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Initial value Abelian theorems for the
distributional Stieltjes transform

by
S. PILIPOVIC and B. STANKOVIC (Novi Sad)

Abstract. In the first part we investigate the L-quasiasymptotic at zero introduced by B. L.
Zav'yalov [15]. In the second part we use the L-quasiasymptotic to prove some Abelian type
theorems for distributions,

Introduction. The notion of quasiasymptotic behaviour of tempered
distributions was introduced by B. 1. Zav'yalov in [15] and investigated in
several papers of Yu. N. Drozhzhinov and B. I. Zav’yalov [4], [5], ... In
those papers the authors deeply investigated the quasiasymptotic behaviour
at infinity of distributions from the space (S7) of tempered distributions with
support in a cone I' = R* In this paper we give, first, several assertions
concerning the L-quasiasymptotic behaviour at O* for elements from ()
(8",) = (8, T = R"). The motivation for our investigations made in the first
part are theorems of Abelian type for the distributional Stieltjes transform,
which we shall give in the second part. In the one-dimensional case the
theorems presented include the known results of this type and the new ones,
because the quasiasymptotic behaviour at 0* is more convenient than the
ordinary asymptotic behaviour of a distribution, especially to prove Abelian
type theorems for the Stieltjes transform.

1. Notation. For a =(a,, ..., a)eR" and x = (x4, ..., x,)e C" (C is the
set of complex numbers), we write

ax =(ay Xy, ..., @y Xp);  X/a=(xy/ay, ..., X0y, @ #0;
=[] %', x#0if a<0;

az20(@>0 <= 4=20(a>0,i=1,...,n

a—0% (00) < g, — 0" (), i=1,..., n;

ol = 3 lal; llal* = ¥, aF.
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N denotes the set of natural numbers and Ny = N u {0}. For pe N’;, Dr
is the operator of partial derivative of a distribution: D} = Dfll Dyt
=15 s tuh D =15 -5 Do) .
If teR, f,(x)=0(@) " /@), «>0, and f,(z) =D*f1; (1), a <0, a
+k >0, ke N, where 0 is the Heaviside function. Now, if a, te R" we put
@) =TT, /o (t). We know that

@200 = ([1 f-ne)

A numerical function L(t) continuous on (0, o) is slowly varying at zero
if t7?L(t) is bounded on [b, ), b > 0, for every y > 0, positive in (0, a),
a >0, and satisfies the following condition: lim L(ut)/L(r) =1 as 7 — 0",
u > 0. We denote by L(1), te R", the product Ly (ty) ... L,(t,), where all the L,
are slowly varying at zero.

p=(p1,.--> P)ENG.

2. L-quasiasymptotic at zero.
DerFmviTion 1. A distribution f e(S’,) has an L-quasiasymptotic at zero of

power aeR" with limit ge(S%), g #0, if
k* , _ .
lim /@0 =00 in(5), e=(,... Dek"
ie. for every ¢e(S)
SR, (B) =< @), o).

—'wL( Lefky

We write shortly: f ~g, t— 0% (L, a).

Let us remark that in the case n =1 and L= 1 this definition can be
deduced from the definition of quasiasymptotic at zero given in [15] with
—a instead of a.

DeriNiTIoN 2. If for a numerical function f there exist an ae R", a slowly
varying function L and a subset D < R%, meas(R"% \D) =0, such that

. f@)
,]jf,’i LD

then we write f(t) ~ Ct*L(t), t — 0%, and we say that S has an asymptotic at
Zero.

=C, C#0,teD,

Similarly to [4] one can prove that if, in Definition 1, a > 0, then gisa
continuous function and g = Cf,,,.

It can happen that a regular distribution has an L-quasiasymptotic at
zero but has no asymptotic. Such an example is given by the distribution

. (24sin(ln, >0,
(2+sin(1/t), = {0, <0
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We shall only show that for every ¢e(S)
lim ((sink/)s, () = 0;

hence (2+sin(1/8)); ~ 2, t— 0% {1, 0). Indeed,

{(sin(k/x))+, @ (x)) = Dfsin (k/x)p(x)dx =k cj?sin(l/t)(p(kt) dt
)

o oo
=k s1nu—[(p(kt)+kt<p (k)] dt = j Y, (t)dt.
The function ¥ (t) has the following properties: it belongs to I*(0, x) for
every keN; |V, ()] < CA1+1?), te[0, o0); W,(0) =0 for every ke N and
lim ¥, (f) = 0 as k— co. Using Lebesgue’s theorem we have the assertion.

The next example ((1/\/;) sin(a/t))+, a>0, shows that a regular
distribution can have neither asymptotic nor L-quasiasymptotic. For the L-
quasiasymptotic it is enough to use the function 7 (t)e ' <(S) where n(f)e C>,
suppn =[—1, ), n(t) =1 if t > 0. By the relation from [9], p. 173, we
obtain

lim k* </k/t sin(kaft), n()e™*> = lim k*** | /1jusin(afu) e du
k—w k=0 [\]
= lim k**! /n/k e~ V4 sin . /2%ka = 0,

k=

xeR.

3. Assertions on L-quasiasymptotic.
ProposiTioN 1. Let fe(S,) and f £ g, t —0F (L, a). Then

() hre* ) % (fyrerg)s t—0%(La+b+e), a,beR, e=(1,...,1).

Proof. Let us suppose that «(x) and f(x) are smooth functions equal to
1 in an e-neighbourhood of R% and equal to zero outside a 2e-
neighbourhood of R%, &> 0. Using the definition of convolution given by
V. S: Vladimirov [14] we obtain for ¢e(S):

. kb+a+g
k"w L(e/k) <(fi’+e f)(t/k)y (t))
b+a+2e

L{e/k)
+a+2e

_—l}l**m L( /k) <ﬁ+a(x) Xf(y) a(kx)ﬂ(ky)(p(kx+ky)>

Lforex N, @ k))

k—*aa

k-»mL( /k) <ﬁ>+e(u)d(u) (f(v/k) B(u)¢(u+v)>>
= Govea), G0), BO@WH0) = yverd, 9.
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We used here the continuity of the direct product. =
If b= —e—e where ¢ =(0,0,...,1,...,0), Proposition 1 gives the
connection between the partial derivative and the L-quasiasymptotic because
foarf =(@0%)f

Following [12] we say that felLi, defines a regular tempered
distribution, denoted again by f, if, for every @e(S), foell and {f, 0>
= jR,, ()@ (t)dt. Tt is proved in [12] that f e}, defines a regular tempered
distribution if and only if, for some me No, f(H)(1+[) ™?e L.

For the proof of the next theorem we need the following theorem from
[1] (Theorem 6; see also footnote on p. 82, and [11]).

TueoreM A. If L(r) is a function slowly varying at 0% and if h(t) is a
function defined on (0, t) such that

{ ' [h(@idr < 0

ot

for —a<v<fp, a>0,>0,

then

00 o0
{h(@L()de ~L() | h(@dr, i—0".
o+t ot

THEOREM 1. Suppose that fe L., suppS < R, defines a regular tempered
distribution and that f () ~ Ct® L(t), t — 0%, for some b > —e. Then [ (t) L,
t—0% (L, b).

Proof. From the assumption of the theorem it follows that f()
= Ct* L(1)(1 +¢&(t)), where &(z) L(t) is a locally integrable function such that

e(t)—»0 as t—0'. Thus with the notation 0=(0,...,0) and oo
= (0, ..., o0), we have for pe(S)
kb nk _ © b ‘
-—mL(e/k)[(£+"jk)f(t/k)(p(z)dt] Cgt ot)dt
= '——1—~”5k Ct* (1+&(t/k)) Lit/k) o () dt
)D}if(t/k (p(t)dt—-C]:tb(p(r)dt
‘ T Ctb L{t/k) o (t) dt — ? Ct* (1) dl“
0 O
ST (tk)dt‘-b—-—w(m- {1 LGk o (1) de
M /k) ¢ L{e/k) § ¢

b
T /k) |"£ Ct® L(t/Ky o (t)dt|

where & = Csup{e()l: 0<t;<my, i=1,...,n}, n>0.
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Theorem A implies

1= i
) ’m [ Ce* L(t/k) g () dt — _[ Ctto()dt|—0, k- oo,
) T | T Lk o 0lde ~ & If"lso olde, k= co.

Let me N§ be such that m > b+e. From Theorem A it follows that

b
) } (/k)_fct (t/k)(p(t)d[‘
G TILUmL C,
D A T T

Since f is a regular tempered distribution, we can find a ge N? and a
suitable C;3 such that

1 7 f

O g | gm0 o
G T lfo
kq-H:L(e/k) j.tq+b+22dt_'0 k—oo.
From (2)—(5) the assertion follows. m
Theorem 1 implies
CoroLLARY 1. Suppose that Feli, and thar suppF < {xeR™

0<x<a,a>0l. If F~tL(t), t—0%, b> —e, and if meNg, m > |b|+n,
then the sequence kb L(e/k)™ ' F(t/k) converges to t° in (S™).

Proof. For every meN,, F belongs to (S™) and t?e(S™) for b > —e
and m > |b|+n. The proof of Theorem 1 is valid also if we suppose that
pe(S).o

Turorem 2. Let f&(S,). Thenf % Cfyper t — 0 (L, b) if and only if there
exists ac R, a > —b—2e, such that F = f,,.xfe L., F defines a regular
tempered distribution and F(t) ~ Cfyta42.(8) L(t), t— 0%, For F(t) we know
that supp F() = R and |[F (1) < C(L+||{)" ¢ min a; > m.

1<ign

Proof. The proof of this theorem is analogous to the proof of Theorem
1 in [4]. ‘

If F=f,,%f~Cfyrarzel, t—07%, then Theorem 1 implies that
FX Clyvatzes t— 01 (L,b+a+e). Since f_,iq*F = f, Proposition, 1

implies f < Cfyse, t— 0% (L, b).

Let us now prove the necessity. The sequence k® L{e/k)™* f (¢/k) is from
(S’y) and converges in (S'). Thus there exists me N such that this sequence
converges in (S) to ge(S7). We known that for a suitable ac R, a; > m,
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Jotrele—t) belongs to (S7). We have

(6) {f(t/k), favele—

L( /k)
= C {fyreWs fare(e—1)> = Clarprae(€).

The number a can be chosen in such a way that {f(x), f;+.(t
continuous function for te R’}

—x)> defines a
. By putting t/k = u we obtain

kb+u+e
it s (0, avale=0) =l T (@, fonelek= )
1. kb+a+u
= Jim o Uss e 1))
Thus (6) implies
bt+ate
k_’m Lk = (fore % F) (€/K) = Cfy iy 20 (€).

It remains to prove that F defines a regular tempered distribution. As
a;>m, for teR% and xeR" we have

F(1) = (fare * N)(O) = {F (X), for et )
Since fe(S™), for a suitable C we have (see [14], p. 95)
IF O <=l fot e E =2
S - msup {(1+ 15" ID* fo o (t=)|: x€RY, o] < m}
< C(L+ |l e
The proof is complete. m

In the following proposition we shall show that the L-quasiasymptotic
at zero is a local property of a distribution.

Proposrrion 2. Suppose that f; and f, belong to (S') and that f, = f, in

some neighbourhood of zero. If f; L g. t— 0% (L, b), then f, EJ g, t— 0% (L, b)
too.

Propf. As fi—f, =0 in some neighbourhood of zero, it follows that
there exists AeR% such that supp(f;—fo) =[]}, [4;, ®). Theorem 2
implies that there exists ae R’ such that H = f,. x(f;—f;) is an le

function which defines a regular tempered distribution with support in
Hi . [4;, o). Since

Da+5H = f—(ﬁ+s) *(j;+e *(fl —fzj) = f1 "'f2
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we have
b+a+e
t/k t hm Dete H(t/k), ot
Jim 7 /k)<(f1 R, 90> = Fm e DI H K, 9(0)

| | atb+e o

=(—1)la*el Ji H (t/k) D**¢ d

(0 T J TR o O
b+a+2e x

— late|
A T

Since @e&(S), the last integral tends to zero (see the proof of (5) in
Theorem 1). =

[ H(u) "9 (uk)du.

ExaMPLES. At the end of this part, as an illustration, we give a few
examples for the quasiasymptotic at zero in the one-dimensional case.

1. For ke Ny, 0™ X £, t—-0% (1, —k—=1).

2. ( ‘ln"‘ x);, Redl> —1, meN,, is a regular distribution and
(x* In™ ).+ L T(A+1), fir1, x— 07 (I0"x, A).

3. (xlln X);, —n > Rei> —n—1, meN,, is a distribution defined by
the process of regularization (see [6], p. 338). In this case

(*lo"x), £ TA+1)D fiape1 (), x—0% (In™x, 4).

4. For the distribution (x~"In™x),, ne N, me Ny (see [6], p. 339) the L-
quasiasymptotic is
1

W( D" fons 1 (%),

(x™"In"™ x)+ L
x—0% (In™*'x, —n).

4. Definition of the Stieltjes transform of a distribution. First we
introduce the following notation; For a given se(C\R.)", A(s) will denote
the family of smooth functions # with the properties: 0 < 7(t) < 1; n(t) =11if
t belongs to the e-neighbourhood of R%; n(f) =0 outside the 2e-
neighbourhood of R%, where ¢ is an arbitrary number such that 0 <2
<|Resy), i=1,...,n; |DPn(t) <c,, peNg, teR"

We notice that for a given re Nj and se(C\R_.)" the set of functions

n(t)exp(—ow, 1)
(S+t)r+e

is a subset of (S). Here (x, y) =x;y;+ ... +X,y, and int4 is the set of
interior points of A. ((s+1)*® =Hf=1(s[+ti)"'+1 takes positive values for
5>0,i=1,...,n)

DeriniTion 3. The Stieltjes transform of index re R (S,-transform) of a

, neA(s), oeintRy,e=(1,..., 1)
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distribution f€(S’) is the function f"(s) defined on some subset D of the set
(C\R_)" by the limit

M = lm

w-0T

<f(t), 17_(5){‘%;&')_’2>’ ne A(s), woeint R,

if it exists for seD.

Obviously, the limit in (7) does not depend on the function # from A(s);
in this sense # can be omitted.

For every fe(§,) there exists roe R" such that for every r >
transform of f is defined.

A little more restrictive is the definition of the Stieltjes transform given
by J. Lavoine and O. P. Misra [8] in the case n =1, They start from a
subspace J'(r) of the space (S%) in ome dimension. First we extend this
definition to the case n > 1.

DEeFiniTION 4. Let J'(r), re(R\ — N)", denote the space of distributions T
having supports in R". and admitting the decomposition T = S+ D*F, where
F is a function with support in the set B = {xeR%: || Za,0eR"},
F (x)x~""*¥"¢ js summable and S is a distribution having support in
R% \int B.

Now if n=1 and T=S+D*FeJ'(r), the Stieltjes transform of T
defined by J. Lavoine and O. P. Misra [8] is

ro the §,-

I'ir+k+1)

(%, D)s) = oD

S (x> + [ F)(x+9™* 1dx,

lxll Za

It feJ'(ry), then we can prove that for all r >
f7(s), given by Definition 3, exists and

ro the Stieltjes transform

2r Sr J B

@ =8)+r+e) | ( +t£2k+edt se(C\R.)".
Here we have used the notation (r+e), = (r,+1)..
+pn)s (ri+ 1)0 = 1

For a distribution Se(8.) with support in a compact K < R%, the

Stieltjes transform is
- L0
( -, [)> - <S(t)a (s+t)r+¢>

where £e C%, supp¢ < K** and £(t) = 1, e K*; K®is the ¢- nelghbourhood of K.
By some appropriate examples we shall show that our S,~transform has
a meaning for r = —n, neN, too and that for some distributions the set of

-("1+P1)~~("n+1)--'(7’n

Srioy 1 ()
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parameters r for which our S,-transform exists contains as a proper subset
the set of parameters r for which the &,-transform exists in the sense of [8].

Let
sint, t>0,

(sint), = {0, t<0.

This is a regular distribution for which we shall find the S,-transform given
by Definition 3, first for r = —g—1, geN,, and afterwards for r <0. We
shall also show that for r < —1 the &,-transform of this distribution in the
sense of [8] does not exist.

For r = —g—1, ge Ny, we have
AN L% .
(sinp)397 1 (s) = lm [exp(—wt)(s+1)*sintdt
-0t 0
[ q ©
= lim Y ( )s""‘jexp(—wt)t"sintdt
w0t k=0 k 0

lg/2]

Z( 1)’() “%r@j+1), seC\R., weR,.

The last equality follows from the relation ([9], p. 172)

© { I'(k+1)

_fexp( ot)tksint dt = o+ —(0—if 1]

2 2 + 1)k+
where k > —1.

Now, let s be real and positive and suppose that r < 0 and a # 0. If we
put —g=r+1, we have

o0

| exp(—ot)exp (ait) (s +1)*dt
0

= exp(s(a)—ai))( A Cha }exp(-—(w—vai)u)uqdu).
o

(w—ai)t™?
The limit of this expression as w — 0% is

exp(—sai) (F(q+ L)

— [exp(aiw) u“du), q>-1.
V]

Now, the S,-transform of the distribution (sinz), can be obtained in the case
r<0, seR, as
s

@iy, (5) = [sin(s—w)u™" ! du—I(—r)sin(s+m/2).
0

Recall that @ denotes the Heaviside function and D the distributional
derivative. We have

(sint), = D(—(cost), +0(1)), (cost), = D(sint),.
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Hence

(sint). = D(—(cost), +0(1) = D*(—(sint)s +(1)+)
= D3((cos 1), —0()+$(t),) =
This shows that (sinf), =D?F(1) where F(1)~C,t""*,

= 2,3, ... Hence the integral

t—o0, and p

T IEQ@)

i[;r-f-p'l‘.r

exists only for r > —1 and, consequently, the Stieltjes transform in the sense
of [8] of the distribution (sinf), exists only for r > —1. But we have shown
that (sin#),. exists for r < —1 too.

The following proposition gives a sufficient condition for the existence of
the S,-transform.

ProrosiTioN 3. Suppose that
fOn@/s+ey*e,  se(C\R", ne A(s),

has a quasiasymptotic at infinity of power —n, with L(t) = 1 (see [5] or [4])
and with limit g(s, t). Then f has the S,-transform and

f’(s): <g(S, t), exp('_e, t))! 3""( 1)1SE(C\R )n
Proof. We know that
pr 1) ‘
f (S) w_'0+ <f(t) ( +t),-+eexP(—wa t)>

m40+ <f(t)( +£2+¢: CXP(—‘CD, t)>=

Using the Abelian theorem for the Laplace transform (see [5]) we have
J©=4g(s, 0, exp(—e, 1)), se(C\R.)". u

5. Initial value Abelian theorems. As we mentioned in the introduction,
we shall give the initial value Abelian theorems for the Stieltjes transform of
distributions using the concept of quasiasymptotic behaviour at 0*.

For the proof of the main theorem we need the following lemma:

LemMA 1. Let L be a slowly varying function. Suppose that r—b >0,
b+p+e>0 and —r¢N, i=1,....n Then

~(r=b

k*w Le/k)

se(C\R.)".

Tt | mf;k';;)‘flff?d

r(r! bi) —(,- b)

2 I'(n+1) , se(C\R.)".

icm®

Distributional Stieltjes transform 249

Proof. Using theorems on integrals involving slowly varying functions
[1] we have

ey L)
11 wL( /k)( +é), f ﬁ+p+e(tW t
. 1 wt P Lufk)
= kh_x'g(r—f-e)p - . (s+u)’+”"’du

Lie/k) [T I (bi+pi+1) By
i=1

= (r+e), wre du
=— r+pt+e
Il cprn o T
n —b

THeOREM 3. Suppose that f eJ’(ro) and that f X g, t—0%(L, b). Then
g = Cfy+. and for s belonging to the closed domain Q = {se C": args;e[—n
+e,m—¢l, i=1,...,n},e>0, we have

L fs\YTP 1 (s Ay Li—b)
@®) Jm (E> Lh’ @'CQ T +1)

where r;# —1, r>b and r>
uniform in Q.

Proof. By Definition 4, f = S+D?F where suppF < B = {xeR"%: ||x|
>a,aeR,}, F(x)x7"797¢ is summable and S is a distribution having
support in the compact set K = R% \B.

By Proposition 2, § g, t—0* (L, b). Hence S=D’G, Gell,, G
~ Cfy+psel as t— 0" (see Theorem 2).

Let K* be the e-neighbourhood of the compact set K and let é(t) be a
C>-function such that £(f) = 1, teK®; £(t) =0, t ¢ K3; [D*¢| < C,(¢). Using
the Leibniz formula we have

ro. If n=1 and L(x) =1 the convergence is

S@ =c®)SE)=¢,@HDG()
=Dr(E(®)S(1)- Z D ()G )

asp
a#p

where &,(t) are functions with supports in K32\ K®
Let seC" args;#m, i=1,...,n. The Stieltjes transform of the
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distribution f is

N ® F(1)
fr(s) = <S(()€ t): (':Z'}SFIE> ( + )11 ‘( +t r+q+e dt
G(1) _GOe)
= (r+e)p [i i:‘:t)""q_ﬁg dt+x3‘[\x (5+t)r‘i pte
£, )G (t__)___ F(t) d
—‘agpxsj;\x(g'}'t)rF;Femjl-in( e )q [( ‘H)”q“ :
Now by our Lemma 1
T e T L) e
O Jim e P e
ko GO =fospre L)
T O Gy
~(r—b)
+k11m /k J H{(s/k, t)dt

where H(s/k, t) is a function with the properties limy.,,, H(s/k, t) = H(0, t)

and H(0, t)e!. As r> b,
k— r—b)
(e/k)
It only remains to prove that the first term on the right-hand side of (9)
tends to zero too.
In the set K we have
GO = Chyr pae(B) L(E) = 8(t) fo 4 o () Li(2)

where & is a locally integrable function and &(£) — 0 as t — 0*. Therefore we
can choose k, in such a way that for any ¢ > 0, |§(t/k)] <& for te K and k
= ky. Then

,J. H{s/k, t)dt =

k-‘nc

L G(O)foa p4e (1) ()

|L(e/k) (r+e)piE (S/k+t)'+p+g dt
5:_(::__‘)) ) t)./h+p MU (
< Lk (r+e),,i§( okt i e e dt
(r+e)y, . Jospre(W) L(w/k)
L(e/k; I |s+ulrtrte du.
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In this way we have proved that the first term on the right-hand side of

relation (9) tends to zero as k — 0. By the transformation z — 1/z and by the

Montel theorem we can prove the uniformity of the limit process in @ if

Lix)=1and n=1. »

If in our Theorem 3 we only suppose that the distribution f has L-

quasiasymptotic f’ X g, t— 0 (L, b), without knowing for which r, it belongs
to J'(ro), then we can only give a smaller set of r's satisfying relation (8):

THEOREM 4. Suppose that fe(S.) and f ~ < g, t— 0% (L, b). Then there
exists pe R, p+b+2e > 0, such that F = f,,+e*f and F(t) ~ Cfyypso (1) L(2),
t— 0. For r > b, Z 7 Z min {pi=1,..., n}, the statement of Theorem 3
is valid.

The proof follows from Theorem 2 which says that there exists me N,
such that [F()| < CQA+|E)™ pi>m, i=1,

Sometimes a theorem which gives the asymptotlcal behaviour of f7(s)
knowing that of f7*¢(s) is very useful. For the proof of such a theorem we
need the following lemma:

LemMA 2. Let feJ'(r). Then for x = (xq, ..., x,)e R% and s =(sy, ..., 5,)
e(C\R_y"
Frsx)=TIsti+1) [ ... [frresnae, ... dt,
i=1 Xy xq

Proof. If se(C\R_Y", then f"(sx)— 0 as x— o0 (x;— o0, i = 1,...,n.
This follows from the definition of the space J'(r) and the Lebesgue theorem.
Hence

T (sx) =¢( —1)”Hs lim fn jl(f'(st))(‘z)dt1 ...dt,
=@ xp, *1
= H s(ri+1) jf”"(st)dt

i=1

where we put |7 instead of [ ... j: "
THEOREM 5. If feJ'(r) and f*+¢(x) ~ cx™""¥~¢ L(x), x — 0%, where b <r
by <r,i=1,...,n) then

x—0%.

fro~
Proof. Let ¢ > 0 be fixed. There exists é = (0, ..., ,)e R".
for 0 <x<é
@ Frre) =c(l+e(0)x "9 L(x)

where g(x) is a locally integrable function in the §-neighbourhood of zero

"o+l R
e [T x0 b Ly,

i=171

such that *
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such that |ce(x)| < /8. With

n

N = H (r,+l)
i=1

M=c H (ri—b)7",
i=1

we have from Lemma 2

. (f'“(t)dt ? Tte(r)de
_.__f_'_(x.)__._.._11 l 1 +“ .....
NM2 L) | M LX) M~ L(x) |

Now, there exists 5, 0 <& <&, such that for 0 <x < ]

Hfr«)—e dt]
b rL(x)

8

Thus for 0 <x <& we have

| 700 éf(l-#e(t))ct”"“’L(t)dt
MN2"L(x)

e

&
—1‘—*-—8‘

Mxb~" L(x)

3
cfttmrme Lindt

N

ML) “1' 8 ML +§

8lx o/x
¢ w0 L(ux)du el [ b Liux) dul
8 ML '8

"1l+

N

ML(%)

¢ [ub™ "¢ L{ux) du

ML) "1|+

|e Dfr”"“*L(t) d|
3
Mx""L(%)

N

2
e|£u L{ux) du|

YT Y e

8 ML g <

We have made use of the relation (see [1])
fut7 e Llux)du ~ L(x) {v*™""¢du, x—0". u
e e

Remarks. We shall compare the result of our Theorem 3 with the

known initial value Abelian theorems. As far as we know, they are all given
only in the case n=1. Examples 3 and 4 in the first part show that the

icm

©
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results of Lavoine and Misra [7], [8], relating to the point zero, with special
regularly varying functions, can be obtained from Theorem 1. Also, Theorem
3 generalizes results from [10] (relating to the point zero) because in [10] the
authors assume b > —1 and x — 0% on the real line. Carmichael and Milton
[2] obtained results relating to the point zero with L(x)=1 and s
converging to zero and remaining in the right half-plane.

To show that the quasiasymptotic has some advantage over the classical
asymptotic used in [3] in the investigations of integral transformations, we
give the following example connected with the Laplace transform.

The regular distribution (sint), has no usual asymptotic as ¢ — co. That
is the reason why we cannot use the Abelian theorem for the classical
Laplace transform. Also the generalized classical Abelian theorem for the
Laplace transform gives no information on the asymptotic of % (sint) (see
[3], p. 459):

at+ 1
liminft™*sin ¢ < lim inf ———— £ (sint
100 s+0+ r( ) ( )
+1
< limsup—— % (sint) < limsupsint.
< limsup gy ¢ (ein ) < limsup
But we know that
lim jexp —st)sintdt = lim— ! =1,
s0+ 0 8> OS 1

The same result follows by using the fact that (sint).,. has a quasiasymptotic
at oo of power —1 (L(f) = 1) and the Abelian theorem for the distributional
Laplace transform (see [4]).

This paper is based on work supported by the U.S.-Yugoslav Joint Fund
for Scientific and Technological Cooperation, in cooperation with the NSF
under Grant (JFP) 544.
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Estimates in Sobolev norms ||| for
harmonic and holomorphic functions and
interpolation between Sobolev and Hilder

spaces of harmonic functions

by
EWA LIGOCKA (Warszawa)

Abstract. In the paper the duality theory is extended to the case of Sobolev spaces of
harmonic functions whose derivatives are in (D). The behaviour of Bell's operators L' on each
space is studied. These operators together with the orthogonal projection P on harmonic
functions are used to the study of interpolation between I7, Sobolev and Hlder spaces of
harmonic functions. It turns out that all these spaces form a double interpolation scale. If P
maps L*(D) onto the space of Bloch harmonic functions, as in the case of the unit ball, then this
last space is the vertex of this scale, No assumptions on the existence of traces on the boundary
are needed in this approach. The possible use of above approach in the study of the regularity of
the Bergman projection and of solutions of the d-Neumann problem is discussed. The duality
and interpolation theorems are also proved for the spaces of holomorphic functions on strictly
pseudoconvex domains,

1. Introduction and the statement of results. The present paper is a
continuation of [16]-[19]. We extend the duality theory for spaces of
harmonic functions, originated by S. Bell [3], [4] and developed in [53, [10],
[16]-[18], to the spaces Harmy;(D) of harmonic functions belonging to the
Sobolev space W (D), 1 < p < 0. In [16] we gave the detailed description of
this duality for p = 2. Let us define the “negative Sobolev spaces” W, *(D), 1
< p <, s an integer, s > 0, as the spaces of distributions g on the domain
D such that g = Zicl-aDc g;+go, Where go, gy If (D). The space W, *(D) is
the adjoint space to W;(D) which is the closure of C&(D) in W}(D),
q=pfp—1).

In fact, W, *(D) and W; (D) are mutually dual with respect to the I?
scalar product ¢ , >. We equip W, *(D) with the dual norm of (WD)

If s is not an integer, we define W;(D) as the value of the complex
interpolation functor [Wi(D), Wi+ (D)]g for 6 = s—[s], where [s] is the
integer part of s. If s>0 then the “negative Sobolev space” W, *(D)
represents the dual space to W(D) = [W (D), Wi*! (D), 0 = s—I[s], q
= p/(p—1). The space W;(D) is equal to the closure of C&(D) in W (D) for
s#k+1l/g, k=0,1,2,...
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