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Boundary values of vector-valued harmonic functions
considered as operators

by
O. BLASCO (Zaragoza)

Abstract. It is proved that the spaces of the boundary values of B-valued harmonic
functions in A% »(D) and k(D) may be interpreted as spaces of operators, It is also shown that
the Radon-Nikodym property is the éxact condition on B to make L (T) be the boundary
values space of hf(D).

§ 0. Introduction. In the following we will denote by D the open unit disc
in C, by B a (real or complex) Banach space and by (T B, m) the usual
measure space on the torus T

Let us recall that h?(D) denotes the space of harmonic functions on D
such that

' 1 2n . 1/p
©1)  |IFl, = sup (ﬁIIF(re”)l”dr> <t fl<p<w,
O0<r<i 2n 0

0.2) [IF]l,e =sup {|F(z)|: zeD} <o if p=c0.

It is well known (see [5]) that the space of boundary values of functions in
hP(D) is IZ(T) if 1 <p < oo and M(T), the regular Borel measures, if p=1.
This means that every function in h?(D) is the Poisson integral of a function
in (T) if 1 <p<oo or of a measure in M(T) if p= 1.

In this paper we are interested in studying -this subject when the
functions take values in a Banach space B.

In order to define the analogous concepts for B-valued functions there
are two different- ways to follow: we can consider the space of B-valued
functions on D such that £F belongs to h?(D) for every & in B*, denoted by
hE p(D), or the space of B-valued harmonic functions on D which satisfy the
above definition with the absolute value replaced by the norm in B, denoted
by h§(D). .

We shall prove here that h »(D) is isometric via Poisson integral to the
space of bounded operators between C(T) and B, L(C(T), B), for p=1, and
between I¥(T) and B, L(I¥'(T),B), for 1 <p< co where 1/p+1/p = 1.

It will also be shown that h§(D) can be identified with a class of
operators defined by Dinculeanu (see [3]). We shall connect this Dinculeanu
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space with the space of p-summing operators by finding an equivalent
formulation of it in terms of a class of operators we shall call positive p-
summing operators.

Finally, the interpretation of the functions in hj(D) as Poisson integrals
of certain operators will enable us to obtain Bukhvalov and Danilevich’s
result (see [1]) which asserts that the Radon—Nikodym property of B is a
necessary and sufficient condition for h§(D) to be isometric to L (T) for any
1 <p<oo.

§ 1. Preliminary definitions and results.

DeriNtrioN 1 ([6]). Let 4 and B be Banach spaces and 1 < p < o0, An
operator S in L(A, B) is called p-summing if there exists a constant C such
that for every n in N and x;,x,,...,x, in 4,

) (3 ISGR" < Coup (3 1¢6 )0 e < 1)

We shall denote by n7(A4, B) the space of p-summing operators from A4 to B
and the norm in it will be the infimum of the constants satisfying (1.1).

When we deal with A = I4(T) (1 < g < o0) there is a space of operators
in L{I4(T), B) defined by Dinculeanu [3] which will play an important role
in the following.

DerniTioN 2. Given p, p’ such that 1 <p < co and 1/p+1/p'=1 and §
in L{IF(T), B) we set

(12) 1181l = sup {i}l lost 1 Tt }

' n
where the supremum is taken over all simple functions y = ) a;xg, With

i<
Wl < 1.

We shall denote by #(I¥(T), B) the space of operators S in L(I¥'(T), B)
with [[|S]ll, < co. The space ¥ (I#(T), B) with the norm ||| |||, becomes a
Banach space.

The next result will show the relationship between % (I¥'(T), B) and
B(T) (1p+1/p = 1)

Prorosimion 3. Let S be an operator in L(I (T), B) with 1 <
p+1/p =1

S belongs to & (IZ' (T), B) if and only if there exists a positive function g in
I’(T) such that for every function y in I¥'(T),

(L3) ISWIls < [l (2)lg () at

Moreover, in this case g can be chosen such that

ISt = llgl .-

p < oo and
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Proof. Suppose S belongs to' & (I#'(T), B) and consider the B-valued
measure G defined by S as follows: G(E) = S(xg) for every measurable set E
in B. From (1.2) it is not difficult to see that G is m-continuous and has
bounded variation, so |G|, the variation of G, is a finite positive measure
which is m-continuous. Now the Radon-Nikod§m theorem implies that there
is a positive function g id I*(T) such that

14 |G|(E) = {g(t)dt ~ for every E in B.
E

To do the direct implication we have to prove that g belongs to I¥(T),
llgll,, = 1lISlil, and (1.3) is satisfied. .
Let us compute [lgl|,, as follows:

ol =sup (3, ais)ol: n‘_il ity < 1}

<sup{Y ol IGHE): || Y o], < 1}
i=1 i=1

Now given ¥ = Y. a;xg, Observe that

T loul IGI (E)
i=1

k;

= 3 misup {3 16l (4} & partion of E)

j=1

Sllp { E Z |ﬁi jl ”G(Al J)”B “Z ﬁl W XA, _;”LP

i=1 j=1

1]} -

These two inequalities obviously imply that [lgli, , < [ISIll,-
On the other hand, by Holder’s inequality we have

(L.5) el IS (uedlls < X |Dt.~lEjg(t) dt < |lgllp [ X 25, o
i

and this clearly implies that [[|S|ll, <llgll,,-
To finish this implication we have only to prove (1.3). From (1.4) it
clearly holds for ¥ = y; with E€®. Hence it follows for simple functions

= ¥ oy, since

i=1

||S .ﬂt:zi s < Z | |G (Es)-

Now the density of the snmple functions in I¥(T) (1 € p' <o) and the
continuity of S lead us to (1.3).
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The converse is immediate by making the same computation as in
(1.5). =

Let us connect functions with operators in the following sense:

The spaces L(T) of B-valued measurable functions f with |f ”Lg
=([llf @ldt)"/? for 1 < p < oo (with the obvious modification for p = )
may be interpreted as spaces of operators as we shall see below.

In order to unify the results we shall use the following notation:

X, =L(T) for 1 <q < o0,

X, = C(T), the space of continuous function on T

Now given 1< p,p' < o0 with 1/p+1/p’ = 1, we shall denote by J, the
embedding

Jp: By(T)— L(X 4, B)
given by ‘

(1.6) S = [f (Y @)de

It is obvious that [1J,(/)ls < I/ llp- ,

Furthermore, operators in J,(I%(T)) are compact for 1< p < 0. This

fact can be proved by observing that operators corresponding to simple

functions are obviously compact and the simple functions are dense in (7).

Accqrding to Propo§ition 3, by taking ¢(t) = |lf Ollss J, (I (T) is
actually included in £ (I¥'(T), B) and we can state the following

(;OROLLARY 4. For 1<p<goo, IE(T) is isometrically embedded in
Z(E(T), B).
§ 2. Kt 5(D) spaces.

DerFiniTION 5. Let 1 < p < oo, and let B be a Banach space. We shall
denote by h% 5 the space

@) He5(D) = {F: D B: ¢ Feh?(D) for all £eB*)

where ¢-F(z) = <¢ F(2)).
First of all we shall define a norm in it as follows:

WeX,, fel(T)

ProrosimionN 6. For each 1< p< oo,

22 IFlly,, = sup {lI€- Fllp: 1€llpe < 1}

is a norm in h¥ g(D).

Proof. We shall show that for every F in hf (D) ||F||,,, is finite. The
other properties of norm are straightforward. Let us consider '(pF: B* - h*(D)
defined by @p(¢) =¢-F for all £eB*. If we show that ¢, has closed graph
then @y will be continuous and therefore lorll = [|Fll,, , will be finite. Let {&.}
be a sequence converging to zero in B* and let us su;ﬂpose ¢, F converges to

c
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g in hP(D). Thus, writing g,(0) = g(r¢’®) and K (0) = (&,, F(re'®)> for 0 <r
< 1, we deduce that " converges to g, in I?(T) and therefore there exists a
subsequence m,(r) = n, such that

(23) 9,(0) = lim K™ (0) -ae.
k=

Since (£,,, F (re“’)} = K" () converges to zero, by (2.3) we get g,(§)=0
f-a.e. Finally, since g, is continuous for any r, g(z) =0 for all zeD. w

Let us remark that every F in h? g(D) is a B-valued harmonic function
and therefore F,(0) = F(re'®) is a continuous function on T with values in B.
Hence F, can be considered as an operator according to (1.6) and in this
sense we can present the space hf 5(D) in an analogous way to the classical
one.

ProPosITION 7. For each p, 1 < p < o0, h (D) is the space of B-valued
harmonic functions F on D such that

sup W, (Fllucx ;) = I1Flly,p
O0<r<1
is finite.
Proof.
sup ||J,(F, r)‘”L(xp/.B)
0<r<1

2%
sup  sup ) l2m)~* (j)' F(re®) ¢ () d6)||5

O<r<i lI\lﬂl!xp,S

2x
[2m)=* [ <&, Fre®)>y () adf)
0

sup sup  sup
0<r<i Wllx, <1 liElip<1

sup  sup [|(§-F)ll,, = sup [IC Fll,, = [IFllw,p-
l1Elps<t 0<r<i llllp=<1

I

Our next goal is to look for an isometry which allows us to identify
h 5 (D) with a space defined on the boundary T of D. To do this we shall

extend the concept of Poisson integral to operators. )
For each z =ré'® in D let us denote by P, the function on T given by

P.(t) = P,(0—1t) where
1-r2

F) = 14r2—2rcosf

is the Poisson kernel on T Observe that P, belongs to X, for all p,
1< p<oco. This allows us to give the following

Dermvimion 8. Given SeL(X,, B), 1 < p < oo, the Poisson integral of S.
denoted by #(S), will be the B-valued function F on D defined by

F(z) = S(P)).
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We can now establish the following

Tueorem 9. For each p, 1 <p< oo, and 1/p+1/p’ =1, h% (D) is iso-
metric to L(X,, B).

Proof. We shall prove that the Poisson integral defines an isometry
between L(X,, B) and h% (D) for every p, 1 <p < .

Thus, we consider &: L{X p» B) = hE (D) defined by 2(S) = F where
F(z) = S(P,) for every S belonging to L(X,, B).

Given Se L(X,, B) and e BY, it is clear that ¢-Se(X,)* By recalling
now that the Poisson integral maps isometrically (X ,)* onto h*(D), and since
¢ F s the Poisson integral of ¢-§ we have

ﬁk’lp(lus('/’mnz sup  sup K€, Sy

IWlix, <1 12l prst
[1E-Slix, = su “Fll., = IFllw,
) M”B&l I II,,‘,, 1Flly, »

Sllzcx, ) =
D v

= sup
i pr<t

Hence we have only to show that # is onto. First we shall give a proof for
L <p<oo. Let us take a function F in k& 4 (D). Since &-F belongs to k” (D)
for every £eB*, by a classical result there is a function Je in IP(T) such that
(2.4 & F(re®) = P, * f:(6).

We then consider the operator S in L(I# (T), B**) given by

2.5 SW)LE = [f®y(®)dt for every éeB* and yelV ().

I-Trom' (24) we can see that Jeve = f+ fo in I(T) and consequently
S) is a linear form on B* for every ¥ in I# (T). The continuity of S(¥) can
be obtained from Holder’s inequality as the following computation shows:

(2.6) [<S @), X < 1l o Il == 11E - Y 1A

< licllas 1w, p 01 -

Hence |ISW)lgw < [|Flly,, [1¥ll,,» and so |IS]| < ||F]),,,-
_ Since § € L(Z (T), B**) we can consider #(S) as a function with values
in B** and we claim that 2(5)(z) =F(z) for all zeD.

Indeed, take z = re'’ in D and ¢ in B*. From (2.5) and (2.4) by taking

= P, we have
@S2, C) = [f()P,(0—1)dt =& F(2) = (&, F(2)>.

To ﬁn.ish the proof it is sufficient to see that the range of § is actually
contained in B. Take § in I¥'(T) and recall that P, converges to ¥ in
r(m as r—1, so, since S is continuous, we have S() = Hm S(P, » ).
According to Hille’s theorem about Bochner integration (see [Zi: ;) 47) and
since P, (—t) = P,(r) we have

S(P,n/z(~)) =S([P.( ~) () de) = [S(P i) (vt = [F(re")y (r)dt.
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Consequently, S(P,*y)eB, and so S(¥)eB as well.
The proof for p =1 is essentially the same. First, for every ¢ e B* there
exists a measure g, in M(T) =(C(T))* such that

(24) &F(re”) = P,xpe (6) = [P, (0—1)dus (1)
The operator in this case will be given by

(2.5) SW), > = [¥®du:t) WeC(),{eB*).
The whole proof can now be repeated, a decisive fact being that P,xiys
converges to ¥ in C(T) too.

From this theorem we can deduce the following

CoroLLARY 10, For 1< p <o, (W,5(D), || llw,) is a Banach space.

We have just found a characterization of the “boundary values” of
functions in h§ (D) in terms of operators. Now we are going to find out
what sort of convergence there exists between an operator S on the bounda-
ry and the operators given by F, where F = #(S). Given S in L(X,,B) and
F = 2(S), let us denote by S, the operator J,(F,).

TreorREM 11. With the above notation,

(§))] HS,HL(XP,,B) is increasing to ||S||L(xp..m as r 1.

(2) For each p, 1 < p < o0, S, converges strongly to S as r— 1.

(3) For each p, 1 < p < o0, S, converges to S in the norm topology if and
only if S is a compact operator.

Proof. (1) It is immediate that

¢ 8, = 8)xP, = (¢ F),.

Hence
I8 Mlzex,my == sup & Sdlx,p» = sup (€ F)llp-
18,203 Wrin. ) gt = SUP Lo
For 1<p<o Hardys convexity theorem (see [4]) implies that

& FYyllys < IE-F),yllp for 7y <7, and therefore

1S5 lecx .y < 1180l zix 3y
The case p = o0 is due to the maximum principle for harmonic func-

tions.
Now we have

”S”L(Xp/,B) = uP(1 ||f'S”(x,,‘)*

§
18l pr<

sup sup ||¢ 'Sr”(xp,)*
I2llpss1 0<r<t

sup “Sr”L(Xp:,B) = lim”Sr”L(Xp',B)'
0<r<1 r—1

i

I
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(2) This is a direct consequence of two facts: first, P, iy converges to
in X, for all YyeX,, and secondly, S,(/) = S(P,*y).

(3)Let 0<r<land I <p<oo.Since S, =J,(F,) it follows that S, is a
compact operator, and hence S will also be compact if S, converges to S in
the norm topology. Conversely, assume that S is a compact operator from
IZ(T) to B where 1/p+1/p' =1 and consider y,: I(T) — I?(T) defined by
Y (@) = P xo for all pe?(T). Since y,(¢) converges to ¢ for each ¢ in

(7,
(2.7 V(o) — ¢

Observe that since the adjoint operator of S, S* is compact from B* to
IZ(T) = (I (T))* it follows that {S*(£): ||¢]lp» < 1} is a relatively compact set
in I(T). Now from (2.7), y, - S* () converges to S*(¢) uniformly on ||€|[p < 1.
On the other hand, the adjoint of v,, (¥,)*, is also defined by (i,)*(¢)
=P, g for all peIZ'(T), and since y,-S* = (S-¥,)* = (5,)%, (5,)* converges
to $* in the norm topology and therefore S, also converges to § in the same
way. ‘

Remarks 12. In order to complete the third part of Theorem 11 in the
cases p=1 and p = o0, we can make the following observations:

(1) Taking B = R, there is a function f in L[*(T), which coincides with
L(L(T), R), such that S, =P, f does not converge to f in L2 (T).

(2) Taking B =R, there is a measure 6 (the Dirac delta at 0) in
L(C(T),R) such that P, = P, x§ does not converge to & in M(T).

§ 3. hE(D) spaces.

DeriniTioN 13. Let 1 < p < oo and let B be a Banach space. We shall
denote by hj(D) the space of B-valued harmonic functions F such that

uniformly on compact sets as r-» 1.

1 2n . 1/p
(3.1) IFll, = sup (2—1 nF(re"’)nsde) <+,
O<r<i \4T

For p = oo, hy (D) will be the space of B-valued bounded harmonic functions
F on D, with the norm

(3.1) [1Fllso = sup {||F (z)llp: z&D}.

It is easy to show that |||, is a norm in h}(D) for all I1<p< o

Before dealing with the boundary values spaces of these spaces let us
establish some immediate properties:

(32 If 1< p<q< oo then i (D) S hf(D). Moreover, if Fehj(D) then ‘

IFllg < [1Fll,..

(3.3) For each 1< p < oo, h§(D) < hZ, 5 (D). Moreover, if Fe hg(D) then
IF |l » < (1],
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(34) by (D) = h3p(D) and |||l = |||

(3.5 ”F'”L:’} is increasing and ||F|, =3T})]F,||Lg.

The proofs of-(3.2), (3.3) and (3.4) are straightforward. To prove (3.5) it
suffices to realize that g(z) = ||F(z)||} is a subharmonic function for 1<p
< 00, and then to use Hardy’s convexity theorem. The case p= o0 is again a
consequence of the maximum principle for B-valued harmonic functions.

Now we shall prove in a different way the following known result:

Proposition 14. For each 1< p < oo, (1 (D), II*ll,) is a Banach space.

Proof. The case p = o is already proved in Corollary 10 by using (3.4).
Let 1 < p < oo and let us take a Cauchy sequence {F,} in h%(D). From (3.3)
and Corollary 10, there is a function F in % 5(D) such that F = 2(S) for
some § in L(X,, B). Moreover, if F, = 2(T,) then we have

(3.6) 1T, = Sllzcx,m — O

Since {F,} is a Cauchy sequence, given & > 0 there is a positive integer
ny(s) such that

3.7 : sup II(F,,),-(F,,,),HLE <eg for all n,m = ny(e).
0<r<1

as n— oo,

Then we fix 0 <r <1 and observe that
(38)  sup||F,,(re")~F (re")
teT

=sup (T =) (P, s < 1T — Slircx ., 5| Pl lx,,f.

Now from (3.8) we can see that (F,), converges to F, in I4(T) as m— 0.
Finally, fix n > ny(e) and take the limit in (3.7) as m — 0. It follows that F
belongs to hj(D) and F, converges to F in hB(D). w ’

Let us remark that, as usual, we can obtain functions in 3 (D) simply by
considering the Poisson integrals of functions in I%(T). So given f eI (T),
1< p< oo, if we take

F(re”) - P xf0)=[fO)P,(O~1)dt

it is not difficult to deduce that F belongs to hf(D) and moreover I1FI,
=111l

When we deal with R-valued functions and 1 < p < co the converse is
also true: If F belongs to h”(D) there exists a function f in I?(T) such that F
= 2(f). The next example shows that this does not remain valid in the B-
valued setting.

ExampLe. Given 1 <p <o and B = I!(T) we consider F(z) = P,. It is
not difficult to see that F Ehilm (D) for all p, 1 <p< oo, but is not the

Poisson integral of any function in L‘le(T). In fact, F is the Poisson
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integral of the operator I: I/ (T)— L(T) defined by I(}) =y for every
wel?(T) (1/p'+1/p =1). The operator I cannot be represented by any
function, i.e. there does not exist any f e I, m( T) such that J,(f) = I, since I
is not compact. To see this, it suffices to take
an=1-y

jzo Xizj/2n,2j+ 1)/2%

j;lx

for n=1,2,... and to observe that [|fll » = (1/2"" and ||fy—full 1 = 1/2
for every ns m, so {f,} does not have any convergent subsequence. m
Since hg(D) is included in A% z(D), we have to look for the boundary
values of functions in hf(D) among the operators in L(X,,B).
DerNiTION 15. For 1 < p< oo we shall denote by h(T) the space of
operators S in L(X,, B) such that 2(S) belongs to hf(D). with the norm

Il = 12(SV,-

We are going to give a characterization of these spaces in three steps:
p=o,l<p<ow and p=1.

According to Theorem 9 and (3.4) we have

ProposiTioN 16, h(T) = L(L! (T), B) with equal norms.

Tueorem 17. Let 1 < p < oo and 1/p+1/p' = 1. Then h§(T).= £ (L (T), B)
with equal norms.

Proof Let S be an operator in hﬂ(T) and take a s1mp1e function
Y= Z axg;, With [l <

.Smce A * Pr converges to xg, in I (T) for all ie{l,2,...
continuous we can write

(39) 1S (xe)lls = lin: IS (xg, * Py)ls-

,n} and S is

Denoting by F the function (S} and using (3.9), Hille’s theorem and
Holder’s inequality we can compute as follows:

Zl lo| IS (ug e = lin: ):1 loci| IS (g, * Plls
i= r=l i=
n
=lim Y |oy] HS( {P.( —-t)dt)”B
ro1i=1 E
=1lim Y, o]l [ S(P, ) dtls
r=+1 =1 E;
< sup [WOIFGeYd< sup IIF,
o<r<i o<r<i

=11l -
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Therefore |[IS]ll, < IISltg

Conversely, given S in £ (IF'(T),
exists ge¥(T) such that

(3.10) (IS(Plls < P, xg (1)
By integrating in (3.10) and using Minkowski’s inequality we obtain
ISl = sup (fUIS(P, ll5dz)"
0<r<i1

B) and z =rée" in D, by (1.3) there

< ligllzp = NISH,-

TueoreM 18, h}(T) = ' (C(T), B) with equal norms.

Proof. Let § be a 1-summing operator from C(T) to B. According to
Pietsch’s factorization theorem (see [6], p. 41) there is a measure v in M(T)
such that ||Vl|sy =1 and

(3.11) IS@)Is < IISILs [l ®)idv(@)  for all Y eC(T).
Using now (3.11) and writing z = re it follows that
18 (P)lIs < IISIl 1 (Pr * v (8))
and therefore F = 2(S) satisfies
||F.||L}, = [lIS(P iMlpdt
S 1SN H1Pr %Vl 5
So we have [|S|l,1 < ISl

To see the cBonverse let S be an operator in hy(T) and 1,2, ..., Yu
functions in C(T). We claim that

Z 1S Wlls < 1Sl HZ Wil lean -
Indeed, since ¥, P, converges to W, in C(T) for all i, we can write

S ISWils = lim 3 ISP, <6l
i=1 r=1i=1

< sup [[Poxgll,
0<r<l1

< Sl -

(3.12)

=tim . [S([P.( =09
<lm Z TIS(P ills Wi (0)] dt
r=li=1

<( sup JIS(P, s dt)II_; Willleen

< “S”"éHv; h//il“C(T)'
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It is proved in [2], p. 162, that
12, Willear = sup {3 | {: i @): e < 1}

This last inequality together with (3.12) implies that I18]l,1 < ISl w

There is a way of unifying the results about boundary valuesn of h§(D)
for all p, 1< p< oo This can be done by defining a class of operators
slightly different from the p-summing operators.

DeriNiTioN 19. As above, X, denotes IP(T) if 1 < p <o and C(T) for p
=00.Given1 < p <o and 1/p+1/p' = 1, an operator S in L(X,, B) will be
called positive p-summing if there exists a constant C such that for every ne N
and for every family of positive functions YiWa, .o, in X,,

sup (3 [<E 3P,

Nl x,pest i=1

619 (LIswagrsc

An operator S in L(I!(T), B) is called positive co=summing if there is a
constant C such that for every positive function ¥ in INT),

(3.15) ISWlls < Csup {| [y (1) o (1) dt: ol < 1}.

We shall denote by =#+ (X »» B) the space of positive p-summing
operators from X, to B and the norm in it will be given by the infimum of
the comstants satisfying (3.14) or (3.15) according as 1 < p <o or P = .

The following result will connect these operators with Theorems 16, 17
and 18.

ProposITION 20. (1) 7 +* (IX(T), B) = L(IX(T), B).

(2 =7 (' (T), B)= £ (I(T), B) (1 <p<w)

(3) = *(C(T), B) = 7! (C(T), B).

Proof. (1) Being a positive co-summing operator simply means that
IISW)lls < Clifll,1 for every y > 0 and some constant C. But if Vel (T) we

can write ¥ =y* ~y~ with ¥*,y~ > 0 and then
IS Wlls < CAIv 14 HIW N = Clilll,, = Cilll, .-

Therefore every positive co-summing operator from I!(T) to B belongs to
L(LX(T), B).

(2) Let S be an operator in n* (I (T), B) and let y = i xg, be a
func{ion with Il < 1. Since y; = m(E,)"l“"xE,. =0, H()’lde'r:s inequality
implies that '

3, l1SGce)la = 3. lalm(E) Sl
i= =1

iom
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<(3 Isg) >

n

<ISlp+ sup_ (T | fwiol?)

loll p<1 i=

<|ISll 5+ sup (i [ o) m(E)™* dr])r»

ol p<1 i=1 £

n

<|ISll 5+ sup (X [lo@rdr)e
ol pS1 i=1E
<181, p,+-

Therefore (||, < lIS[|, 5.+ ,

Conversely, let S be an operator in % (I'(T), B) and ¥, ¥,,...,.¥, >0

in I’ (T). By Proposition 1 there exists a function g in IZ(T), g = 0, such that
ISWlls < [ () g (D) dt llgil » = NISII],-

and

Therefore,

(3, ISWIEY” < (3| (i g 0 ey

i(lfl p\1/p
T )

—listl, suwp (3| (0 @ () def?)e.

lell p<1 i=1

= lIsil, (Z

i=

Thus |IS|p,+ < llISill,-

(3) In [2], p. 162, it is proved that =*(C(T), B) coincides with the space
of B-valued regular measures with bounded variation, but if the proof is
looked over, it can be observed that only positive functions are really used
there, so this space of measures coincides with =** (C(T), B) t0o. u

This last result allows us to state the following unified result:
CoroLLARY 21, If 1 < p< oo then hj(T) =n""(X,, B).

The last question we are going to answer is the following:

What conditions have to be imposed on B to make hj(T) be the space

T, (B(T) o _
The condition on B was found by Bukhvalov and Danilevich [1]. It is
the well-known Radon-Nikodym property. Let us prove the same result by
using our techniques of operators.
THeoReM 22. Let 1 < p < c0. Then h§(T) = J,(L5(T)) if and only if B has

the Radon—Nikodym property.
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Proof Theorem 5 in [2], p. 63, states that the Radon-Nikodym
property of B is equivalent to Riesz’s representation theorem, i.e. L(L! (T), B)
=J,(L3(T)) if and only if B has the Radon-Nikodym property. Hence the
case p= oo follows immediately from Proposition 16. Let us assume then
that 1 <p < oo and hE(T) =J,(Ls(T)). To show that B has the Radon-
Nikodym property let us take an operator S in hg(T) (which obviously is in
BE(T) and show that S belongs to J,,(L5(T)). By assumption there is a
function f'in L(T) such that S () = [y (¢) f (t)dt for all ¥ in I¥(T). We have
only to prove that f belongs to L3(T). Since

IS Cxels = llﬂjf(t) dt||s < |1S|| m (E)

for all measurable sets E, using Lebesgue’s differentiation theorem and
denoting by I,(z) the interval (t—¢, t+¢) for te T, we obtain

1
If @l = hm@;” | S dsflp <IiSl|
~ 2=0 10

for almost all ¢t in T

Conversely, suppose B has the Radon-Nikodym property and S belongs
to BE(T). Set G(E) = S(yx) for all measurable sets E. Then, as in Proposition
3, G is m~continuous and has bounded variation. Thus there is a function fin
Ly (T) satisfying S (xg) = [f@®at for all measurables sets E. Finally, since

E
Se % (' (T), B), an argument like that in Proposition 3 shows again that f
belongs to (7). From this it is clear that S =J,(f) with fe % (T), and
so the proof is finished. w

This last theorem can be used to deduce that spaces hf(D) and A% (D)
are not the same in general as we shall show in the following

CoroLLARY 23. For each 1 < p < oo there exists a Banach space B such
. that hj(D) is strictly contained in h%, (D).

Proof. Case p =1. Let us take B= C(T) and I: C(T) - C(T) given by
1(y) =Y. Then F = 2(I) is a function in h z(D). On the other hand, since
l-summing operators map unconditionally convergent series into absolutely
convergent ones, the Dvoretzky—Rogers theorem (see [6], p. 67) implies that
I is not 1-summing and therefore F does not belong to h}(D).

Case 1 < p < co. Let us take B = IV’ (T) with 1/p+1/p =1 and I IZ' (T)
~ IF'(T) given by I(}) = . The function F = (1) belongs to ki 5(D) but it
cannot belong to k(D) since I (T) has the Radon-Nikodym property and in
that case from Theorem 22 there would exist some fel% such that I
=J,(f); but this is a contradiction since the operator I is not compact.
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