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STUDIA MATHEMATICA, T. LXXXVI. (1987)

Integration and the Feynman-Kac formula
by
IGOR KLUVANEK (Bedford Park, S.A.)

Abstract, Main problems concerning the Feynman-Kac formula for the Schrédinger
group, rather than the diffusion semigroup, pertain to integration with respect to set functions
having everywhere infinite variation. An integration theory which does not presuppose finite
variation but still leads to a complete space of integrable functions is described. It is modelled
on the theory of the Daniell-Stone integral. The resulting notions and techniques are then used
to express the superpositions of some semigroups of operators, including those which describe
the motion of a quantum-mechanical particle in a potential force field.

In the title, the themes of this note are announced in the order of their
formal treatment although the order in which they naturally arise is reverse.
For, only those problems of integration are considered here which have
direct bearing on the Feynman—Kac formula. Let us describe briefly how
they come about.

Let E be a Banach space, L(E) the space of bounded linear operators on
E and S: [0, c0)— L(E) a continuous semigroup of operators.

Let A be a locally compact Hausdorff space, %(4) the ¢-algebra of
Baire sets in A and P: #(A) — L(E) a spectral measure. For a Baire function
W on A, we denote by

P(W) = [WdP
A

the operator defined by
PW)o = IW(X)P(dx)fP

for every @peE for which the right-hand side exists as the mtcgral with
respect to an E-valued measure.
Given such a function W, let

T(t) = exp(tP(W)),

for every t> 0, assuming that T{f)eL(E) and that the resulting map
T: [0, o) — L(E) is a continuous semigroup of operators.

The semigroups S and T are interpreted as describing evolution proces-
ses in which an element ¢ of the space E is transformed, in time from O to
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t >0, into the elements S(f)@ and T(t) @, respectively. Our problem is to
determine the element of the space E into which a given element ¢ evolves in
a time ¢ = 0 if both these processes go on simultaneously. In other words, we
wish to construct a semigroup U which describes the superposition of the
processes described by the semigroup S and the semigroup T, respectively.

This problem is traditionally formulated in terms of differential equa-
tions. Let 4 be the infinitesimal generator of the semigroup §. The infinitesi-
mal generator of the semigroup T is the operator P(W). Hence, the semi-
group U is the solution of the initial-value problem

(0.1) Uy =AU@+PWU@W, t>0; U@O+)=I,

provided a solution exists. Or, for a given peE, let u(t) = U(t) o, t = 0. Then
the E-valued function u is the solution of the problem

(0.2) () = Au@®)+P(W)u(t), t>0; u(0+)=

However, in many situations, the superposition, U, of the semigroups S and
T exists, and can be taken as a good description of the corresponding
evolution process but the problem (0.1) does not have a solution or the
problem (0.2) does not have a solution for some ¢ekE.

ExampLe 0.1, Let A = R3, Let E = M (R3), the Banach space of all scalar
o-additive measures on % (R%) with the total variation norm. Let

1 2
p(t,x) = (27")3/2 exp <— %)

for every t >0 and xeR®. Let S(0) = I, the identity operator, and
(@ o)B) = jdx j Pt x~y) o(dy),

for every t >0, ¢ocE and Bed& = .93’(R3). Then S§:[0, o0)— L(E) is a
continuous semigroup of operators.

For any Be %, let P(B) be the operator of forming the indefinite integral
of the characteristic function of the set B. That is, (P(B) ¢)}(X) = ¢ (B n X),
for every peE and Xe4.

The semigroup S is a mathematical model of spatially homogeneous
diffusion. Imagine the space R® filled with a solvent into which some soluble
substance is added. The initial distribution of the substance is represented by
a measure @ € E. Then S(t) ¢ is the distribution of this substance after it was
left to diffuse freely in the solvent for a time t > 0.

Imagine further that the substance undergoes also a process of reaction
so that its distribution and also the total amount is changing in time but the
environment is not affected by this process. The rate of the reaction is
proportional to the concentration of the substance with the coefficient of
proportion, W, varying from place to place. The semigroup T is then
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interpreted by saying that T(t) ¢ is the distribution of the substance initially
distributed according to the law ¢ provided the process of reaction went on
for a time t > 0 while the diffusion process was suspended.

We want to know the distribution, U (t)¢p, of the substance, initially
distributed according to the law ¢, after both processes, the diffusion and the
reaction, went on simultaneously for a time t > 0.

The deunsity, u(t, x), of the distribution is the solution of the initial-value
problem

u(t,x) =% dut,x)+Wx)u(t,x),

lim fu(t,x)dx =@ (B);, Bed,
t—04+ B

t >0,xeR%;

provided of course that a solution exists.
ExampLe 0.2. Let A = R Let E = I?(R3). Let

1 Ix]?
p(t,x) =Wexp( 21t>

for every ts 0 and xcR>. Let the semigroup S: [0, o0)— L(E) be given
by S(0) =1 and

(S®e)x) = [ plt,x—»e()dy, xek,
)

for every pe EnI}(R3), t #0.

For every Be % (R), let P(B) be the operator of pointwise multiplication
by the characteristic function of B.

Then the semigroup S, which is in fact a unitary group, describes the
motion of a free nonrelativistic quantum-mechanical particle with 3 degrees
of freedom. We wish to know the motion of such a particle in a force field
with a given potential ¥, That is, given an initial state, peE, of such a
particle, we want to Know its states u(t) = U(t) ¢ at times ¢ > 0. It i 1s known
that u is the solution of the Schrédinger equation

u(t, x)—--Au(t X)+iV(x)u(t,x), t>0, u(0+,%)=¢(x), xeR>.

To construct the desired semigroup U, we introduce the following

objects.
For a t >0, let Y be the set of continuous paths v:[0,t]— 4 in A

based on the mterval [0, t]. Let 2, be the family of sets
Y= {veY:v(t)eB; j=1,2,...,n]
0ty <ty <... <ty <t,

for arbftrary n=1,2,..., <t and Bje%(A),

j=12,..,n Let
M,(Y) = S(t—t,) P(B) S (ta—tn—1) P(By-1) ... P(B5) S(t2— 1) P(By) S (t1)
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for any such set Y. The resulting set function M,: #, — L(E) is obviously
additive. Then an obvious and well-known heuristic argument suggests that
U is given by the Feynman-Kac formula

SU@) = )" [cxp(;[ W (v(s) ds)] M, (dv),

for any ¢t > 0. A formal proof, under the appropriate assumptions, can be
based on the Trotter-Kato formula. None the less, the following alternative
argument retains its attractiveness for several reasons.

For a t >0, let

f(s,v):W(v(s))exp(}W(u(r))dr), se[0,t], ve¥,.
0

Note that .
jf(s, v) M, (dv) = S(t—s) P(W) U(s)
Yl‘

for se[0, £]. Therefore, by the Fubini theorem,

U@®-S@=| [exp(},W(u(r)) dr)—1] M, (dv)
¥, 0
= if(gf(s,v)ds)M,(dv) = ’f(_[f(s,v)M,(du))ds
t 0 Y,
= }S(t—s)P(W) U (s)ds.

o The integral equation obtained corresponds to the initial-value problem

The question remains of course whether this calculation can be Jjustified.
A framework of concepts, whose centerpiece is a suitable notion of integral
with respect to M,, is needed which would give the indicated operations a
good meaning and which would allow the conditions for their correct use to
be formulated.

In the case of Example 0.1, there is such a framework readily available.
Indeed, for every Ye #,, the operator norm [IM,(Y)|| is equal to the Wiener
measure, w(Y), of the set Y. Consequently, the set function M,: @, - L(E)
generates a unique continuous linear map of the space I!'(w) into L(E).
Hence, a sufficient condition for the validity of the proposed argument is, for
example, the integrability of the function f on [0, £] x ¥, with respect to the
product of the one-dimensional Lebesgue measure and the Wiener measure
w. Then the Fubini theorem indeed can be used. This is of course classical,
(See [2] in the present context.)

In Example 0.2, the situation is not so simple. There does not exist a
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finite ¢-additive measure m on &, such that [IM,(Y)|| < m(Y), for every
Ye #Z,. Consequently, M, does not generate a continuous linear map from an
I'-space into L(E).

The efforts to overcome these difficulties lead to many interesting new
notions and results. Indeed, the literature on the subject is too vast to be
surveyed here. However, these results seem to depend too closely on the
specific features of Example 0.2. On the other hand, it is not unreasonable to
expect that there might exist a theory which is sufficiently general to be
applicable in both situations considered here and in other situations of
interest and which is also rich' enough to give meaningful results when
applied to specific cases. At the same time, as noted, to produce such a
theory, it is necessary to reinterpret the basic notions of the integration
theory.

Accordingly, in the first part of this note, we introduce an abstract space
Q, a vector space  of real- or complex-valued functions on Q and a
seminorm y on . The seminorm y is said to be integrating if the
completion of X" with respect to it can be represented as a space of functions
on 2 containing )" as a dense subspace. Then the corresponding Banach
space is represented. as a space of equivalence classes of functions on Q. A
typical example of such a seminorm is of course the I!-norm with respect to
a g-additive measure. But also other examples have already been studied in
the literature, The IP-norms, for any pe[l, oo], are perhaps the most
prominent ones. The norm in the space of functions integrable with respect
to a Banach-valued measure, defined as the total semivariation of indefinite
integral, is another example ([1], IV.10).

The study of such seminorms can thus be viewed as a natural genraliza-
tion of the classical integration theory. We take the treatment of the Daniell
integral by M. H. Stone [6] as a model for the generalized integration
theory. In fact, we only need to free the Stone procedure from its dependence
on the lattice properties of integrated functions to obtain a viable theory
well suited for our purpose. At any rate, the proposed theory differs from the
classical integration theory most prominently in that the space of integrable
functions is not necessarily a lattice. : )

In the second part we return to the construction of the superposition of
two semigroups or, more generally, two evolutions using the Feynman—Kac
formula. The suggested argument of interchanging the order of two integra-
tions is fully justified there. The working of the general theory is then
illustrated by the examples of perturbed diffusion and of motion of a particle
in a force field.

1. Integration.

A. Let 2 be a nonempty set; it will be usually referred to as the space Q.
The subsets of Q and their characteristic functions will be freely identified in
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the notation. So, if # is a semiring of subsets of @, then the vector space
sim (%) consisting of #-simple functions can be defined as the linear hull of
2. To be sure, fesim(#) if and only if there exist a natural number n, real
or complex numbers c; and sets X;e#, j=1,2,...,n, such that

=2 X,
j=1

Similarly, if E is a vector space and u: #— E an additive set function,
then there exists a unique linear map from sim(#) into E whose values
coincide with x4 on #. This linear map is without ambiguity denoted again
by p and its value, u(f), on an element f of sim (%) is of course called the
integral of the function f with respect to .

Let o be a vector space of scalar (real or complex) valued functions on
a space Q. A seminorm y on X is said to be integrating if

(L) tim »( 21 £)=0

n—am

for any functions JieA, j=1,2,..., such that

(1.2 Xw (/) <0
j=1

and

(1.3) i Siw)y =0

for every weQ for which

(1.4) ji |fj(w)] < 0.

ExampLe 1.1. A measure, i, in the space Q is specified by specifying a
real-valued nonnegative g-additive set function on a ring or even a semiring
of subsets of . Let 1 < p < oo, The vector space of all (individual) functions
S on @ such that the function f|f]~! is i-integrable is denoted by .#*(i). Let
A" be a vector subspace of #”(i) and let

P(f) = (JIf1° i)’
iy

for every fe . Then, by the Beppo Levi theorem, y is an integrating
seminorm on .

ExampLE 1.2. Let & be a vector space of bounded functions on Q and let

1) =1/l = sup {| fl0): 0}
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for every fe A" Then y is an integrating seminorm on ¥~ In fact, y is a
notm on X '

ExampLe 1.3. Let & be a o-algebra of sefs in a space Q. Let E be a -
Banach space and p: & — E a g-additive vector measure. Let X be a vector
space of p-integrable functions. (See e.g. [1], IV.10) For any f.e A, let y(f)
be equal to the total semivariation of the indefinite integral of the function f
with respect to u. Then y is an integrating seminorm on ..

Let y be an integrating seminorm on a vector space X of functions on
Q.

A scalar-valued function f on Q is said to be integrable with respect to y

if there exist functions fje o, j=1,2,..., satisfying the condition (1.2) such
that

(L. f@)= 3. 5t
2

for every we for which the inequality (1.4) holds.
The set of all functions integrable with respect to y is denoted by (7).
Given a function fe .Z(y), let

wm=MiNm

where the infimum is taken over all choices of functions fieX,j=12..,
satisfying the condition (1.2) such that the equality (1.5) holds for every weQ
for which the inequality (1.4) does.

Prorosimion 14. 9,(f) = y(f) for every fe £ (y).
Proof. Evidently, y.(f) < y(f), for every f e % (y). For the proof of the

reverse inequality, let fe.#(y) and & > 0. Then there are functions fied,
J=1,2,..., such that (1.5) holds for every we 2 for which (1.4) does and
o
> () <n(N+e.
j=1
Then .

lim y(f ~ }E f)=0,

N J=1

because y is an integrating seminorm. Hence, for a sufficiently large n,

vmswimwséumw.

Consequently, y(f) < y,(f)+2e.

In view of this proposition, we write y(f) = y,(f) for every fe.2(y),
without causing any confusion,
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B. Let  be an integrating seminorm on a Vector space A of scalar-
valued functions on a space Q.

j = : i tisfying the
Prorosition 15. If fje L), j=1,2,..., are functions sal
condition (1.2) and f is a function on Q such that (1.5) holds for every weQ

for which (1.4) does, then fe £ (y) and

(1.6) lim y(f —j;l fi)=0.

m— o
Proof. For every j=1,2,..., let f,e o, n=12,..., be functions such
that

o

T v <v(f)+27
1

n=

and

filw) = :[,1 Jin(@)

for every we @ for which ¥ |fiu(®) <oo. Then ) 3 y(f) <o and
n=1

j=1n=1

fl@=73 Y fin®
J=1n=1
for every weQ such that

53 (@) < .

j=1n=1

Therefore, f € £ (y). Moreover, for every m=1,2,...,

@)=Y f@= 3 3 o

j=1 Jj=m+1 n=1

<] 0
for every we® such that Y Y |fj.(w)| < co. Consequently,
1

jEm+1 n=

i i y(fln)"’o

m
DS
j=1 J=m+1 n=l
as m— co0. -
This is a form of the Beppo Levi theorem in the present context. It will
be slightly reformulated as Theorem 1.9.
CorOLLARY 1.6, #(y) is a vector space and vy is a seminorm on it. The
corresponding normed space is complete and X represents its dense subspace.

- This corollary shows the importance of y being an integrating seminorm.
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For, % has an abstract completion with respect to any seminorm. But, if the
seminorm y 1s-integrating, then the completion has a concrete representation
whose elements are y,-equivalence classes of functions on €.

ExampLE 1.7. Let Q = (0, 1] and let & = {w, v:0<u<v< 1}. Let X
= sim(&) and '

()= Jim |f (@),

for every feot. Then y is a seminorm on . If we now define 2 (y)
disregarding the fact that the seminorm 7 is not integrating, then we discover
that y,(f) = 0 for every fe . 2(y). So, the space #(y) is useless.

A function f on Q is said to be y-null or y-negligible if f € % (y) and y(f)
= 0. A subset of Q is said to be y-null if its characteristic function is y-null,

We shall use the customary jargon referring to a y-null set by saying
that y-almost all points of 2 belong to its complement.

CoroLLARY 1.8. A function f is y-null, if and only if there exist functions
fie L), j=1,2,..., satisfying the condition (1.2) such that

% I = o

for every weQ for which f(w) # 0.

THEOREM 1.9. Let the functions 5eLy), j=1,2,..., satisfy the condition
(1.2) and let f be a function on Q such that the equality (1.5) holds for y-almost
every we Q. Then fe 2L (y) and the equality (1.6) holds.

C. Let " be a vector space of scalar-valued functions on a space €. Let
E be a Banach space. Let u: " — E be a linear map.

We say that a seminorm y on X integrates for the map u if it is
integrating and there exists a number k 3 0 such that

(NN < ky (f)

for every fe A

This condition of course means that the map u: X — E is continuous in
the topology induced on ¢ by the seminorm 7. It is the relative topology on
X inherited from & (y). Because the space E is complete and X" is dense in
&(y), there exists a unique continuous linear map Uyt Z(y) — E such that
ty(f) = u(f) for every fe £ (y). Because of the uniqueness, it is not necessa-
ry to distinguish between u and p, and so we write

B =[S o= 1@ 1) = ()

for every fe.#(y). The element g,(f) of the space E is of course called the
integral of the function s with respect to u (and y).
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ExampLe 1.10. Let i be a measure in the space Q. Let A" = (i) and let
7 be the seminorm on ¥ defined in Example 1.1 for p = 1. Then y integrates
for i interpreted as a linear scalar-valued function on 2. By the Beppo Levi
theorem, Z(y) = .Z*(i) and i,(f)=i(f) is the integral of any function
fe(y) with respect to i in the standard sense of the word.

The following proposition suffices for our purposes as a source of
integrating seminorms and as a test of integrability with respect to such
seminorms.

ProposiTioN 1.11. Let i be a measure in the space Q, let 1 < p < 0, and
let A be a vector subspace of Z£P(i). Let F be a Banach space and let
v: & — F be a.linear map. Let G be a topological vector space and ¥: F — G
an injective continuous linear map such that the composite map Yov: A —G
is closed. Let

7(f) = GOSN+ O

for every feA.

Then y is a seminorm on X, integrating for the map v and such that
L) =A. . ‘

Proof. Let fie X, j=1,2,..., be functions satisfying the condition (1.2)
and let f be a function on € such that the equality (1.5) holds for every weQ
for which the inequality (1.4) does. Then

S (1) < oo

j=1

and illlv(fj)ll < 0.

Let

for every n=1,2,... Then fe #7(i), g,— f in ZP(i) and there exists an
element ¢ of F such that v(g,) — ¢ as n— oo. Hence, ¥'(v (gn) — ¥ (o), by the
continuity of ¥. So, fe X" and ¥(v(f)) = ¥(¢), because the map ¥ov is
closed. Consequently, v(f) = @, because the map ¥ is injective. The state-
ments now follow readily.

Only the case of p=1 and of G being the space F under a topology ‘

coarser than its norm topology will be used in the sequel,

ExampLE 1.12. Let a be a (finite) real-valued continuous function on the
two-point compactification, [ — 00, 0], of the real line such that a(~o0) =0
and a(x) # 0 for some x&(~ 00, co). Our aim is to produce a reasonably rich
class of functions f on (—o0, o) for which the integral

T 769 aldx)

-~ 00

affda:

can be defined in a “natural” way.
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Let Co((—o0, o0]) be the Banach space of all functions continnous on
[—o, o] and vanishing at —oco under the usual sup-norm. Let F =
c(CO {(— o0, oo])) be the space of all sequences ¢ = {¢,}%, of elements of
Co((— o0, o]) uniformly convergent on [—o0, c0], equipped with the norm

lloll = sup {lg, (x)|: xe[—o0,00],n=1,2,...},

Let i be the measure on the real line such that i(dx)
= (1+x?) exp(— $x%) dx. That is, #" (i) consists of all measurable functions
f on (—oo, ) such that

peF.

()= | 1f0I(0+xDexp(—4x?)dx < .

Let

ka() = \/—2’—1,; exp(—fnx?)

for every xe(—o0, o0) and n=1,2,...
Given a function fe.%* (i), let

W = ] 1O ke=nab)d)ds

— —wEn | f@L ] E-s)exp(inG—yP)a0)d]dz

oo x
=n¥202m) 12 [ a)[ | —2)exp(=3n(y—27)f (2)dz]dy,
o e ‘
for every xe[—o0, o0} and every n=1,2,...

Then clearly v,(f)e Co((—o0, ©]), for every n=1,2,...

Let o be the set of all functions f e %! (i) such that the sequence v(J)
= {v,(f)}% belongs to F. Then X" is a vector space and v: X" — F a closed
linear map. Because this map is closed, the space %~ is complete with respect
to the seminorm

y(N) =ilfH+HIVN,  fed.

Now, let '

oo

| fda=lim (v,()(0))

for every fe A The integral so defined is continuous on X" with respect to y.

D. Let Z(y) be the space of all functions on Q which are integrable with '
respect to an integrating seminorm y. Let B be a seminorm on a vector space
F such that the induced normed space is complete.
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A function- @: Q - F is said to be Bochner integrable with respect to y if
there exist elements ¢; of F and functions f; e £(y), j = 1,2,..., such that

w _i () Ble) <0

and }

(1.8) lim f(® (@) - ,:‘":1 fi@)g)=0
for every we such that

(19) ,i [ (@)B(e;) < .

Let

w(® =inf 3 7()hl0),

for any such function &, where the infimum is taken over all choices of ¢, F
and fje (), j=1,2,..., satisfying the condition (1.7) such that (1.8) holds
for every weQ for which (1.9) does.

ProrosiTion 1.13. Let @,: Q- F, n=1,2,..., be functions Bochner inte-
grable with respect to 7y such that

Zl yﬁ (Qn) <

and let ®: Q— F be a function such that

lim B(® (w)— Z &;(w)) = 0
j=1

n—rw

Jor y-almost every weQ. Then the function & is Bochner integrable with
respect to y and

n-roo

- "
lim 3, (6~ Y &) =0.
i=1

Proof. It is analogous to that of Proposition 1.5, therefore the details
are omitted. :

) Let us now suppose that the seminorm y integrates for a scalar-valued
linear function i on £(y). Then the integral with respect to i of a function
&: @ — F Bochner integrable with respect to y is defined to be the element

o

120 = 5 i e,

=1
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of the space F, where the fe #(y) are functions and the ¢;eF vectors,
j=1,2,..., satisfying the condition (1.7) such that (1.8) holds for every
wef for which (1.9) does. The integral is defined uniquely modulo the
seminorm f.

E. Let & and Y be two spaces and let Q =& x Y.

Given a function f on Q and a point éeZ, by f(& ) is of course
denoted the function v+ f (£, v), ve Y. The meaning of f(-,v) for any given
ve Y is analogous. If g is a function on £ and h a function on ¥, then f
= g®h is the function on 2 such that f(w) = g (&) h(v) for every w = (¢, v),
(e, vel.

Let % () be the space of all functions on E which are integrable with
respect to a given integrating seminorm « and #(f) be the space of all
functions on Y integrable with respect to an integrating seminorm .

Let 2 be the vector space of all functions f on  for which there exist
functions g;&.%(«) and hje £(f), j = 1,2,..., such that

©

(1.10) 2 a(g)B(h) <o

and .

(111) ﬂm=immmw
j=

for every o = (¢, v), ée &, ve, such that

(L12) ¥ lay @ ko) < oo,
j=1

Let
y(f) = inf i‘a(gj)ﬁ(hj)
j=

for every fe o, where the infimum is taken over all choices of functions
g€ & () and hie £L(p), j = 1,2,..., satisfying the condition (1.10) such that
the equality (1.11) holds for every w = (¢, v), éed, veY, for which the
inequality (1.12) does.

It is immediate that y is a seminorm on ). We will call it the product of
the seminorms « and § and will write y = «®8.

ProposiTioN 1.14. Let fe X. Let gje Z(@) and he £(B), j=12,..., be
functions satisfying the condition (1.10) such that the equality (1.11) holds for
every o = (&, v), £€E, veY, for which the inequality (1.12) does. Then

lim y(f — Y. g;®h;) = 0.
j=1

‘n-a
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Furthermore, for a-almost every { e &, the function f (Z,-) belongs to % (f)
and, if : E— L (B) is a function such that ®(&) = f(&,") for a-almost every
EeE, then @ is Bochner integrable with respect to a and oy (P) = y(f).
Moreover, if ®;(8) =g;(E)h;, for every €& and j=1,2,..., then

]jm aﬂ(¢““ Z ¢j) =,
n—o Jj=1
Similarly, for B-almost every veY, the function f (-, v) belongs to .Z(x)
and, if ¥: Y— % (&) is a function such that ¥ (v) = f(-, v} for B-almost every
veY, then W is Bochner integrable with respect to B and B,(¥) = y(f).
Moreover, if ¥;(v) = h;(v)g;, for every veY, j=1,2,..., then

lim B (¥ — Y ¥)=0.
n-ron j=1
Proof. It follows from the definitions in an almost routine manner.
ProrositioN 1.15. The product, y = a®p, of the seminorms « and f is an
integrating seminorm on A and F(y) = A '

Proof The fact that y is integrating follows from Proposition 1.14.
Then-the equality #(y) = A" can be deduced by an argument similar to that
used in the proof of Proposition 1.5.

Assume now that the seminorm « integrates for a scalar-valued linear
function i on % (x). Assume further that E is a Banach space and that
x: Z(B)— E is a linear map and the seminorm f integrates for it.

; ProrosiTioN 1.16. There exists a unique linear map u: £(y)— E such
that

() ulg®h =ilg)x(h) for every ge L(2) and he L(p); and

(ii) The seminorm vy integrates for u.

TreorREM 1.17. Let fe Z(a®Pp).

Then f (-, v)e L (), for B-almost every veY, and, if h is a function on Y
such that

h() = [ f(&,v)i(d0)
leE

Jor B-almost every veY, then he #(f) and
[ duagh = %)
Y
Also, f(£,)e Z(P), for o-almost every ¢, and, if g: E—E is a
function such that

9@ = | S v)x(ds)

veY
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for a-almost every £ E, then the function g is Bochner integrable with respect
to a and

[ fdugp = [9(9)i(d:d)-
0 B

2. The Feynman—Kac formula.

A. Let E be a Banach space.

Let §: {(t, 5): 0< s <t <oo}— L(E) be a map such that

(i) S(t, t) =1, the identity operator, for every t > 0;

(ii) S(t, ¥) = 8(¢, s)S(s, 7) for any r, s and t such that 0 <r < s <t <003
and

(iii) S is continuous in the strong operator topology of L(E).

Such a map is called an evolution or a propagator in the space E. If
S(t, 5)=S(t—s, 0), for any 0< s <t < oo, then we speak of a semigroup or
a dynamical propagator and write without ambiguity S () = 8(t, 0), for every
t =0

Let A be a locally compact Hausdorff space. Let P: #(A4) — L(E) be a
spectral measure. That is, P is o-additive in the strong operator topology,
P(A) =1 and P(B nC)= P(B)P(C) for any Be#(A) and Ce®(A)

If Wis a 4@ (A)-measurable scalar-valued function on 4, let .

P(W) = [W(x)P(dx)
4

be the, possibly unbounded, operator whose domain is the vector space of all
elements ¢ of the space E such that the function W is integrable with respect
to the E-valued measure B P (B) @, Be #(A), and whose value at any such
@ is equal to the integral

P(W)p = [W(XP@9)e
A

with respect to this measure.

For every t > 0, let ¥, be a set of maps v: [0, 1] — A to be called paths.
We assume that, for every se(0, t], {v(s): ve¥;} = 4 and that the set of the
restrictions of elements of .Y, to the interval [0, 5] is equal to Y,

Of main interest are the cases when ¥, = A%, or ¥ consists of all
continuous paths v: [0, t]— A, or ones which are cadlag, etc.

Let &, be the family of all sets

@1 Y = {ve¥;: v(t)eB,;, j=1,2,....k}

corresponding to arbitrary k =1,2,..., numbers 0Kty <ty <...<l—y
<t, <t and sets BjeB(A), j= 1,2,...,k. Then 2, is a semialgebra of sets in
Y, . ,

Let 2, be a vector space of scalar-valued functions on Y, such that

4 — Studia Mathematica t, 86 fasc. |
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sim(#) « A,. Let M;: A, — L(E) be a linear map such that
22 M((Y)= S(t:tk)P(Bk)S(tkatk—l)P(Bk—-1)"~P(Bz)s(t2:t1)P(Bl)S(tls 0)

for every set Ye &, given in the form (2.1). Let f, be a seminorm on X,
integrating for M,, and % (B,) the corresponding space of functions integra-
ble with respect to f,.

Let #(a,) be the space of all functions on the interval [0, t] which are
integrable with respect to the one-dimensional Lebesgue measure and let

%(g)= [ lg(s)lds
[0.£]
for every ge % (o).

Let W be a function on [0, ooij such that, for every t > 0, the
integral in

(2.3) e (v) = exp j W (r, v(r))dr)
0

exists for f-almost every veY, and the function e, so defined belongs to
Z(p,). Let
. /

(24) U = [e (o) M, (dy,0)
Y
for every t > 0.
The operator U(f) can be interpreted in the following way. Let

T(t,s) = exP(}P(W(r, 2)dr),

for 0 <5<t < oo, assuming that these operators belong to L(E) and the
resulting map T: {(s, £): 0 < s <t <0} — L(E) is an evolution in the space
E. Then, for any given @eE, the element

(2.9) u@®=U@e¢

of the space E is the result of the simultaneous action of the evolutions S and
T during the time interval [0, ] on the element .

Under some additional assumptions on W, the function 1 — U, t=0,
satisfies 2 Duhamel-type integral equation. Indeed, given a ¢ > 0, let

3

(2.6) Ji(s,0) = W(s,v(s)) exp(§ W(r,v(r))dr)
0

for every se[0, t] and ve¥,.
TueoREM 2.1. Let t > 0. If fie (0, ®B,), then

27 U(t)=S(,0)+ }S(r,s)P(W(s,-))U(s)ds.
(1]
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Proof. First note that
:{f,(s, v)ds = exp(lW(r,v(r))dr)—l, ’
for every veY; such that f,(-, v)e .£(x), and
[fe(s,0) M, (dg0) = S (t,5) P(W(s,")) U s)

¥

for every se[0, t] such that f,(s,")e .#(B,). Therefore, by Theorem 1.17,

U@s@, 0= J [exp( (j)' W (r,v(r)dr)—1] M, (d5,0)
= J(gf;(s, U)dS)M: (dplv) = :!'(J ft(S,U) M:(dg,v))ds

= 3S(r,s)P(W(s, WU (s)ds.
o

If the equation (2.7) is satisfied and @ekE, then the function t+>u(t),
t > 0, defined by (2.5) satisfies the integral equation
1
(2.8) u(t) =S5(t,0) p+ [S(t,s) P(W(s, ) u(s)ds.
0
B. The integral equation (2.7) corresponds to an initial-value problem
and traditionally that initial-value problem is used instead of (2.7). Namely,
given a t >0, let

A ¢ =limr™! (S(t+r,t) (p—(p)
r—+0

for every ¢ e E such that this limit exists in E. Then the formal differentiation
of (2.7) gives

(2.9) Uty=A@QU@®+P(W(E, ) U@, U@+)=1.

Similarly, for a given ¢ e E, the integral equation (2.8) corresponds to the
initial-value problem

(2.10) () = A@Ru@+P(W(, )u), u(0+) = o.

But, of course, it often happens that the L(E)-valued function t +— U (2),
t = 0, is well defined by (2.4) but the integral equation (2.7) is not satisfied
because, for too many se[0, t], the operator P(W(s,-)) is unbounded. And
then, even if the integral equation (2.7) is satisfied the initial-value problem
(2.9) might not be.

For a given @ekE, the integral equation (2.8) could be satisfied even if
the integral equation (2.7) does not have a solution which is an L(E)-valued

t>0;

t>0;
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function. But still, it is often possible to define the E-valued function t —u (1),
t2 0, by (24) and (2.5), while it is not possible to determine it from (2.8).
And even if the equation (2.8) determines an E-valued function, the initial-
value problem (2.10) might not have a solution.

So, the E-valued function u defined by (2.5) can be taken for a
generalized solution of the initial-value problem (2.10).

The usefulness of the differential equation (2.10) for the construction of a
superposition of the evolutions S and T can of course be widened by
considering solutions in some extended sense. For example, we can take
solutions in the sense of distributions. Or, we can pick up a locally convex
space E which contains E continuously such that the operdtors S(t,s),
0<s<t<co, and P(B), Be#(A), have continuous extensions onto the
whole of E, and consider E-valued solutions of (2.10). The integral equations
(2.8) are perhaps more susceptible of this approach.

However, one of the main reasons for studying the Feynman-Kac
formula (2.4) is that it enables us to construct a superposition of the
evolutions § and Talso in situations when the initial-value problems (2.10) or
the integral equations (2.8) do not have classical solutions,

So, the problem of the construction of a superposition of evolutions S
and Tis reduced to the problem of a choice of the spaces of functions X/,
and of the seminorms B,. This choice is of course not necessarily unique.
What is more, if X, is sufficiently large, then the choice of the linear map
M,: A, — L(E) cousistent with the requirement (2.2) is not necessarily uni-
que. This corresponds to the fact that, for some “potentials” W, there may be
no canonical way for constructing a superposition of the evolutions § and T.

C. Let d > 1 be an integer. We are going to specialize the situation of
Section 2A by taking A = R and E = M (R%), the Banach space of all scalar
o-additive measures on @ = #(R‘) with the total variation norm.

Given a set Be 4%, let P(B)e L(E) be the operator of restriction to the set
B. That is, (P(B) ¢)(X) = ¢ (B n X) for every set X e # and every ¢ e E. Then
P: #— L(E) is a spectral measure.

Let D be a strictly positive real number and let

(t x)—w«—i——«—cx <—B€l—2~
Pott: X = Gapn= P\~ 4Dt )
for every t >0 and xeA. Let S(0) = I and

(S ¢)(B) = Ig dx £ Polt, x—y) p(dy)

for every t >0, Be# and ¢eE. Then S:[0, oo)— L(E) is the Poisson -

semigroup of operators which can be interpreted as a mathematical descrip-
tion of homogeneous diffusion in R* with the diffusion coefficient D. Its

icm

Integration and Feynman—Kac formula 53

infinitesimal generator is the operator
A=DA,

where 4 is the Laplacian in R
Given a t = 0, let Y, be the set of all continuous paths v: [0, t]— 4.
Because S is a semigroup, the formula (2.2) takes the form

@11)  M,(Y)=8(t—1) P(BYS(tk—ti-s)-.. P(Bs) S(ta—t:) P(By) S (1),

for every set Ye#, given by (2.1) with some integer k = 1, numbers t; such
that 0ty <ty <... <ty <t <t and sets Bie®, j=12,....k
If peE is a nonnegative measure of norm 1, that is, a probability
measure, and )
i(Y) = IM,(Y) oll = (M, (Y) 9)(4),

for every Y e, then the set function i generates a probability measure in
the space Y,, namely the Wiener measure of variance 2D per unit time with
initial distribution ¢. Let

w, (Y) = (M, (Y) 8o)(4) = | M. (V)ll,

for every Y e &, where J, is the unit mass measure centralized at the origin
of A. Then the seminorm f, defined by

B.(h) = [ h(v)w,(dv)
b f]

for every he #*(w,) integrates for the linear map M,: sim(#,) — L(E).

Let Whe a real-valued function on [0, 00) x4 such that, for every t > 0,
the Feynman-Kac functional e,, defined by (2.3) for w,-almost every ve ¥, is
w,-integrable. This happens, for example, if W(t,") = W(0,") for every 1 =0
and W(0,-) is a function bounded above and continuous on the complement
of a set of capacity 0 in A.

Define the operator U () by (24), for every t > 0.

The resulting operator-valued function t—U(t), t =0, can be interpre-
ted as a mathematical description of the superposition of diffusion with a
creation/destruction process whose rate is proportional to the concentration
of the diffusing substance with the coefficient. of the proportion equal to W.
So, if the distribution of the substance at time t = 0 is represented by the
measure @ ¢ E, then, at any time ¢ 2> 0, its distribution is represented by the
measure u(t) = U(t) ¢. ‘

Now, if the functions W(t,*), ¢t >0, also happen to be integrable with
respect to the Gaussian measures on R, then the assump?ions of Theorem
2.1 are satisfied and, hence, U satisfies the integral equation

U =S+ }S(t-—s)P(W(s,')) U(s) ds,
0 ,


GUEST


54 I Kluvdnek

for every t = 0. Consequently, u satisfies the integral equation

t
(212 u(t) =S o+ jS(t—s)P(W(s,-))u(s)ds,
0
for every t > 0. But, for every t > 0, the measure u(f) has a density; let us

denote it by x—u(t, x), xeR’. By (2.12), this density satisfies the equation

u(t,x) = jpn £, x~y) @ (dy)+ (i; [ po(t—s,x=y) W (s,y)u(s,y)dyds,

for xeR' and t > 0. This equation represents the initial-value problem
u(t,x) =DAu(t,x)+W(t,x)u(t,x), t>0,xeR;
lim f{u(t,x)dx =¢@(B), Be.

t—~0+ B

If d = 2, it is very easy to produce a function Won [0, o) x 4 such that
U(t) is well defined by (2.9) for every ¢t > 0, but, for many @eE, the integral
equation. (2.12) does not-have a solution. Then of course this initial-value
problem does not have a solution either. For example, W(r, x) = [x| ¢, te[0,
o), xed, x s 0, is such a function. In such cases, we can take the function
tu(t), t >0, defined by (2.5) for a generalized solution. However, there is
no need to consider the integral equation (2.12) and the initial-value problem
at all because this function u is a perfectly good solution of the original
problem of the evolution of an element ¢ of E under the simultaneous
influence of the propagators § and T

D. Let d > 1 be an integer. Let A4 = R%. Let E = I?(RY).

For a set Be# = #(R%, let P(B) be the operator of pointwise multipli-
cation by the characteristic function of the set B. That is, P(B) ¢ = Be, for
every @eE. Then P: # — L(E) is a spectral measure.

Let m be a strictly positive number. Let §(0) = I and, for every ¢ # 0, let
S(t)e L(E) be the operator such that

d/2 :
S®e)x = (“) ifp(y)exp(%lx—ﬂz), xed,

for. every ?gl}mLz(A). The root is determined from the branch which
assigns positive real values to positive real numbers. It is well known that
such an operator exists and the resulting map t S (), teR, is a unitary

group of operators, the Schrédinger group, whose infinitesimal generator is
the operator

A=—2-5A

where ‘4 is the Laplacian on A = R
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For every t > 0, the resolvent (I—7A4)™! is a convolution-type integral
operator belonging to L(E). More precisely, there exists a function K(-; 1)

‘eL‘(A) such that, if peE, then

((I—A) ') (%) = [K(x~y;D)e () dy

A

for almost every xe A in the sense of the d-dimensional Lebesgue measure.
The kernel K(-; ) is the inverse Fourier transform of the function
{2m(Til2+2m)~ Y, {eA, that is

exp(i{ -z)

(2.13) K(z;7)= (211:)"/2 ‘frl£2+2m

e,
for almost every ze A, with the integral understood in the sense of tempered
distributions or simply calculated using the Fourier transform of an approx1-
mate unit in I} (A).

If d=1, 2 or 3, then K(:;1)eI?(4). For d=1 or 3, it is easy to
calculate (2.13) explicitly. So, for d =3, we have

exp —(1+i)./ /r|z|

K(z; 1) = zeR3,z#0.

In general, K (-;t) can be expressed in terms of the Hankel functions ([5],

Appendix IV.C).
For every t > 0, let ¥, be the set of all continuous paths v: [0, 1] — A.
Because S is a semigroup, the formula (2.2) takes the form (2.11) for
every Ye4, given by (2.1). We are going to construct a seminorm f,

- integrating for linear extensions of M,. The construction is closely related to

the modification of the Feynman integral recently proposed by Michel L.
Lapidus [3]. In fact, it mimicks his approach to the Lie-Trotter formula for
unitary groups of operators [4].

Let i, be the Wiener measure on ¥, of variance m™~
the initial distribution standard normal.

Let F = [*(L(E)) be the space of all bounded sequences of operators in
L(E) equipped with the norm

{Thesll =sup{ITll: n=1,2,...},  {T}1€eF.

Let F, be the subspace of F consisting of those sequences of operators
which are convergent in the weak operator topology.

Let LIM be a Banach limit on the space !® of all bounded sequences of
complex numbers. That is to say, LIM is a translation-invariant continuous
linear functional on I® assigning nonnegative real values to nonnegative real
elements of I, whose value at any convergent sequence is equal to its limit
in the usual sense of the word.

Then LIM generates a continuous linear map of F into L(E), denoted

! per unit of time with
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by the same symbol, defined by
(UM {T}2 e, ¥) =lm{(T,0, YD}, o€k, Yek,

for every {T,}%,¢eF.
Let t >0 and let n> 1 be an integer.
Let 7, ,: ¥, — A*" be the map such that

Mea(0) = (0(277),0(2°27"0),0(3-27"),..., 0(8)) = (027 ")) 1,

for every veY,.

Now, for a function feL* (i), let i,(f|r,,) be a version of the conditional
i,-expectation of f given =, ,. That is, i, (f|n,,) is a function on A?" such that
Iit (f'nl.n) (C) (ir O"rjnl) (dC) = j f(U) i (dv)’

z n;: ,31 (Z)
for every Z e #(A*"). So, i,(fIm,,) is defined i, on;,'-almost uniquely on 4
and, hence, uniquely almost everywhere with respect to the 2"d-dimensional
Lebesgue measure.

Let

z"
Kn(xmxls“-:xzn;t) = n K(xj_xj—i;z—"t)
i=1

for any points x;e4, j=0,1,...,2"
Let X, , be the vector space of all functions fe %" (i) for which there
exists an operator N,,(f)eL(E) such that

NeaN) @95

= OGO Ko X xui i (1) (61 ) U ) ot i,

for every ¢eE and yeE.

Let t >0. Let X, be the space of all functions fe.%#"(i) such that
fedA,,, for every n=12,..., and the sequence of operators N,(f)
= {N,.()}%, belongs to F. Let 47 be the subspace of ¥, consisting of
functions f e A, for which N,(f)eF,.

Let

B () =i (SD+IN N

for every f e ;. Because N,: X, — F is a closed linear map, Proposition 1.11
implies that B, is an integrating seminorm on X such that .#(f,) = X,.
Obviously, the seminorm f, integrates for N,.

Obviously, #7 is a closed subspace of X,

Now, because LIM: F — L(E) is a continuous linear map, the seminorm
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B, integrates for the linear map LIM o N,: X, — L(E). Furthermore, because
lim (I —27 "t A)*" = exp(tA),

n-ro
for every t = 0, in the strong operator topology, it is straightforward that the
characteristic function of every set Ye &, given by (2.1) with dyadic rational
t/t, i=1,2,...,k, belongs to %7 and that

(LIMoN)(Y) = M,(Y)

for every such set Y. This equality then follows for every Ye #,. Consequent-
ly, LIMON, is a linear extension of M, onto X, = Z(f).

Let us conclude by noting that the space % () is rather large. In
particular, it includes every i-measurable function h on ¥, such that
|h(v)] < 1, for every ve X,. So, if Vis a real-valued function on A continuous
on the complement of a set of capacity 0, then the Feynman-Kac functional

e (v) = exp(i 3" V(u(r))dr), Cved,
0

belongs to Z(B). ‘
The interesting question when a function belongs to A7 could be dealt
with using the methods of [4]; it will be pursued elsewhere.
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