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Approximate point joint spectra
and multiplicative functionals
by
ANDRZEJ SOLTYSIAK (Poznati)

Abstract, We show that a unital Banach algebra has a nonzero multiplicative linear
functional whose kernel consists of joint left [respectively right] topological divisors of zero if
and only if the left [right] approximate point spectrum 7 (ay, ..., a,) [ (ayy ..., a)] is nonempty
for every finite set of elements ay, ..., a, in the algebra.

§ 1. Introduction. Let A4 be a unital complex Banach algebra. The unit of
A will be denoted by 1. The left approximate point spectrum of -an n-tuple
(@1, ..., a) of elements in A, denoted by tf'(ay,...,a,) or simply by
t(ay, ..., a,) if there is no confusion, is defined to be the subset of C”
consisting of those (4;,..., 4,) for which there exists a sequence () of
elements in A such that |lu)| =1 for all k and limy [{a; = A)uyl| = 0 for j
=1,....,n. (Here, ;~; stands for a;~4;1) The right approximate point
spectrum 7, (ay, ..., d,) is defined in a similar manner. The joint approximate
point spectrum t4(ay, ..., a,), or simply written as ©(ay, ..., a,), is defined to
be their union:

@y, ..o, a) = v(ay, ..., a)uray, ..., a,).

If A= B(X) where X is a complex Banach space, then

I

(and is usually denoted by ay(ay, ..., a,), and called the “approximate point
spectrum™), while

1 @) = (s WO il S =) =0)
X[ = Jm

"
Tl"l(aln ey “n) = {(lln vy )vn)scn: Z] (a,]m'l‘])X #‘X}
=

(and is usually denoted by oy(ay, ..., a,), and called the “defect spectrum”).
(See [4], p. 95.) ;

Let us ndte that for an arbitrary n-tuple (ay, ..., a,) of elements in A the
following inclusions hold true:

Tf(alw raey an) C:o'f’(al, ruy a,,), Tf(al, eey a,,) c:a;“(al, Caey d"),
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where o (ay, ..., &) and of (a;, ..., a,) denote the left joint spectrum and the
right joint spectrum of the n-tuple (a4, ..., a,) respectively. (See [3] or [4] for
their definitions.)

The approximate point spectra are always compact subsets of C".
However, they can be void (see [4]). The main result of [3] says that if the
joint spectrum 6 (dy, ..., 4,) (= 0y(ay, ...» a,)Ua,(dy, ..., a,) is nonempty for
an arbitrary n-tuple (ay, ..., a,) of elements in 4 with n=1,2,..., then 4
has a (nonzero) multiplicative (linear) functional. In view of the above-
mentioned inclusions the same result is true for the joint approximate point
spectrum, Conversely, if A4 has a multiplicative functional ¢, then
(@(@y), -, @(a))ea(ay, ..., a,) for an arbitrary n-tuple (ay, ..., a,)- However,
this is not true for the joint approximate point spectrum. A suitablc example
will be given in the last section. It is clear that we have to assume something
about this multiplicative functional. To explain this assumption we need the
following concept. :

DerFINITION. A subset § of a Banach algebra A consists of joint left
topological divisors of zero if for every finite subset {x,, ..., x,} of S there
exists a sequence (z,) of elements in A such that ||z,/| = 1 for every k and
limy [lx; z,l| = 0 for j=1, ..., n. The definition of a subset consisting of joint
right topological divisors of zero is similar (cf. [8], p. 65). The fact that a
subset S of A4 consists of joint left [respectively right] topological divisors of
zero will be shortly denoted by Sei (4) [1(4)].

Now, let us observe that, if 4 has a multiplicative functional ¢ with
kernel consisting of joint left topological divisors of zero, then 7(ay, ..., a,)
is always nonempty; in fact, in that case we have

(p(a), ..., plaenlay, ..., ay).

Of course the same observation can be made for the right approximate point
spectrum.

The main purpose of the present paper is to show the converse of this
fact:

Tueorem. If t(ay, ..., a,) [respectively t.(ay, ..., a,)] is nonempty for an
arbitrary n-tuple (ay, ..., a,) of elements in a Banach algebra A, with n
=1,2,..., then A has a multiplicative functional ¢ with ker ¢ consisting of
joint left [right] topological divisors of zero.

§ 2. Main results, We start with the following:
Lemma. If a function ¢: A C is such that

(0(x), (), @)eni(x, y, 2) [t.(x, y, 2)]

for arbitrary elements x, .y, z in A, then it is linear .and multiplicative.
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Proof. We shall give the proof for the left approximate point spectrum.
The argument for the right spectrum is analogous. To avoid brackets let us
denote ¢(x) = 4, for each x in 4. Now taking arbitrary x, y in 4 and «, § in
C we have (lm Fpyr Awr Ay ET (X + By, x, ¥). This implies that there exists a
sequence (z;) such that |lz|l =1 for each k and (ax+fy—IAews )2 — 0,
(x—40z— 0, (y—24))z, — 0 as k— co. We have

Aty = %= BAy] = A gy — A — B, 1zl
= “(;Lax-wiy Ay /My) A
= [[(Au gy = (X + BY)) 2t 0 (x = A) zi+ B (y — A,) 24|
< [(Aae e+ By 2| 1ol e = ) 24l 4181 110y — Ay) 2.

The right-hand side of this inequality tends to zero as k- co, therefore
Auxt gy = %A+ B4, which means that the functional ¢ is linear.

To see that it is multiplicative let us take arbitrary x and y in A, Since
(Axys Axs H)ETI(XY, X, ¥) there exists a sequence (u;) with |[lu| =1 for all k
and such that (xy—2A,)u—0, (x~2A)u—~0, (y—4)u,—0 as k— 0. As
before we have

Mxy“"lxlyi = Mxy—"lx Ay” Iiuk” = ”('{xy"'ixly)“k”
= ii(zxy“x.v) uk'i"x(y_ay) uk'i'"ly (x—)”x) uk”
< 1Ay = x9) thll 1111y = Ay) il -+ A 1106 — A el

Since the right-hand side of the above inequality tends to zero as k— oo we
have A,y = A.4,. »

Remark. Using the Kowalski-Stodkowski generalization - of the
Gleason-K ahane-Zelazko theorem (see [5]) we can show that it is enough to
take arbitrary two elements instead of three in the assumption of the lemma.
Indeed, if we assume (@(x), @(y)e7x,y) for all x and y in 4, then
(@(0), (0)e,(0, 0) = {(0, 0)} which implies that ¢(0) =0 and by the “one-
way spectral mapping theorem” for 7, (see [4], p. 100) we get @ (x)
—p(y)en(x—y) = a(x~y). Hence by the Kowalski-Slodkowski theorem the
functional ¢ is linear and multiplicative. However, we gave the proof of the
lemma with the assumption for three elements because it is very elementary
while the proof of the Kowalski-Slodkowski theorem requires deep results
on Lipschitz mappings in Fréchet spaces.

It should also be noted that the lemma is no longer true if we replace
two by one element in the assumption (to see thig it is enough to associate to
each 2 x2 complex matrix one of its eigenvalues). .

Proof of the theorem. We assume that 7;(ay, ..., @) is ,«a,lways
nonempty for finitely many elements aj, ..., ay in A, Let an arbitrary n-tuple
(ag, ..., a,) be fixed from now on. For each th-tuple (by, ..., by) of elements
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in A4, we write g(by, ..., b,) for the set of all n-tuples (4y, ..., 4,) in C" such
that '

(}'1: EERE) lm His oees .“Lm)e‘tl(aly coey Oy b17 (RS bm)

for some (4, ..., tm)€ C™. By our assumption g(b,, ..., b,) is a nonempty
compact subset of C" It is obvious that

o(byy ooy by gy oy ) = @(byy ooy by Ny, ooy ).

Therefore {¢(by, ..., by)}, where (by, ..., b,) runs through all m-tuples in 4™
and m runs through all positive integers, is a family of compact sets with the
finite intersection property, and hence its intersection is nonempty. Let
7,(ay, ..., a,) denote this intersection, ie. the set of all (4, ..., 4,) in C"
such that whenever {by, ..., b, is a finite subset of A, (Ay, ..., Au, Hey +. ey )
€7)(ay, .-+, G, by, ..., by) for some py, ..., i, in C. It is a nonempty compact
subset of C" (for an arbitrary n-tuple (ay, ..., a,) in A4").

Now, we shall show that 7, has the following “projection property”:

P:+m11,u(al7 vees Quy Quags oves an+m) = Tl,ﬂ(alﬁ LRAS) an)

where P:*™ is the canonical projection from C"*™ onto C" which sends
A1y ooes Ay Aprgs coos Apem) 1O (Ag, ..., 4,). It is enough to prove this for
m = 1. The rest will follow by an easy induction argument. Let an arbitrary
(n+1)-tuple (ay, ..., a,+,;) be fixed from now on. It is obvious that

P:+1Tl,u(a1: (AR an+1) Ctl.p(al’ thes a,,).

To establish the converse inclusion let us take an aribtrary (4,, ..., 4,) from
7..(a4, ..., ay). For each m-tuple (by,...,b,) of elements in A we write
o(by, ..., b,) for the set of all complex numbers A such that

(lla tens /1,,, '1’ His vy ,le)ETl(al, cres Qny Guags bl; LERE] bm)

for some (uy, ..., pye C™. The set w(by, ..., b,) is always nonempty sincfe
A1y A)eTiu(ay, ..., a,). Moreover, it is easy to see that w(b,, ..., by) is
compact and '

(D(bl, -~-7'bms Cpy veny C,,) Cw(bly EREE] bm)nw(clv LKER) cp)

for all by, ...,by cy,..,, ¢, in A So the family {w(by,..., b,)}, where
(by, ..., by) runs through all m-tuples in A™ and m runs through all positive
integers, has the finite intersection' property. Therefore its intersection is
nonempty. Taking A,,, from this intersection we get (i, ..., Ay Ans1)
Etl.y(ah vy Gpy an+l)-

To complete the proof of the theorem we shall use Kuratowski-Zorn’s

lemma. For this purpose let us denote by # the family of all ordered pairs,

@ ©
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(X, @), where X is a (nonempty) subset of 4 and @: X— C is a function
such that

(‘/’(xl)7 ety (P(x,,))ETL“(Xl, LR xn)

for every finite subset {xy, ..., x,} of X. The family 2 is nonvoid (on each
finite subset of A4 one can construct a function with the above-mentioned
property) and partially ordered by the following relation:

(X1, 01) £(X3, 0) if and only if X, c X,
and ¢, restricted to X, coincides with 0.

It is standard that every totally ordered subfamily of 2 has an upper bound.
Hence, by Kuratowski~Zorn’s lemma # has a maximal element (X 0> Po) We
claim that Xq = A4,

Suppose to the contrary that there exists an element g in 4 which does
not belong to Xo. For an arbitrary n-tuple (x,, ..., x,) of elements in Xo we
write 3(a, xy, ..., x,) for the set of all complex numbers A such that

(}"’ (pO(xl)» LERE} (Po(xn))efl.u(a, X5 cons xn)-

The projection property of 7,, implies that d(a, Xiy..0, %,) is always
nonempty. It is obvious that it is compact and moreover

5(‘17 Xpy cvey Xns V1o or0s ym) C‘S(av Xigeriy x,,)r\&(a, Viseves ym)

for arbitrary elements x;, ..., X,, ¥(, ..., ¥ in X, and all positive integers n,
m. Thus the family {d(a, x,, ..., x,)}, where (x,, ..., X,) runs through all n-
tuples in X3 and n runs through all positive integers, has the finite
intersection property. Let a number A be in the intersection of this family.
Now, if define ¢(x) = @q(x) for x in X, and ¢(a) =4, then the pair
(Xow{a}, p) belongs to . This contradicts the maximality of (X,, ).
Therefore X, = A. Since 1,,(ay, ..., a,) is always contained in Ty (ays ...y ay)
the lemma concludes the proof for the left approximate point spectrum. The
proof for the right spectrum is similar, w

CoroLLARY 1. The joint approximate point spectrum T(ay, ..., a) s
nonempty Jor every finite set a,, ..., a, of elements in A if and only if there
exists on A a multiplicative functional ¢ such that ker ¢ consists of either joint
left or joint right topological divisors of zero.

Proof. The “if* part is obvious, To prove the “onmly if’ part let us
assume that t(ay, ..., a,) # @ for an arbitrary s-tuple (a;, ..., a,)e 4" and
each »n This means that always sither 1(ay, ...,a)# Q@ or
T{@1, .00 ) 3 Q. Xf 1y(ay, ..., a,) is always nonvoid we are done. If, on the
other hand, ,(ay, ..., a,) = @ for some elements a,, ..., a, in A4, then we
have 7,(ay, ..., a,) # @. Actually, we then obtain t,(ay, ..., ay, by, ..., by)
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+ @ for every m-tuple (b, ..., b,y A™ and each m, since if 7.(ay, ..., q,
by, ..., by) =@ then 7,(ay, ..., 4y, by, ..., by) # @, and the inclusion

PrMe(ay, ooy gy by, b)) S Tilag, o ay)

implies that 7,(ay, ..., a,) # @, which is impossible. From this we can
conclude that 7.(cy, ..., ¢,) # @ for arbitrary elements ¢y, ..., ¢, in 4 and
every p. m

From the proof of the theorem we have the following:

CoroLLARY 2. For each n-tuple (ay, ..., a,) of elements in A and every
positive integer n '

(@, . @) = {(@(@), ..., o(a)): @ is a multiplicative

Junctional on A with ker pel(A)}.

CorOLLARY 3. The left approximate point spectrum 1, has the projection
property if and only if

n(ag, ... a) = {(pay), ..., ¢(a,): @ is a multiplicative
Sunctional on A with ker pel(A)]

for an arbitrary n-tuple (ay,...,'a,)e A" and each positive integer n.

Proof. The projection property of 7, implies that 7, and 7, , coincide. So
Corollary 2 gives the desired formula for 7,. The converse implication is
obvious. =

It is evident that analogous results (to those of Corollaries 2 and 3) are
true for the right approximate point spectrum.

CoroLLARY 4. The joint approximate point spectrum T has the projection
property if and only if

1(ay, ..., a) = {(0(ay), ..., 9(ay)): ¢ is a multiplicative
Junctional on A with ker el (A) U 1.(A)}

Jor an arbitrary n-tuple (ay, ..., a,)e A" and each positive integer n.

Proof. Suppose that 7 has the projection property and take arbitrary n-
tuples (ay, ..., a)ed" and (L, ..., L)et(ay, ..., a) Without loss of
generality we can assume that (i, ..., A)et,(ay,..., ). Then either
(A1s ooy d)ety,lay, ..., a,) or (44, ..., A gty las, .., a,). If the first possi-
bility occurs, then, by Corollary 2, there exists a multiplicative functional ¢
on A such that its kernel consists of joint left topological zero divisors and
@(a) =12y, ..., @(a,) = 4,. So assume that (4,, ..., 4,)¢7,,(ay, ..., a,). Then
there exists an m-tuple (by, ..., b,) of elements in A such that

(ilv “'v'Ans Hyy iy u'm)¢rl(al’ ey Gy, bl'ﬁ vy bm)

@ ©
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for arbitrary complex numbers gy, ..., u,. The projection property of
implies that there exist scalars 4,,, ..., 4,4, such that

(Ags ooor Ans At tn oos Auand€T,(ay, ooy @ by, ..o, by).
Moreover, for an arbitrary p-tuple (cq, ..., ¢,) of elements in 4 we have
(s vves Amy Anits ooes Aubms Mo voes L)
€T (A1, vy By, by, ooy by €y, s ¢y
for some (y, ..., p,)e C” (since otherwise we would get
(Ars vevs Any A ts coes Ay €T(ay, oy Ay, by, o, By)

which is impossible). This means that

()Llﬂ (RS /lm '{n—Ms rrry 'ln+m)ETr.u(ala ey Oy, bls vevy bm)a

and as before there exists a multiplicative functional ¢ on A4 with kernel
consisting of joint right topological divisors of zero and such that o (ay)
= Aa ey 0(ay) = 4.

It is evident that if for every finite set |ay, ..., a,} we have

t(ay, ..., 4} = {(@lay), ..., p(a)): @ is a multiplicative

functional on A with ker peh(4) vl (4)},

then t has the projection property, m

Remark. If the algebra 4 is commutative, then always 7,(ay, ..., a,)
=Ty, oovy Gy) = T(Ay, ..., 4y), and by a result of M.-D. Choi, Ch. Davis,
Z. Stodkowski and W. Zelazko (see [1] and [7]) the approximate point
spectrum has the projection property. In this case we obviously have
(@, ..h 82) = [(@(ay), ..., @(a,)): ¢ is a multiplicative functional on A with
ker ¢ consisting of joint topological zero divisors}.

By a result of V. Miiller (see [6]) a multiplicative functional has kernel
consisting of joint topological divisors of zero if and only if it can be
extended to a multiplicative functional on every superalgebra of A. The set of

such functionals is called the cortex of the algebra 4, in symbols cor 4.
Thus we see that

T(dyy s @) = {p(ag)y 00, @(ay) pecord)

for each n-tuple (ay, ..., a,) of elements in a commutative Banach algebra 4
and every positive integer n. ‘

On the other hand, if the left approximate point spectrum t; has the
projection property on A then the algebra A/rad A must be commutative
(where rad A stands for the radical of A). Indeed, by Corollary 3 we have
n({(ab—ba)c) = {0} for arbitrary elements a, b, ¢ in A. Since do(ab
—ba)c) @1y ((ab~ba) ¢) (see [4], p. 103 or [8], p. 57) we have o ((ab—ba)c)
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= {0}, and so ab—baerad 4. The same observation can be made for the
spectra 7, and .

We do not know any example of a noncommutative Banach algebra on ,

which the left [right] aproximate point spectrum has the projection property,
Hence we conjecture that if it is so, then the algebra must be commuta‘tive.
An example given at the end of the paper will show that the cor.nmutatlv'ity
of the algebra modulo its radical does not suffice for the. apprpxxrnate point
spectra 1,, 7,, and © to have the projection property (while it is a necessary
and sufficient condition for the joint spectrum o, and also for ¢, and a,, to
have such property; see [3]).

§ 3. Examples. In this final section we give the previously announced
examples.

ExampLE 1. It will be shown that an algebra can have multiplicative
functionals but the joint approximate point spectrum of some n-tuples can be
empty. The idea of this example is due to C.-K. Fong (see [2]).

Let A be the algebra M;(C) of all 5 x5 matrices with complex entries.
Take the following two elements of A:

01000 : 00100
00000 10000
a,=/00010|, and a,=|{00000]
00001 00000
00000 - Looo10

Then we have a} = a} = 0. Hence ¢4(a;) = 0(a,) = {0}. This implies that
o4(ay, az) = {(0, 0)) (cf. [4], p. 92). But if we take

{ooo0 o0 0100 —~1
100 —10 0000 0
a3={000 00| -and a,={1000 O}
001700 0000 1
000 10 0000 O

then we shall get @,45+a,0a, =1 (identity matrix) and ayay+agay = 1.
Therefore o*(a;, a;) = @. Now, let us take B to be the subalgebra of A
generated by a,, a,, and 1. If we assign to each element b of B the entry of b
in the third row and the third column we shall get a multiplicative functional
¢ on B. Since ¢ (a,) = ¢(a,) = 0, we get (0, 0)eo® (a1, a;). However, we have
™ (ay, ;) ©14(ay, a3) < 64(ay, a,) (see [4], p. 92). Therefore %(ay, a;) = @.

icm®
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ExamrLe 2. Now we describe an algebra in which the joint approximate
point spectrum is always nonempty but it does not have the projection
property.

Let A be the algebra of all 3 x3 upper triangular matrices with complex
entries

a(11) a(12) a(13)”
a= 0 a(22) a(23)
0 0 a(33)

It is known (see [4], pp. 94-95) that for all @, ..., a, in A we have the
equality o (ay, ..., @) = {(ay (i), ..o 4, (i)):j = 1, 2, 3}, while (ay (13), ..., a,(11))
en(as, ...» 4,) and.(a;(33), ..., 4,(33)ev,(ay, ..., a). Hence 1(ay, ..., a),
7 (ay, ..., a,), and (a4, ..., a,) are always nonvoid. However, if we take for
example

210 220
a= [011] and b=|013]
003 003

then it is a matter of easy computations to show that n(a, b) = {(2, 2)},
(@, b) = {3, 3)} and 7, (a) =1,(a) = {2, 1, 3}. Thus (1, 1)ét(a, b) which
means that the spectra 7, 1,, and © do not have the projection property on
this algebra.

Let us also note that the algebra A4 is commutative modulo the radical.

It may be interesting to observe that on the algebra of all 2 x2 upper
triangular matrices the joint approximate point spectrum coincides with the
joint spectrum, and therefore it has the projection property, while the left
and right approximate point spectra do not have this property.
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Added in proof (May 1987). V. Miiller poi‘nted out to tht? author' an example of a
noncommutative Banach algebra for which the left and right approximate point spectra. have the
projection property. Hence the conjecture on p. 284 is false (see the author’s forthcoming paper
On the projection property of approximate point joint spectra, Comment. Math,, vol. 28).
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Note on a theorem by Reshetnyak-Guroy
by
INGEMAR WIK (Umed)

Abstract. The paper gives a sharp estimate for the If-norm of functions whose mean
oscillation in every cube is at most a fixed multiple, &, of the mean value of the function in that
cube. The estimate improves an earlier result of Reshetnyak-Gurov as g — 0,

In their paper [2] Reshetnyak and Gurov study functions with a mean
oscillation which in every cube is not greater than a fixed multiple of the
mean value of the function in that particular cube. Their result has been used
by Bojarski [1] in a study of the stability of inverse Hélder inequalities.

A cube in R" will always mean a cube with sides parallel to the axes. We
let |E| denote the Lebesgue measure of the set E and prove the following
theorem:

THeOREM. Let q be any positive number, ¢ a number in the range 0 <g¢
<(3-2"9"" and f a vector-valued function f: Q— R™ Q c R". Suppose that
Jor every cube Q in Q there exists a vector Jo in R™ such that

1 ,
(1 T [/ 69 ~faltdx < 1t

Then f has to be a function in I5,.(Q) for ¢ < p < ¢, &~ 2. For these valyes of p
we have for every cube Q in Q

2 [1f () =fol?dx < ey | folP"9& ™4 [| f (x) ~fpl*dx.
Q Q

¢, may be taken as (qIn2)(6-2"* )% and ¢, depends only on p,q and n.

Remark 1. This constitutes an improvement of the result in [2] in that

it contains a factor ¢ log (¢ (¢)/e) instead of & on the right-hand side of (2) and
also requires ¢ to be at least 1.

Remark 2. It is easy to find an example showing that (2) gives the best
possible order as ¢ tends to zero.

Proof. Let Q be an arbitrary cube in Q and put
Ey = {xeQ; |/ (x)~fol > dfol},
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