6]). We have H = HY cH® = ., c H"™ = H"+Y <,
< U < Uy, but, for each m, there is an H™"Y-set which cannot be written
as a countable union of H™-sets. It would be interesting to know if H™* Y is
in fact larger than H™ in the sense given in the introduction.

Rajchman also conjectured (see [3, pp. 85-86]) that R = H . but this
too is false [11, 12]. In fact, in [11, § L8], we showed that R s (H™)* for
any m. Here we shall use an entirely different approach to the problem and
shall show that
§) R # (U H™)L

m
We recall some definitions. If V= (",...,,0"eZ™ A =(,....,l)eZ"

m
and xeT we write V'A = Y, v®] and Vx = (v!'x,...,v™"x).
i=1
DepiNimions. Let meZ*t. A sequence {V;}&, < (Z*)" of m-tuples of
positive integers is called quasi-independent if for each fixed A& Z™, A not the
0-vector, we have |V, A| — oo as k— oo, A Borel set E «— T is called an H™-
set if there is a quasi-independent sequence {V;} <(Z*)" and a nonempty
open set I < T™ such that for all xeE and all k, Vix¢l. A box I < T" is
a Cartesian product of arcs Iy T:I=IyxI;x...xI, A sequence
{x,}& 1 = T™ has the asymptotic distribution ve M(T™), written {x,} ~ v, if
for every box I = T" whose boundary has v-measure 0, we have

1
lim —card {k < K: xel} = vl.

K~

Recall that Weyl's criterion [20, I, Chap. IV, (4.25)] says that {x;} ~ v if
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and only if for all I,,...,]l,eZ,

1
lim = ¥ e(lxP+ ... +Lx{™) =¥(~1,.

K- k<K

o =1,

where x;, = (x,..., x{").
THeoREM 1. Let

0o

p=T] (1+Re fone(m))
k= 1
be a Riesz product with |ay| < 1 and ny(/n, — 0. Given any quasi-independent
sequence {V)i2y < (Z*)", there exist a subsequence {V;} and a set D = Z™
of cardinality at most 3™ such that for p-almost. all x, {V/x}j2, has an
asymptotic distribution v, with spectrum in D: ¥.(A) =0 if A¢D.

The result (1) now follows: let x be as in the theorem with o - 0; then
u¢R. If E is any H™-set, there is a quasi-independent sequence
{Vj}2 1 =(Z*)" such that {¥;x} is not dense in T™ for any xeE. But if
{V]} is the subsequence given by the theorem, then for p-almost every x,
{V/x} has the distribution of a trigonometric polynomial and hence is dense.
Therefore pE =0 and so pe(l)H™)-

In order to prove Theorem 1, we need two lemmas (which are easy in
the case m = 1; indeed, a stronger form of Lemma 3 will be proved for m = 1
in the course of proving Theorem 6).

LemMA 2. Let d > 0 and let {AV)A < [—d, d]™ nZ™. There is a linear
dependence relation

m+1
Y AP =0
J=1
with ¢;e Z not all 0 and |¢)l < d"m™?2.
Proof, Let AY = (I{,...,19). Since we have m+1 vectors A9 in an m-
dimensional vector space R", one of the vectors, say A™*Y, is linearly
dependent on the others:

m
P T by = A+,
J=1

By Cramer's rule, by can be written as the quotient of determinants with
entries /). Let ¢, be the determinant in the numerator of b; and let —Cmi1
be the common determinant of the denominators. Hadamard’s inequality,

|det (a,))] < H(;Iaulz)”’,

now gives the result when (2) is multiplied through by —cy4q, since
N <d m
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Lemma 3. Let {V}21 =(Z*)" be quasi-independent, let {m}=, be
hyperlacunary (i.e., m.i/m — co), let Le Z*, and let 4 be a finite subset of Z
containing 0. Denote the cardinality of 4 by |A| and let D be any finite subset
of Z". Set

3) Q={Y em: sed and g =0 for all but finitely many k}.
k=1

Then for all sufficiently large j, the number of AeD such that
4) [V 4—-Q <L

is at most |A|™. As a function of |A| and m, this upper bound is best possible.
We have written [V} A4~ | for the distance from V-4 to Q. In proving

Theorem 1, we shall use the case 4 = {~1, 0, 1}. I am thankful to Hugh L.

Montgomery for the argument providing the best bound in Lemma 3.
Note that (4) is equivalent to the system

a0
|Vj-/1—-Zsknk|<L, AeD, ged,
k=1

S
2 &= 0 for all but finitely many k.

Proof. We begin by showing that no bound can be better than |af™,
Choose V; = (1, 4, M24gs-+-sMmsj) and D = 4™, Then for every j, every AeD
is a solution to (4). :

We now prove the rest of the lemma by showing that in some sense the
example just given is typical; we show that there exist ky,....k, such that
Bgys---s 8, determine the solution {&}2y to (5), and that for large j,
{&}2 ¢ in turn uniquely determines A.

Let M = max {|¢|: e 4} and fix j. Let d be the maximum absolute value
of the coordinates of A over all AeD. Consider any m+1 solutions

(A(r)’ {chr)}lgi L)n
to (5). Let Ciyev0Cmyy DE as in Lemma 2. Define

I<r<m+l,

o0
AL - Vj.Ao)__ Z air)nh,

k=1
so that [k < L. Then
m+1 m+1 0 me1
T chl=V ¥ a3 (n, ¥ cuf)
r=1 re= g k=1 rel

©
= Z nk5k>
k=1
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m-+ 1
where 0, = ), c¢,’. From our bounds on ¢, A%, and &, we see that
r=1

hod m+1

I Z "k5k| = l Z Crh(r)' < (m+1)Ld'"m"'/2,
6 k=1 r=1
(6 -

18 =] ¥ cefl| < (m+1) Md™mm2,
r=1

But since m,4,/n, — oo, (6) implies that there exists some ko =ko(L, M, d,
m) (ko does not depend on j) such that &, =0 for all k > k,. That is, the
vectors

(8;:),85‘2..,1,...),

are linearly dependent.
We have thus demonstrated that for fixed j,

{ee}iZrg: {&a}iZ 1 is a solution of (5)}

1<r<m+1,

belongs to an m-dimensional space. There are therefore m coordinates
&kys- o8, (ki = ko) which determine all ¢, k > k,. Since there are only |4]|
choices for each g, there are at most |4|™ solutions {a,,},‘:';,,o to (5). But we
claim that for large j, each such solution corresponds to exactly one solution
A. For let

N=max{ ¥ &an| ged—4},
k<kg

where A—4 = {¢—¢": &,¢' 4}. By quasi-independence of {V}}, there exists j,
such that for each j > j,, we have

inf {|¥;* 4): 0 AeD—D} > N+2L,

where D—D = {4, —A,: A;,A,eD}. Now suppose that (A1), B2k (AP,
{s,‘},:’?_.,‘o) are two solutions of (5) for some j=j,. Then for some ged
-4 (1< k <ky),

V(40— AP)— 3 s <2L.
k<kg

Since AM— AP D~ D, the definition of j, implies that A®—A® =0, This
establishes the claim and finishes the proof. w .

Proof of Theorem 1. By [11,-§ III2] or [13], we may choose
(ViR = {V)2 so that there exist v,e M(T™, xeT, such that for any
further subsequence {V}'} of {V/} and for p-almost all x, {¥/’x} has the
asymptotic distribution v,. We shall show that {¥/} is the desired subse-
quence.

Let f4(x) =7,(—A), AeZ™. We claim that {e(V}-Ax)}}2, converges to
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f4(x) weakly in I? (). For if fis any weak limit point, then fis the weak limit
J

of {J7*Y (V) Ax)}f, for some subsequence {V/’}. But by Weyl’s
=1

criterion and the choice of {V}'}, these functions tend pointwise p-a.e. to /4. Hence

=1

If f, is not 0 p-ae, then there exists. an integer L such that
fe(Lx) f4(x)du(x) # 0. Since

fe(Lx)e(V} < Ax)du(x) — fe(Lx) f4(x) du (),

it follows that for all large j, fi(~ L— V- A) # 0, whence L+ V/- A€, where ,
as given by (3) (with 4 = {~1, 0, 1}), is the spectrum of . Thus A& Dy, where

D, ={lleZ™ for all large j, |V} TT—Q| <r}.
But the cardinality of D, is at most 3" by Lemma 3 and D, < D, . Hence D
o0
= |J D, also has at most 3™ elements and f, =0 p-ae. if A¢D. w

r=1
I am indebted to Bernard Host for one of the ideas used in this proof. It
would be very interesting to know if and how Theorem 1 extends to all Riesz
products.

3. Helson and related sets. Let A(T) denote the class of functions with
absolutely convergent Fourier series. Its dual is PM (T), the pseudomeasures.
A closed set E < Tis known as a Helson set if every function defined and
continuous on E can be extended to a function in A(T). By duality, E is
Helson if and only if the quantity .

a(E) = sup {||pliuen/lllprgery: 0 # pe M(E)}

is finite, where M(E) is the class of measures concentrated on E. Helson
showed that such sets are annihilated by R [5, pp. 110-111]. In Theorem 4,
we shall exhibit additional measures which annihilate the Helson sets,
showing that the class of Helson sets is not “large”.

For a closed set E, let A(E) be the restriction of A(T) to E. If fe A(E)
has range in (—1, 1), F is a continuous function on (—1, 1), and E is Helson,
then of course FofeA(E). If, however, the only F on (—1, 1) such that
FofeA(E) for all f € A(E) with range in (—1, 1) are restrictions of analytic
functions, we say that A (E) is analytic or that E is an analytic set, The still
open Dichotomy Conjecture [5, pp. 402-405] is that all closed sets are either
Helson or analytic. We shall show that, in any case, the class of nonanalytic
sets is not “large”.

It is well known [10, p. 16] that E is Helson if and only if

s(E) = inf {R(u/llllmen: 0 # ne M (E)}
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is positive, where, for pe M(T), we write
R(y) = limsup|A(n)).
In| o0
Of course, it is immediate from this criterion and the fact that v

< peR=veR [5, Proposition 1.5.1] that Helson sets are Uy-sets. Consider
the class of Borel sets E such that

s (E) = inf {R(/M el sy O # e M* (E)}

is positive, where M * (E) consists of the positive measures concentrated on E,
Since s(E) < s* (E), this class includes the Helson sets. It also includes, for

example, the weak Dirichlet sets, these being precisely the sets for which

s* (E) = 1 [11, § IL7]. As above, it is a class of Ug-sets. This class, however,
is a “large” class (Theorem 7). It should be noted that for any ¢ > 0, the class

" {E:s*(E)= ¢} is not large ([11, § IIL7] or Corollary 12 below).

For pe M(T), write
%, = {neZ: i) > &)
We shall sdy that X,—Z, has arbitrarily long gaps if its complement in Z
contains arbitrarily long intervals.
THeoreM 4. Let p be a measure such that for all e >0, Z,—2Z, has
arbitrarily long gaps. Then |p/(E) =0 for all Helson sets E.
Note that all measures in R trivially satisfy the hypothesis, so that

Helson’s theorem is a corollary. Furthermore, to exhibit a measure p¢R
satisfying the hypothesis, we consider a Riesz product

and 2,—Z,= {n—m:nmel,}.

s

p= [T (1+Re{me(3})

k
with Jo <1, %+ 0, and n,/m =g > 5. Then ué¢R and Z,—Z, has the
gaps (2m+2m (+ ... 20, My — 20— ...—2ny) of length

K Koo 4
Mer1—4 Y 12 myr (1=4 3, 477) > M (1—5_—1>,
=1

=1

1

which tends to infinity with k since g >35.

To prove Theorem 4, we shall follow the method used by Kahane and
Salem in their proof of Helson's theorem. It depends on the following lemma
[5, p. 112]. 1 am grateful to Carruth McGehee for having brought this
method to my attention.

LEMMA 5. Given ry,...,ryeZ and pe M(T), there exist ay,....ay = +1

M JI—
‘such that ifv= Z aye (1) 1, then |Vllym = M3 pllagery -

m=1

Proof of Theorem 4. Let E be any set of positive |u|-measure. We

.
§ ~ Studia Mathematica t. 86 fasc. 1
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shall show that «(E) = co. Without loss of generality, we may assume that
ldlagen = 1.

Let M be a positive integer. There is a trigonometric polynomial P
such that

1Pu— (el < M1
Write L=degP, 4 =Y |P(k)| and & = min((MA4)~", M~1). The hypothesis

k
on Z, allows us to choose inductively ry,...,r, such that for J#m, the
dlstagce between r,,—r; and X, —Z, is greater than 2L. With such a choice,
the distance between r,+ X, and r,+Z, is greater than 2L, ie,

(mt+Z+[—L L) N+ Z,+[~L,L]) = Q.

If §, is the pseudomeasure equal to [ on X, and O elsewhere, it follows that
the spectra of e(r,x)PS, and e(r;x) PS, do not intersect. Therefore if Oy
= +1, we have

M
Il Z,l e (1) PS,||par = SUP|ame () PS,llpag = || PS, lIpag

S NP (S, — Wl pra +11Pp— (ulg)llag + 11l ()
SAe+M™1+1g3,
M
and hence if v=Y a,e(r,)ulg,
1

M
Mlese =) 3 ame () [l = P+ (P~ PS) + PS, Y ra

< Me+MAe+3 < 5.

But if a, are chosen as in the lemma, it follows that IVl s/ 1% pag
> \/M/(S\/§). Since M is arbitrary and ve M (E), it follows that o(E) = 00. u
Following Kahane and Katznelson [9], we say that a closed set E < T

satisfies condition (R) if there exists K such that for all N 21, there exist
0#veM(E) and meZ* such that

sup 3. [F(p—nm)| < K [Vl|ppy.
PeZ |n| SN
The utih:ty of t.his condition lies in the fact that all such sets are of analyticity
[9]. It 1mmeg11atcly follows that nonanalytic sets are Up-sets. As another
corollary, we shall deduce that they do not form a “large” class:
THEOREM 6. Let '
0 .
# =TI (1+Re {oe(nx)})
k=

-
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be a hyperlacunary Riesz product: |oy| < 1, 4/ — 0. Then uE = 0 for all
nonanalytic sets E.

Proof. It suffices to show that if uE >0, then E satisfies condition (R).
Indeed, let v = pjz and N> 1. Let Q be a trigonometric polynomial such
that ||v—Qullyen < [IVI/(2N+1). Set Q to be as in (3) (with 4 = {—1, 0, 1})
and Q' =Q+[—L,L], where Lis the degree of Q. The spectrum of Qu is
contained in . Choose m =nm, , where k > ko =m/n._, > 10(N+L). We
claim that for all peZ,

card({p—nm: || < N} n Q) <3.

The proof will then be complete, since it follows that

2 [Fp—nm)| < |viles+ | IZ;)N IQu) (p—nm)

|n| €N

< IMlse [1 +3(14 ﬁfﬂ <5 -

To prove the claim, suppose that p+nmm,p+n'me@, |nf <N, [n] <N,
n# . Then by subtraction, we can write

(n—nYym=c¢ym, +esm,+ ... +1,
where k; >k, > ..., 6= +1,+2, and |} <2L. Dividing by n,,, we obtain
[(n—n) e/, —edl S2(m 1+ -2+ .+ + L)y

If ky < ko, then the right-hand side is less than 1+ 2L/ (using ny/n;, 23
for all j) while the left-hand side is greater than 10(N+ L)—1, an impossibili-
ty. Hence k, > k, and the right-hand side is less than 2/5. If k; > ko, the left-
hand side is at least 4/5, whence k, = kq. Since the left-hand side is then an

. integer, it must be zero: n—n’ = g,;. In other words, for any n, n’ as indicated,

in—n'| € 2. Choosing the largest and smallest n, n' establishes the claim. w

We now show that {E: s*(E) > 0}* =R.
THEOREM 7. If 1ué R, then there exists a set E of positive |ul-measure such
that s™ (E) 2 ROu/|lullac-
Proof. We may assume that y is a probability measure. Choose n, — oo
so that fi(n)— wR(y), where |o| =1, and such that
K
£ = lim E ¥ e(—mt)
K~ K k=1
exists p-a.e. ([11, § 111.2] or {13]) Since R(y) = [@f du= [Re{@df}dp, it
follows that
E = {t: f(t) exists and Re{@f ()} = R(w}

is not of u-measure O.
Now if ve M* (E), then
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K

R(p)[Vilye < [Re{@f}dv =Re (@ lim [K™' Y e(—mt)dv(t)}
E K~oE k=1

=Re {@ lim {K™! }Ii e(—mt)dv (1)}

K-~worT 1

k=
X K
=Re {® lim K™' ¥ #(n)} <lmsupK~! ¥ [(n).
k=1 K=o k=1

K=o
Hence R(v) = R(u)[|vl]pr m

4. Sets of uniqueness. Sets of uniqueness have been under study for over
100 years. During this period, many beautiful results have been obtained, but
relatively few examples of U-sets are actually known, Some ingenious theo-
rems show that U is indeed a fairly limited subclass of U, (see [5, Chap. 4]).
Yet it appears that many more U-sets await to be discovered. As an
approach " to determining the size of U, the question “is R=U" ? is
particularly fascinating. We have not been able to resolve it, but true or false,
the answer would be extremely interesting. Thus, if R = U, then for all
K¢R, there would be a U-set with positive |u|-measure. This would produce
a wealth of U-sets, including necessarily U-sets as yet unknown. On the
other hand, if R # U+, then for some u¢R, uE =0 for all EcU. In other
words, the property of not supporting any pseudofunction implies the
property of not supporting any part of a certain fixed measure which is not a
pseudofunction ! (Recall that the pseudofunctions, PF(T), are those pseudo-
measures S such that S(n) — 0 as |n] —+ co. A closed set is a U-set if and only
if it does not support any pseudofunction [5, Theorem 4.2.1]) We would also
obtain new M-sets (i.e, sets not of unmiqueness) from such a ue UH\R,
namely, every E of positive |u-measure.

Note that by regularity, U+ = (closed U-sets)*. In this section, we first
recall some more characterizations of closed U-sets. We shall then show that
the class & of all known U-sets and of all sets satisfying certain conditions
known to be sufficient for uniqueness is small: R % &<, Finally, we shall
consider a class larger than but closely related to U.

Note that 4(T) is the Banach-space dual of PF (7). Given a closed set
E < T, we define the ideal

J(E)= {feA(T): f=0 on a neighborhood of E}.

Then [5, p. 92] E is a U-set if and only if J(E) is weak* dense in 4 (7). We
call E a U'~set if J(E) is weak* sequentially dense in A(T). Now U’-sets can
be characterized in another way. Define

limsup|$ (n)|

WE):inf{ :09&S€-PM(E)},
(iSeae
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where PM (E) consists of the pseudomeasures supported in E. Then Ec U’ if
and only if W (E) > 0 [5, Theorems 4.3.2, 43.1]. For example, H™-sets are
U'-sets: let {V}} be quasi-independent, I = I, xI, % ... xI,, an open box in
T", and E a set such that Vx¢l for any xeE. Then we claim that
m AI

> _-’__’
) ver> 155
where A is the Lebesgue measure on T. Note that this lower bound goes from
0 to 1 as the volume of I increases from 0 to 1. To prove (7), let f, denote
the “triangular” function which is zero outside an interval Q < T and linear
between the endpoints of Q and the midpoint of Q, where it reaches a valu.e
of 2/4Q. Thus /5 (0) = 1, [ foll4 = 2/2Q, and 50 ||1 — foll« = (2—1Q)/AQ. Consi-
der the function

g(tlﬁ"'stm) =

J

where I} is an interval whose closure lies in I;. Then §(0,...,0) = 0 anfl g=1
in a neighborhood of the complement of I. Hence g(¥jt) = 1 in a neighbor-
hood of E and for any SePM(E),

$0O) =<S.q9(W0> = Agog(V;‘A)é(—A)-

s

Since {¥;} is quasi-independent, |¥;- A| — co as j— oo for every A # 0 and it
follows that

IS0 < llgll.a lilnll sup S (n)].

Since e(—pt)SePM(E), the same inequality holds with O replaced by any
peZ, whence
lim sup |S (n)] - . A
P > gt =TT =fyllat =15
STt - llgll4 n“ 15lla HZ——MJ
The inequality (7) results from the fact that AI; can be taken arbitrarily close

to AI_,, .
Similar but more complete results hold when J(E) is replaced by

I(E)={feA(T):f =0 on E}.

A closed set E is called a U,-set [U}-set] if I (E) is weak* [weak* sequenfial-
ly] dense in A(T). It turns out [S, Theorem 4.3.4] that every U,-set is a
countable union of U'-sets, whence Ui = (Uj)*. Unfortunately, such results
are not known for U-sets. Evidently, however, U < U, and U’ = UY; the
inclusions are strict [5, pp. 110-118]. The annihilator of I(E) in PM(T)
= A(T)* (and thus the dual of A(T)/I(E) = A(E)) is denoted b}l N (E). Note
that M(E) < N(E) = PM(E); M (E) = N (E) precisely when E is Helson and
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N(E) = PM(E) precisely when E obeys synthesis.) Set

n(E) = inf{“—m—sﬂ’ﬁf)—': 0 SeN(E)}.
(111 pae

Then Ee U] if and only if n(E) > 0 ([5, p. 98]). For example, Helson sets are
Uj-sets since s(E) < #(E). Indeed, all nonanalytic sets are Uj-sets. For, as
remarked by Graham and McGehee [5, p. 402], if E satisfies condition (R)
with M(E) replaced by N(E), then E is analytic (the proof is the same). But if
n(E) = 0, then condition (R) is obviously satisfied. It would be interesting to
know whether R = U{ or, in any case, whether U+ = U,

The most significant-perhaps the only-known examples of U-sets are
countable unions of H™-sets. These include the Cantor-type symmetric sets
which are known to be U-sets [15, pp. 89, 93, 96]. It is easy to see that the
example of Bari [2, pp. 102-104] is also an H-set. The only other examples
of U-sets known to this author were constructed by McGehee [14], whose
work was extended by Meyer [16]. It is unknown whether these are not in
fact countable unions of H™-sets.

To define Meyer’s sets, we regard T as [0, ) c R If Te >0 and 4 = R,

we say that (T, &) is adapted to A if for all functions a: 4 — C sending A+a,
with a; = 0 for all but finitely many A, we have
sup | Y. aze(Ax)| = esup|Y aze(Ax).
0<x€T Jlen xeR Aed
Note that [0, T] can be replaced by any interval of length T Suppose that
E <R is compact, 4, = R are finite, }, — 0, (T;,g,) is adapted to Ay, and

E < A4y+[~1L, 1] Then Meyer [16] proved that E is a set of uniqueness in
R when

®) tim [62 — (2+&) n 1] > 0.

We are interested only in the case E < [0, 1]. The essential tool in proving
Meyer’s result is an approximation of the Fourier transform of pseudomea-
sures with compact support. When we are concerned with measures, this
approximation can be improved. This improvement is what will permit us to
demonstrate that all such sets are annihilated by Riesz products.

The approximation of pseudomeasures and measures is given by

Lemma 8. Suppose that (T, ¢) is adapted to A and 0 <nlT <¢&. Then
|A=2|>2l when AL, Aed are distinct. If SePM(A+[~1 1), we define
oceM(A) by

=73 S xtu-t1+n) 01
ied

where 3, is the unit mass at A and y; is the indicator Junction of 1. Then for
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all xe R, we have

9 1S(x)—& (x| < 2nl|x (e=mIT)™[|S]|pas-
If in addition S is a measure, then

(10) 1S (x) =& (x)| < 2 || [[S]]ps-

Proof. The first statement follows immediately upon cbnsideration of
le(Ax)—e(A'x)|. Hence o is well defined. Write

S0 =Y a(x)e(x),

AeA

where the spectrum of g; lies in [—1, I]. If

fx)) =Y e:(x)e(dy),

ied

then f(x,x) = §(x) and f(0,x) = 6(x). Fix any y,; the function f(x, yo) of x
‘has spectrum in [—1, I] and can be written for any x, as

0
£ = F a0+ | 6,30) =30
for some value x’ between x, and x. By Bernstein’s inequality ([14, p. 149] or
[5, p. 4187), 0f/0x < 2nl||f]l«, so that for all x, xo, Yo,
(8] 1S (%, yo) = f (%0, yo)l < 2nl|x — Xol | fl| -

Now when § is a measure, we have

Iflle <sup Y, 14, () < X ISIA+[—1L1) = ISlly-
X Aed ied

Substitution of this estimate in (11) with x, =0 and y, = x yields (10).
In general, when S is only a pseudomeasure, we know that for all x,,
there exists yoe[xo— T/2,xo+ T/2] such that |f(xo,Yo)l = &sup|f(xo, )l
¥

For this choice of y, and x = y,, (11) gives
ISllp3e 2 1f (o» Yoll 2 [f (%o, Yol — 2nl | yo — Xol Il f 1l
= esup| f (xo, Y — 1T (| fll -
y

Taking the supremum over x, yields

ISllere = (& = m TS o
which gives (9) when-substituted into (11). m

Remark. Very slight improvements can be made by using 82 f/dx? (cf.
[8, pp. 118-119]); these do not affect the essence of our results.


GUEST


72 R. Lyons

Meyer’s result now follows easily. Given E as above, we may assume
without loss of generality that e —s nTlk—pf <e*/(2+¢), and that
1Tk <e for all k. For any SePM (E), define

Oy = Z <S,X[z*zk‘z+lk1>5/1-

Aedy

Choose real numbers my, — co such that myJ, — 0. By hypothesis, there exists
X e [m, me+ Ti] such that |6, (x)] = & lowlps. By (9), we have

1S (il 2= 165 (3l = 2rthe 1%kl (6~ T T) ™ 2 118 | pag
= eclloyllpac— 21th (my+ T) (6= 1 T) ™ (1S g
But it also follows from (9) and the fact that [ — 0 that $(x) = lim &, (x),
k

whence lim ||oy/lpar = ||S||par- Therefore

— & - &~ (2+3
02 Bm 861> (=28(6= ) S0 = ==L 5 >
Thus, E does not support any pseudofunctions on R and E is a set of
uniqueness. To show that if E < [0, 1], then E is a U-set on T, i.e.,

lim (S| >0 for all SePM(E),
s
we use the following proposition [15, pp. 86-87].
ProrosiTioN 9. For every &> 0, there exists C >0 such that for all
pseudomeasures S on R whose support has diameter at most 1—e¢,

lim|$ ()| > Clim [S(x).
neZ xeR

Now if E < [0, 1], we consider E as being on the circle T Since E # T
there exists an arc (h—s, K) in the complement of E. We may translate E
without changing the value of ¥ (E), so we may assume that E < [e/2,1
~&/2Z). Any element of PM(T) with support in E then extends naturally to
an element of PM(R) with support in E: for Se¢ PM(T), supp$S < E, define
SePM(R) by {f,8) = (fV,,S for fe A(R), where V, i the piecewise linear
fx}llnction which is 1 on [¢/3,1—¢/3] and 0 outside (0, 1). It is easily verified
that

“fVe”Am S Nlagw max Z |Va(”+x)|,
0€x%1 ez

so that this definition makes sense. It is obvious that supp§ = suppS and

that §(n) = 8(n) for neZ. It now follows from (12) and Proposition 9 that
Y(E) >0; E is thus a U'-set.

Now suppose S =veM™ (E), where E [0, 1] is as above. Define o,

@ © ‘
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my, and X, in the same way and note that ||a/|pp = [IVlls. From (10), we have

(13) [v (x| 2= [ex =2, (my+ TV | ar,
whence

— 2—
(14 lim[99) > (6= 2 blhe > 85 Pl

This already places certain restrictions on the measures which can put mass
on E. Note that (13) is valid even if myJ,-» 0. Using this observation with (8)
will allow us to establish the following theorem.

TreoreM 10. Let p =[] (1+Re {oye(nt)}) be a Riesz product with either

(i) Mess/m =4 and R(y) = lim}foyl <3, or

(i) M 1/me— 00 and R(p) < 1/3.

Then uE =0 for all sets E < [0, 1] of the following type: there exist
A, =R finite, [, —0, (Ti,&) adapted to Ay, E = Ac+[—h, L], and 8) is
satisfied.

We shall need some facts about Riesz products and about the relation-
ship between 7 on R and on Z for measures ue M ([0, 1)).

Lemma 11. For ue M([0, 1)), let C, =sup {R(v)/|[vlly: O # v € pu}. Then
for v <y,

linr;lﬁ(X)I < Cuibvllne-

Proof. Let x| — 00, X = m+8;, meZ, 6 —del0, 1). Then e(—4x)

— e(—46t) uniformly on [0, 1), so that for v <y,

Tim [$ ()| = lim]| ]’e(—nkt)e(——ét)dv(tﬂ < R(e(—8)v(t)) < CyllVllyg. w
0

CorOLLARY 12. If u is a Riesz product, then for all v < p,

ii’@f(x» < R MIne-

Proof For any measure y, consider the space L*(u). Let I' be the
subset {e(nt): neZ} and TI',, the set of limit points of I in the weak*
topology from I*(u). Then with C, as in Lemma 11, we easily calculate

C, = sup{| [xdv|/Ivlla: O#v <, xels}
= sup {| 1S dil/lfll gy O # €L (W), xe T}
= sup {[[ Ao XE )

Now when p is a Riesz product, every eI, has the form cy, where ¢ is
a constant and yel' ([6, Chap. 5], [7, Chap. 2, Proposition 1], or [5,
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Theorem 7.3.1]). Since y¥e I, for yeI'y,, yer, it follows that C, = R () and
the lemma gives the desired <onclusion. (It should be noted that for Riesz
products, we actually have an equality: R(v) = R(u)|[V|[ppen. This follows
immediately from the above-mentioned form of I',,.) m
Lemma 13. Let pe M([0, 1]). Suppose that B, = {neZ: g, < n < by}, by
~a, — 00, are intervals such that
lim sup |fi(n)| = 0.

k—ou neBy
If By = {xeR: a; < x< by}, ay—a,— 0, by~ by— oo, are subintervals, then
for all v <y,

lim sup |¥(x)| = 0.

k-~ o0 xeBf

Proof. It suffices to show that if x, & B; and [¥(x)| — ¢, then ¢ = 0. We
may assume that X, =m+0d, meBy, 5, —3d¢e[0, 1). If ¢ 0, then there
exists a trigonometric polynomial P such that ||Pu—e(—dt)v|y < ¢/2. Put
L =deg P. Then

¢ = lim[9 ()| = lim| _lfe('—nkz)e(-«ax) dv (1)
0
1
<lim| fe(=mt) P(t)du(t)+¢/2
0

=lm| 3, P()A(m—D|+c/2= /2
€L

since m—leB, for large k. This is a contradiction. w

CoroLLarY 14. Let p=T](1+Re{me(nx))) be a Riesz product. with
M1/t = 3, {k;} a sequence with ky>j, and

' . .
B;= {xeR: Mty ot < xS Pgr 1 = Py = .. —-nkjw.jﬂ}.
Then lim sup|V(x)[ =0 for all v < p.
J—’oovxsli} -
Proof. It suffices to take
Bj = {neZ: nkj+nkj..1+ ‘e +nkj_j—-j< n<g nkJH-—n,,Jm o -—n,‘J..,H*l-j}

in the lemma. w

Proof of Theorem 10. Suppose to the contrary that uk 0, Let
V= tlg. We assume that nTil — B, & — &. In case (i), set 0 = 1/3 and in case
(i), 0 arbitrary but less than 1. For every j, define k(). by Omy < T,
<Omyp+.. We may assume that k(j) >j. Let :

My = Myt Mgyt ooy
It is easily verified that
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Mt T < Mgy =My = -+ =M~

for all j in case (i) and for all sufficiently large j in case (ii). Furthermore, in
case (i), we have

my <My g1+ - A0y <m (1+4714+472+ ) =%, <4T,
while in case (i), we have similarly lim m/T, <0~
j—+o
Now by Corollary 14,

lim sup [F(x) =0.

J=o xe[mj,rnj+7‘j]
On the other hand, from (13), this limit is at least —lﬁ;a—[aj—anj(mj-{- 1)1Vl
In case (i), it follows that 0 > ¢—108 > ¢—(10e%)/(2+¢), or & >2/9. Hence by
(14),

m [900) > B ¥l > § [l
which contradicts Corollary 12. Likewise, in case (i), 0 >¢e—2(8"*+1)8.
Since this is true for all 6 < 1, it follows that O > ¢—4f, whence & > 2/3 and

ﬁl?(x)l > 4|[vlln» again a contradiction. m
xeR

With a bit more subtlety in choosing m;, we can prove the same result
for Riesz products p with n . ,/n, = ¢ >3 and R(n) < 6 = §(q); however, this
method gives 6(q) — 0 as g — 3.

Note that ultrathin symmetric sets [15, pp. 239, 250] are examples of
Meyer’s sets described above [15, p. 240]. We now move from examples of .
U-sets to two known sufficient conditions. If a closed set E is without true
pseudomeasure (WTP), i.e, PM(E) = M(E), then E is, of course, a Helson
set. Hence PF(E)= My(E)= {0} and E is a U-set. Moreover, E is annihi-
lated by Riesz products whose frequencies satisfy ny,/m, = g > 5 (Section 2
above),

Our second condition sufficient for uniqueness is more substantial
A closed set E is said to be of resolution if every closed subset is of synthesis.
Since every WTP set is of synthesis and every closed subset of a WTP set is
WTP, it follows that every WTP set is of resolution. Kahane and Katznelson
[97] found the following necessary condition to be a set of resolution. If I > 1,
r>0, and B < R, we say that BeS,, if B is an infinite union of segments of
length | separated by at least rl. A pseudomeasure Te PM(T) is said to
satisfy condition (P) if for all positive ¢ and r, there exist [ >1 and BeS,,
such that |T'(n) <e for n¢B. Kahane and Katznelson’s theorem is that
sets of resolution do not support any nonzero pseudomeasure satisfying
condition (P). Since pseudofunctions satisfy (P), it follows that sets of
resolution are U-sets. Another consequence-is
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Tueorem 15. Let u =[] (1+Re{me(mx)}) be a hyperlacunary Riesz
product: gy 1/m— 0. Then pE =0 for all sets of resolution, E.

Proof. If uE #0, we shall show that v =y, satisfies condition (P).
Given &r >0, let P be a trigonometric polynomial of degree L such that
[[Pu—v|lp < e. Let ko be such that for k > ko, we have

Mg =M= oo =My —L>Qr+1)(m+m- 1+ ... +ny+ L)
Set 1 =2(m,+my-1+ ... +n+L) and
Qo= {Em tn,t ... kng,i ks >ky > 0> Ky > ko, m2 1} 0 {0},

We center an interval of length [ about each point of £24: B =0,
+[—2,1/2]. It is clear that BeS;, and that (Pu) (n) =0 for néB. Hence
[7(n) <& for n¢B. m

If @ is the class of countable unions of H™-sets, Meyer’s sets, and
sets of resolution, then %™ # R since & is annihilated by all hyperlacu-
nary Riesz products p with R(y) < 1/3. If hyperlacunary Riesz products
annihilated all U-sets, they would resemble pseudofunctions quite strongly
indeed. Now for any closed set E, N(E)2 M(E) and ||yllpp = |[pllpe for
ueM*(E). Hence n(E)<s*(E) and 9 < U c U, < (U}), < {s* > 0},. We
have shown that & is small while {s* > 0} is large. In order to get more
information on the size of U, we introduce the following class intermediate
between U{ and {s* > 0}. Set

Sw(E) = inf {R(W/llMlpp: O # pe M(E)}.

Then #(E) < 5(E) < s" (E), so that Uj = {5, >0} = {s* > 0}. Although we
. have not been able to resolve the question whether {s,, > 0}* = R, we shall
show that {s,, >0} is a much larger class than %, the class of “known” U-
sets. Note that s(E) < s, (E). The class {s,, > 0} is also much larger than the
Helson sets. These statements are consequences of the following theorem.

O
Tueorem 16. Let u= [] (1+Re{oae(mx)}) be a Riesz product with

k=1
lod <1 and nyy /m > (3+/5)/2 = 2.618%. Then u is concentrated on a set E
with 5, (E) = s* (E) = R(p).

Proof. The fact that the product above converges weak* to a probabi-
lity measure (even without assuming ny.. /n = 3) is not hard to show. Now
for k#j, fd(m—ny)=fi(n)A(—n). In other words, the random variables
_{e(nkx)}k are uncorrelated with respect to the probability measure p. If {n}
is a subsequence such that A(m) = @R (1), || = 1, then by the strong law of

large numbers for uncorrelated random variables [4, Theorem IV.5.2, p. 158],
4 is concentrated on the set

15) E={n lim L i e(—nyt) = wR(w)}.

L~ 1=1

o
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Since peM™ (E), we have s*(E) < R(u). It remains to show that s, (E)
= R(w). Now if ve M(E), then for all meZ, we have .

1 L .
R(W)[9 (m) = ]é‘}ljr:c Lt 121 e(—nyt) e(—mt)dv(®)|

L

=lim [L' Y e((—m,—m)t)dv(t)

L—oT 1=

L
= lim [L7 Y 9(my,+m)| < R().
=1

L-w

Hence R (y)||v|lpa < R(v), which finishes the proof. »
The set E in (15) is, of course, not closed. However, by Egorov's
theorem, there exist g, > 0, ¢, — 0, such that if

L
F={tVL LY e(—mf)—oR ()| < e},

1=1

then uF is as close to 1 as desired; F is a closed set. Is F a U-set? More
generally, if n, 100, 0 <la| <1, g, — 0, is

K
{t: VK [K™ Y e(md)—of < g}
k=1

a U-set? :I“his question is extremely interesting not only for the problem at
hand (R = U%), but also because it seems to lie just beyond present techni-
ques for decision.
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A remark on entropy of Abelian groups
and the invariant uniform approximation property

by
J. BOURGAIN (Bures-sur-Yvette)

Abstract. Let G be a compact Abelian group and let 4 be a finite set of characters on G.
We prove that there exists K & Ly (G) with J[K||, < 2 such that K () = 1 for yed and K(y) 0
for at most C!l characters , where C is an absolute constant. In fact, for this type of uniform
approximation on G, we obtain more precise estimates in terms of appropriate entropy numbers.

1. Introduction, Let G be a compact Abelian group and A a finite subset
of the character group I' = G* (the compactness hypothesis is in fact nones-
sential and the main result may also be formulated for locally compact
groups). Given & >0, we consider functions K satisfying the conditions

)] Ky < 1+e,
2 K() =1 for each yeA,

and where [supp K| (= the size of the support of the Fourier transform of K)
is as small as possible. This problem of invariant. uniform approximation was
considered in [B~P] where an estimate on [supp K| is proved using combina-
torial methods. :
Associate with A the following invariant pseudo-metric on G:

dA(xs y) = sup "Y(x) _y(y)ls
yeA

and denote by N,(¢) the corresponding entropy numbers for 0>0. The
purpose of this note is to show the following fact.

Tueorem 1. If 0 <& < 1, then there exists K satisfying (1), (2) and
3) log [supp K| < 8 (log, (120/))log N 4(1/20).

In particular, we can find K such that (2), ||K||; <2 and |suppK| < C!4
where C is a fixed constant. As has been observed by W. B. Johnson (cf, [F-
J-8]), this exponential estimate is the best one can hope for. This is clear
from the following example (answering also a question at the end of [B-P]).

Let G = {1, —1}™ be the Cantor group and A = {e1,...,6,} the first n
Rademacher functions. Assume K fulfills (2). Then by Khintchine’s inequali-
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