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Part (b) is a special case of Theorem 0. The estimate [P, | <4 follows
from the calculations in this special case.
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Continuous factorizations of covariance
operators and Gaussian processes

by
G, LITTLE (Manchester) and E. DETTWEILER (Ttibingen)

Abstract. A bounded linear operator Q e L(E', E), defined on the dual E’ of a Banach space
E with values in E, is called a covariance operator if Q is positive, symmetric and compact. If E
is separable, such an operator Q is always of the form Q = To T* where T is a bounded linear
operator from the Hilbert space 1? into E. The following theorem is proved. Let P_(E) denote
the set of all covariance operators. Then there is a universal map T from P,(E) into L(I%, E)
such that Q = T'(Q)o T(Q)* for all Qe P (E) and such that T is continuous, if P,(Ej and
L(I%, E) are equipped e.g, with the norm topology, Roughly speaking, it is always possible to
make a continuous choice of “square roots” for a given continuous family of covariance
operators. This pure functional analytic thcorem has the following application to probability
theory. If (g,),s is & continuously indexed family of Gaussian measures on a separable Banach
space E (continuous relative to the topology of weak convergence of probability measures), then
there is always a Gaussian process (X,),.s associated with the family (g,),.s Which is e.g. mean
square continuous.

1. Introduction. A (centered) Gaussian measure ¢ on a real separable
Banach space E is usually defined as a probability measure on E such that
all one-dimensional projections of ¢ are normal distributions with mean zero.
It follows that the Fourier transform §: E'— C, defined on the dual E' of E,
is given by

o(f)= GXP(—%IQ $x, [ 0(dx)

for all feE'. Hence ¢ is uniquely determined by the bilinear form
[x®xg(dx) on E x k', defined by

(fx®@xaWx)(f, g) = [ oS> <x, gdeldx)

r E

for all f, gk’ Since for a Gaussian measure we always have []|x|* ¢ (dx)
< w0, it follows that the bilinear form [x ® x¢(dx) is given by a continuous
linear operator Q: E'— E, where

@fig>= [, f>¢x gdedn)  (f geE).
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Q is called the covariance ‘operaior of ¢ and has the following properties:

(i) Q is symmetric and positive (i.e. <Qf, y> = <Qy.[> and <Qf. /> =0
for all f, geE"),

(i) Q is compact .

(see [1] and [4] as general reference for these and the following known
results on Gaussian measures).

Every covariance operator Q has a natural factorization through a
separable Hilbert space H, the so-called reproducing kernel Hilbert space,
and .there exists a compact operator T: H — E such that Q = To T* (where
T* denotes the transpose of T).

This factorization of Q leads to the following important representation
of ¢ as the distribution of a series of independent Gaussian random veclors
all taking values in one-dimensional subspaces of E. Let (¢;),», denote a

complete orthonormal system of H, and let (&).», be a sequence of °

independent identically distributed (ii.d.) Gaussian random variables with

o0
mean zero and variance 1. Then ). T(e,)¢, is as. convergent (also in the pth
k=1
mean for any p>0) to an E-valued Gaussian random vector X whose
distribution is ¢ (see [1], p. 143, Theorem 6.8). The factorization of the
covariance operator thus gives a natural method for construcling an
associated Gaussian random vector of an especially nice simple structure.

Now suppose that we have not just a single Gaussian measure but a
whole family (g)s of Gaussian measures, where § is—say—a metric index
space. If we know that there exists a Gaussian process (X,)ss (With (Qy)ses 88
corresponding family of distributions) which is continuous in the pth mean
for some 1 < p < co, then it is easy to prove that the associated family (Qy);.s
of covariance operators is necessarily continuous in s relative to the operator
norm.

Far more interesting is the following converse problem concerning the
existence of Gaussian processes. Suppose that we are given a family (Q,),.s of
covariance operators such that s—Q, is continuous. Is it possible to
construct a Gaussian process (X,),.s from the given family (Q,),.s such that
(X,)ses has nice continuity properties (e.g. mean square continuity. as.
continuity)? A solution of this problem is known in the special case that $ is
an interval of the real line and (besides other additional assumptions)

840, £, f> (feE) is continuously increasing (see [2]). In that case one

gets the existence of a continuous Gaussian process with independent
increments. But for a general index space S no answer seems to be known to
this problem. As will be shown in a forthcoming paper (of E.D.), the solution
of this problem has other interesting implications as well. Thus the problem
also arises (and this was indeed the starting point) in connection with the
construction of Banach space valued diffusion processes, where the only
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information we are given about the Gaussian random “perturbances™ is a
field (Q,.)0.xe: OF cOvariance operators. Even in the case when E is finite-
dimensional or is a Hilbert space, this leads to a wider class of diffusion
processes than the class obtained by the method of stochastic integral
equations. This method is based on the assumption that the “random forces”
driving the diffusion process are already given by a field (X, ()ysoxecz Of
homogeneous Gaussian processes with independent increments and that in
addition this field has rather strong continuity properties (in t and x); at least
local Lipschitz conditions have to be fulfilled. But even in the finite-
dimensional case this is a severe restriction on the class of diffusions
oblainable by this method (see [3] for a thorough discussion).

It turns out that the above-stated problem on the existence of Gaussian
processes can be reduced (o the following more general, purely analytic
problem, which seems to be of interest in itself, Suppose that (Q),.s (S metric
space) is a family of positive symmetric compact operators from E’ into E
such that s—Q, is continuous relalive to a given operator topology (e.g.
norm continuous or only strongly continuous). Does there exist a common
separable Hilbert space H such that

(i) for every fixed seS there is a compact operator from H into E such
that Q, = T,0 T*, and

(i) s+ T, is continuous relative to a corresponding operator topology?

Our main result (see Theorem 1 below) shows that it is indeed always
possible to make such a continuous choice of “square roots” - even for
the whole cone of positive symmetric compact operators. Of course, only in
case that E itself is a Hilbert space can one expect and, indeed, get a
continuous choice of genuine square roots by an application of the spectral
mapping theorem (see below).

These analytic results finally solve the probabilistic problem stated at
the beginning. To any continuous family of covariance operators there
always exists a corresponding Gaussian process, which is at least continuous
in the pth mean for any 1 <p < x (see Theorem 2).

Before stating the main theorem let us make clear the notation and
terminology we shall be using. Given Banach spaces E, F, let L(E, F) be the
usual spuce of bounded linear operators mapping E into F, and let L .(E, F)
be those elements of L(E, F) which are compact. We shall use (L(E, F), n),
(L(E, F),s) and (L(E, F), w} to denote L(E, F) equipped with its norm,
strong and weuak-operator topologies respectively. Likewise, (E, n) and (E, w)
will denote £ with its norm and weak topologies, and (E', w*) will denote E’
with its weak* lopology. Recall that if U is the unit ball of E' then (U, w¥) is
always compact, and that, if E is separable, then (U, w*) is metrizable, so
that it is separable and sequentially compact.

For a Banach space E we denote by P(E) the set of elements of L(E’, E)
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which are symmetric and positive, as defined above, and we denote by P,(E)
those elements of P(E) which are compact. A factorization of a subset
M < P(E) through a Hilbert space H is a map

0mT, (M- L(H, E)

such that Q = T, T}, for all QeM. If M < P (E) we demand further that
TyeL(H, E), for all QeM. We shall say that a factorization is norm
continuous if the map Q T, is continuous as a map from (M, n) to
(L(H, E), n), and that it is strongly continuous if the map QT is
continuous as a map from (M, s) to (L(H, E), s).

Our main theorem is as follows.

TueoreM 1. Let E be a separable Banach space. Then there is a separable
Hilbert space H and a factorization of P,(E) through H which is

(i) norm continuous,

(i) strongly continuous on n-bounded subsets of P,(E).

If E has finite dimension n, then so has H, and if E is infinite-dimensional, then
Hz=[%

If E is reflexive, then in case (ii), the continuity is uniform on n-hounded
subsets of P,(E).

There are two easy cases we can dispose of very quickly. First, suppose
that E is a Hilbert space, so that P(E) is just the set of all bounded positive
operators on E. Every Qe P(E) has a unique square root Q'?eP(E), and it
is easy for us to show that the map Q+Q"? is both norm and strongly
continuous on bounded sets, Indeed, suppose R > 0 and that M is the set of
all QeP(E) satisfying ||Q]| < R. Given ¢ >0, we can choose a real
polynomial p such that

sup |p(A)—AY? <¢/3.
0<1<R
Now the spectrum ¢(Q) of each Qe M is contained in the real interval
[0, R]; so, by the spectral mapping theorem,
IP(Q)— QY| = sup [p(A)—A"3 <e/3,
Aea(Q)
for all QeM. So, if Q;, Q,& M, we obviously have
1212 — 0311 < llp(Q1) = p(Qa)ll +2¢/3.

It is easy to see that the map Q +>p(Q) is norm continuous, uniformly on M:
so, clearly, Q@ ~ Q'? is uniformly norm continuous on M. The reader will be
able to verify uniform strong continuity on M using the same idea. So, not
surprisingly, we can prove Theorem 1 a fortiori for a Hilbert space E.

If Theorem 1 is true for Hilbert spaces, then it is evidently true for
finite-dimensional Banach spaces. Indeed, if E is a Banach space with finite
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dimension n, we can choose an isomorphism J mapping E onto R™. If
QeP(E), then JQJ*e P(R", so we can take

Ty = J "1 (JQI¥V2,
2. Proof of Theorem 1 for a separable infinite-dimensional Banach space.
2.1. Preliminaries. Let us begin by describing, in an informal way, the

known construction of H and TQ for a single operator Qe P(E). Let K
= ker (). Then we can pul an inner product {, Y on E'/K, namely

(20 S+K g+Kd =401 g> (f, geE).

We let Hy be the completion of E'//K with respect to ¢, Yo If feE we
define Ty(f+ K) = Qf. This operator can be extended by continuity to the
whole of Hy, and we find that T is just the natural homomorphism of E’
into Hyp, and that Q = T, T

It is easy to verify the details of this construction (e.g. the consistency of
the definition (2.1)) once we realize that an operator Qe P(E) has many of
the familiar properties of positive operators on Hilbert spaces. Thus there is
a Schwarz inequality:

Q1. 9Y* <0 f><Qy. 9> (£, geE),
which is proved in the usual way. Two immediate corollaries follow:
2.2) kerQ = {feE'; <Qf,f> =0},
(23 0= sup Q11>

Let us also note here (for future reference) that if H is a Hilbert space and
Te L(H, E), then T'T*e P(E), whence it follows, by (2.3), that

(2.4) ITT| =IT*)* = || 7).

Suppose now that, for our fixed operator Q, H, is known to be
separable and infinite-dimensional. Then we can find a sequence (f,) < E
such that (f,+K) is an orthonormal basis for H,. And we can identify Hy,
with /2 by mapping f-+K to its sequence ({Qf,, /> of Fourier coefficients.

It is a reasonable conjecture that if we allow Q to vary continuously in
some suitably “thin™ subset M < P(E), then we can vary each f, continuously
$0 as 10 obtain a parametrized sequence (f,(Q)) & E' such that (£,(Q)+K) is
an orthonormal basis for Hy, for every Qe M. Thus we may be able to
factorize cach Q e M through /%, For a separable infinite-dimensional space E
we are able to make precise this notion of “thinness” and prove a restricted
version of Theorem 1 from which the full theorem can be deduced. So from
now on let £ definitely be separable and infinite-dimensional.

Given a subset F < E' let L(#) denote the set of all finite linear
combinations of elements of &, let L(#) be the norm closure of L(#) and
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let L* () be the weak* sequential closure of L(#), ie. fel*(#) if and only
if there is a sequence (f,) < L(#) such that <x, f,>— {x, [, for all xgE.
Notice that, because the unit ball U of E' is weak* separable, we can always
find a sequence (F,) < E' which is linearly independent and for which
L*((F,}) = E.

One property of L*(#) is worth noting here. Suppose that A, BeP,(E)
and that Af = Bf, for all f in some subset # < E'; then we know very well
that Af = Bf, for all feL(%). But, because 4 and B are compact and
symmetric, we can say that Af = Bf, for all f in the larger set L*(#); for
suppose f & L¥ (#) and that (f,) € L(#) is a sequence converging weak* (o f.
By the uniform boundedness principle, (f,) is bounded so, without loss of
generality, there is a yeE such that Af, — y, in norm. Now Af =y because,
for all he E',

(Af, By = CAh, fy = lim (4h, f,> = lim <A, by = &, h).
n-tr nerog
But, equally, Bf,—y and Bf=y; so Af=Bf.

2.2. Factorization of a thin set.

DeriniTioN 1. Let E be a separable infinite-dimensional Banach space. A
subset M < P(E) is called thin if there is a sequence (F,) < E’ such that

@) (F,) is linearly independent,

(iiy L*({F,}) = E\

(iil) L({F,})nker@ =(0), for all Qe M.

Remark. Notice that the set of all injective elements of P(E) is thin.

ProrosiTioN 1. Let E be a separable infinite-dimensional Banach space
and let M be a thin subset of P,(E). Then there is a factorization of M through
1% which is norm continuous and strongly continuous on hounded sets.

Proof. Let (F,) bé as in Definition 1, and write .# for the set {F,},5,.
Because of condition (iii) and (2.2), the function {, Do on L(F)x L(.#):

(29) roe=<Qf 9> (f,9eL(#F)

is an inner product on L(#) (and not just a nonnegative bilinear form). For
each Q we can orthonormalize (F,) using the Gram-Schmidt process so as to
obtain a sequence (f,(Q)) < L(F) satisfying

(26) (@), 5(Q) g = <O (Q), £;(Q)) = &y,
The f;(Q)'s take the form

i

27 @ = _Zl ay(Q)Fj,
J

where a;;(Q)eR, for 1 <j<i It is easy to verify, by induction, that each
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map Qk—»a,j(Q). (M — R) is weak-operator continuous (hence also strongly
and norm continuous). Notice also that, for n =1 and Qe M,

(28) L(/’l (Q)s fl(Q), "'uf;v(Q)) = L(Fh F;, ey F,,).

Let Ho=[L(#), <, >]" Then, for ever i
, ; v S : ) Yy QeM, (f,(Q) is an
orthonormal basis for Hy; so for each fe L(#) we have Parsival’s )identity:

T G A% = 1113,

which means that

29) Zl Q.1 =<0Lf> (feL(#).

lemma.

LemMma 1. Let U be the unit ball of E' with its weak* topology and let
P.(E) have its norm topology. Then the map i )
©Q.1,9)—<Qf 9> (P(E)xUxU—R)

Is continuous.

: l"roof..lt is sufficient to prove sequential continuity, because P(EyxU
xU is metrlzablc.‘So suppose (Q,) = P,(E), (f,) S U, (g9,) S U are sequences,
and that Q,— Q in norm and f, - f, g,~ g weak*. For every n

|<Qufn1 gn>* <er g>l < |<Quf;|s gn>" <Qf;n gn)'
+I<Qf;|s gn>"' <Q/; gn>l
+14Qf, gu)> = <Qf, g
Because (f,) and (g,) are bounded, it is easy to see that the first and third
terms on the right here tend to 0 as n— oc. To show that the second term
tends to 0 it is sufficient to show that ||Qf, ~Qf|| — 0. Now we certainly have
Qf, — Of weakly, because, for heE,
Qs By = Qb fu>— Qh, [ = <Qf, h);

so it is sufficient to show that every subsequence of (Qf,) has a subsequence
which is norm convergent. But this is guaranteed by the compactness of Q:
thus the lemma is proved. Obviously the same result is true if we replace U
x U with AU xuU, where 4, u> 0.

We can now extend the identity (2.9) as promised. Given feE' and
QeM, let J, f be the linear functional on L(F):

(2.10) JoJ ) =Qy.f> (yeL(F).

We can extend equality (29) to the whole of E’ using the following
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Each J, f is bounded, because, for all geL(#),

211) 1<Qg, 1 < <@g, 9> QA £ 51 < (I LA lgllg- -

So we can identify J, f with a unique element (also called Jo f) of Hy
satisfying

(212) 9, Jo >0 = <Q9. >
Because of the uniqueness of Jj f
Jof=f (JeL(#F).

Applying Parseval’s identity to Jg f we have

@13) WoslE= zi @) Tof Y = iz QL.

so we need to show that ||Jg fli3 = <Of, f>, for all feE": we already know
that this is true for all fe L(#), by (2.9).

So suppose feE' and let (g,) = L(#) be a sequence which converges
weak* to f: we shall show that J, gn—Jo f in norm. For every heL(#%),

'<h, Jan'“JQf>QI = |<Qh’ gn""f)l
< {Qh, 1) <Q (gu—1), gn—f Y?
=lhllg <Q(gn—1), gu—I>""%;

therefore
Wogn—JoSllg =" sup <k, Jogn—Jg [0l
he L(F)
Ihlig=1
< <Q(gn‘"f)a gn_f>1/2 d 07
by Lemma 1, and hence
g fll = tim Vg g,ll3 = lim <Qg,, g.> = <QF, £,
n-+oo “in -+ 00

again by Lemma 1. So, by (2.13), we now have

el T QI@.1¥ =@ (e, QeM).

This identity will be crucial in what follows,
We shall define Ty: 1> E by the equation

@.15) Tx=3 %040,
i=1

where x = (x, X, ..., X, ...)el% Let us consider first the convergence of the
series in (2.15) for each fixed Qe M.
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For'each i > 1, let 4,(Q): 1> — E be the rank-1 operator defined by the
ith term of the series in (2.15):

(2.16) 4(Q)x = x, 0f(Q)
Clearly A;(Q)eL;(I1*, E). If 1<m<n

(xel?.

]

|2 4@l = sup |3 5@

I3 =1
= sup sup| Y x <QA(Q), fH
Il;ﬁﬁl SeU j=pm
where U is the unit ball of E'. Hence, by Schwarz' inequality,
(2.17) I3 4@ < sup 3, <0(Q). />
i=m JeUji=m

Fix QeM. Then we see, by Lemma 1, that each term in the series in
(2.14) is a continuous nonnegative function of f on (U, w¥); so also is the
sum {Qf, f > Since (U, w*) is compact, it follows from Dini’s theorem that

{2.14) holds uniformly over feU. Therefore, by (2.17), the series YA Q)

converges in norm to an element Tbe[t.(lz, E) satisfying (2.15).
It is a simple matter to find T3 and verify that Q = T, T, for all Qe M.
If xel? and feE' then, by (2.15),

Toxf> = F 3 01101,

so the ith component of T fis given by

(T3 ) = <@ (Q), f>,

annd hence

TS = 3 QI@.1506Q  (/<E, 0eM)

By (2.6), Ty T f = Qf, for every f;(Q), and hence for every F e #, by (2.8). So,
since Q, Ty T & P, (E), we see that T, T f = Qf, for all fe I*(#) = E'. Thus
Q—T, is a factorization of M through 1%

Now let-us consider the continuity of the map Q - Tp. First we shall
show that each map Q +4,(Q) is norm continuous and strongly continuous.
So fix iz 1 and let (Q,) be a generalized sequence in M and let Qe M.

Suppose first that [|Q,—Qj| — 0. Clearly, by (2.16),

(2.18) 141(@) =4 Q)] =12 /(@) ~ Qfi Q.
= ||]§:1 (aij (Qn) Qn Fj“'a[j ((0)] QFJ)”,
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where a;; is as in (27). We noted after (2.7) that each «4; is weak-operalor
continuous, so, a fortiori, a;(Q,) — 4¢;;(Q), for 1 <j<i. Also Q,F; — QF; in
norm, 0 ||4;(Q,)—4;(Q)]| — 0. Thus Q +>4,(Q) is norm continuous.

Now suppose Q,— Q strongly. If xel? then by (2.16),

(2.19) 14:(Q0) x — A; (@) x| = ;1 [1Qn fi (@) — Q]

which tends to 0 as before. In fact, 0, — Q strongly implies 4;(Q,) — 4;(Q) in
norm.

Next let us consider the norm continuity of the map Q —T,. Suppose
that (Q,) & M is a sequence, that Qe M and that ||Q,— Q| -» 0. We know
that, for each k, -

(2.20) T, = 2 Ai(Qu),
i=1

in the norm topology of L,(/?, E), To show that I Tp,— Toll - 0 il is sufficient
to show that the (norm) convergence in (2.20) is uniform over k. Now the set
consisting of all the operators (Q,),»; together with Q is norm compact; so,
by (2.17), it is sufficient to show that, if K =M is norm compact, then the
series in (2.14) is uniformly convergent on K x U. This can be done using
Dini’s theorem as before. Thus the right-hand side is certainly continuous on
K xU, by Lemma 1. Also by Lemma I, each term on the left of (2.14) is
continuous on K x U, because it is an easy consequence of (2.7) et seq. that
the map Q> f(Q) (K, n)—(E', w*)) is continuous. Thus we have proved
that Q T, is norm continuous.

Now let M’ = M be bounded — say ||Q| < R «= =, for all Qe M". To
study strong continuity, let xel/*> be fixed but arbitrary. We know that
Tpx =) A(Q)x in the norm topology of E: we shall show that the
convergence is uniform over QeM’. Let I <m < n; then for all Qe b,

|Z A@x" =1 % % 0h(@ = supl Y. x <@/

< xP)sup ¥ <0%(Q). /)
i=m JeUi=m

n "

<( 3 Fsup Q> <R(Y )

i=m J i=m

by (2.14). Hence Tgx =Y A,;(Q)x, uniformly over Qe M, and s0 Qs is
strongly continuous on bounded subsets of M. So Proposition 1 is now
proved.

2.3. Factorization of P,(E): continuity. There is a very natural way of
factorizing P (E) through [2 given Proposition 1 and the following lemma.
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Lemma 2. Let E be a separable infinite-dimensional Banach space, and let
(F,) & E" be a sequence satisfying

(i) (F,) is linearly independent,

(iiy L¥({F,)) = E.
Let Ey =1>®E. Then there is a sequence (G,) € E| =1* @ E" such that

(iii) (G,) is linearly independent,

(v} *({G,)) = EY,

(V) L{G,) A~ E' = (0).

Prool. The precise norm we put on /> @ E is not important, but for
definiteness let us define

655 XN = 121+ 1]
so that, for (5, /1el* D E = E},
[, M1 = max (], ||F1D-

Notice that a sequence ((,, /;)) < E} is weak* convergent to (1, f)e E' if and
only if y, -y weakly in I* and f,— / weak* in E'.

For nz 1, let h,el* be the real sequence

h,=(0,0,...,0,1,0,...,

where the 1 appears in the nth place. Use # to denote the set {F,},5, and
H#' 10 denote the set {h,),, ;. each set considered as a subset of Ej. Clearly
the union .# u & is linearly independent and L*(#F u %) = Ej. We shall
deline (G,) by perturbing the elements of .

Now [%/L(#) is infinite-dimensional, so there is a sequence (k,) <I*
such that the sequence (k,+ L(#)) is linearly independent in I*/L(#), ie.

((el? xeB),

S ke L(A)
[
It is casy to see, therefore, that the union (k) u(k,) w(F,) of the three
sequences is linearly independent in Ej. ‘
Let the sequence (G,) & E{ be an ordering of the union (hy) W(F+ky) of
the two sequences (h,), (F,+k,). Clearly (G,) is linearly independent, and if
H
> (bt iy (Fr+k))e EY

i=1

implies O=A =4, =..=4,.

then A =g =0, for 1 <i<n So (G,) satisfies (i) and (v). -
To show that (G,) satisfies (iv) note first that (G,) contains an
orthonormal basis (k,) for [% so clearly

I* g L({G,}) € I*({G))-
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For any fixed N > 1 we can write

o0

ky = Z &k,
i=1

where & = <ky, ;> and the series converges in the norm of I%; so we

certainly have

Fy =(F:\1'H<N)"_Z1 &he L({G,}),
and hence L(#) < I({G,}). It follows that E' < I*({G,)); for if f € E' we can
find a sequence (u,) < L(#) such that u,— f weak* and we can find a
sequence (v,) < L({G,}) such that [u,~v,]| < 1/n. It follows easily that v, — f
weak*. Now we see that (G,) satisfies (iv), and hence the lemma is proved.
- Now we can construct a factorization of the whole of P,(E) through /2,
Notice first that, since E is separable and infinite-dimensional, a sequence
(F,) S E' satisfying (i) and (ii) of Lemma 2 certainly exists; so there is a
sequence (G,) € E; = 1> @ E’ satisfying (iii), (iv) and (v).
Let K be a fixed compact positive injective operator on 1%, Given
Qe P (E) define QeP,.(E,) by

(2.21) 0.0 =(Ke, Q).
It is easy to verify that Q is indeed an element of P,(E,), and also that
ker=kerQ c E.

It follows that the set M of all operators § with Qe M is a thin subset of
F.(Ey); so there is a factorization §+ T, of M through I* which is norm
continuous and strongly continuous on bounded sets.

Let P be the projection of E, onto E:

P, x)=x (¢el?, xek),
Then P is bounded, and P*: E'— E} is just the injection

P f=(0./) (feE).

Clearly Q = PQP*, for all QeP.(E). So if we put Ty = PTy we see that
Toe L,(/* E) and that Q = Ty T§. So we have constructed a factorization of
P.(E) through [, and, because P is bounded, this factorization is norm
continuous and strongly continuous on bounded sets.

24. Factorization of P,(E): uniform continuity. We take the same
approach as in Section 2.3: first we prove a lemma about thin sets, then we
extend its scope using the map Q 0 and the projection P described above.

Lemma 3. Ler E be a separable infinite-dimensional Banach space and let
M <= P,(E). Suppose that there is a thin subset M’ < P(E) such that M = M’
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and suppose that M' is weak-operator compact. Then the Jactorization Q T,
constructed in Proposition 1 is uniformly strongly continuous on M.

Proof. Notice first that M is necessarily norm bounded.

At the beginning of the proof of Proposition 1 we orthonormalized the
sequence (F,) so as to obtain a sequence (f,(Q)) satisfying (2.6) and (2.7), for
all QeM. The compactness of the Q’s was not used; so in the present
context we can equally well obtain a sequence (f,(Q)) satisfying (2.6) and
(2.7), for all QeM’. Just as before, each map Q—a;(Q) will be weak-
operator continuous. But now, M’ being compact, these maps will be
uniformly weak-operator continuous and bounded on M, and hence, a
fortiori, on M. We can now dispense with M’ and consider the factorization
of M as constructed in Proposition 1.

For each fixed xe!? we have Tyx =Y A4,(Q) x (see (2.15), (2.16)). The
convergence of the series is in the norm topology of E, uniformly over Qe M.
So to prove Lemma 3 it is sufficient to show that, for every xe!? and i 3 I,
the map Q —A4;(Q)x (M, s)~(E, n)) is uniformly continuous.

Given Q,, Q,e M, we have

i i
[14;(Q1) x~ 4; (@) x| = | ”j; a;(Q1)Q, F;— Z:l a;(@2)Q2F)),

by (2.16) and (2.7). Each map Qra;(Q) (M, s)~ R) is bounded and
uniformly continuous: so also are the maps Q —QF, (M, s)—(E, n)). So,
clearly, each map Q ++A4,(Q)x (M, s)— (E, n)) is uniformly continnous and
the lemma is proved.

Finally, suppose that E is reflexive and that M < P,(E) is norm
bounded ~ say ||Q|l SR <o, for all Qe M. Let

M' ={QeP(E); IOl <R};

then, because E is reflexive, M’ is weak-operator compact, If E, = 1> Q E is
as in Lemma 2, and if

M={0; geM}, M ={Q; QeM},
where the extension Q —@ is defined as in (2.21), then it is easy to verify that
Ey, M, M’ satisfy the hypotheses of Lemma 3. Therefore the map § - Ty is
uniformly strongly continuous on M.

Since T, = PTp, the map @+ T, is the composition of three maps: first
Q+Q, then @ =T and finally multiplication on the left by P. Now all three
maps are strongly uniformly continuous. This is obvious for the third map,
and we have just dealt with the second. But in the case of the first map we
need only notice that, for all @, Q,eM,

105 (x, /)= Qa1 (%, MM = 1@ f— Q2 fI

Thus the proof of Theorem 1 is complete.

(xel?, feE).
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Remarks. If we apply the method of Section 24 to study uniform
norm continuity, we are only able to prove that Q + Ty is uniformly norm
continuous on norm compact sets. But norm continuity already implies this.

The reader who is interested in functional analysis for its own sake will
have no difficulty in proving that the factorization we have constructed is
weak-operator continuous on bounded sets, and that, in the reflexive case,
the continuity is uniform on bounded sets. A slightly more difficult exercise is
to prove the following. “If E and E' are separable then there is a
factorization of P(E) through /% which is strongly continuous on bounded
sets. If E is also reflexive then the continuity is uniform on bounded sets.”
This can be done by modifying our method. Because E' is separable there is
a sequence (F,) €E' such that L({F,}) = E'. The main modification to be
made is to replace L*({F,}) throughout with L({F,)) (see for instance
Definition 1). For the most part this involves a simplification of the
argument.

3. Applications to the construction of Gaussian processes. Suppose that
(X)ses (where § is a metric space) is an E-valued Gaussian process defined
on some probability space (2, #, P) such that s~ X, is continuous in the
pth mean for a 1 < p < oo, Then necessarily the family (Qy).s of covariance
operators associated with (X,).s I norm continuous in s This is a
consequence of the fact that the continuity of (X,),,s in the pth mean implies
the weak continuity of the family (g,),s Of distributions of the process (X,),.s.
But the weak continuity of (gg)‘ﬁs implieq the norm continuity of (Q,),.y, since
lim g, = o, weakly implies lim ¢ 0s, = 05 uniformly on the unit ball of E'. The
n—+on n=ro;n
main application of Theorem 1 is the following converse result.

THEOREM 2. Let (Q)ses be a fumily of covariance operators of Gaussian
measures @ such that s—Qg is strongly continuous. Then there exists a
Gaussian process (XJes such that s+ X, is contimious in the p-th meun for
any 1< p< x. .

Proof. By Theorem 1 there exists a family (T)).s in L (/%, E) which is
strongly continuous on norm bounded subsets of (Q,),.s. Let (s Sphuzo bE an

arbitrary sequence in S with lim sp =8¢, The strong continuity of (Q)y.s

implies supHQ,,I] < oo by the umform boundedness principle. Hence lim T,

" v
= Tg, slrongly and bupHT Il < o0 by (2.4). Now let (¢,) 5, denote a uomplulb
orthonormal system ol' 12, and let (&)yz, be an iid. sequence of Gaussian
random variables with mean zero and variance 1, defined on some
probability space (Q, #, P). Then for every lixed seS the series
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is a.s. convergent and X e LP(Q, #, P; E). Moreover, X (P) =g, ([1], p. 143,
Theorem 6.8).
For every fixed seS and neN

3.0 E| ¥ T

k=u+1

& |p <E || Z T (e & fp,
k=n

since X= 3 Ti(eé and Y= Ti(e)) &, are independent, mean zero
k=nt1
random vectors (see [1], p. 103, Lemma 27). Since
hm E H Z e &l =0,
we gel

o

(3.2)

” 0, wuniformly on K = {s,}mso0s

ner
by Dini’s thuorc:m, since K is compact.
On the other hand, for every fixed ne N we have for every we@
(@) S (@) — Z

(3.3) lim H L @@ =0

ety

since fim T, = T, strongly, and

mrig

(34 HZ (e &) };

(3.3) and (3.4) show that

7;,,,” ” z::l e e (a))”.

&) Ex ()] < 2sup ||
mz0

e can apply Lebesgue’s theorem to get

n

(3.5) lim E || Z L= Y Ty &l =0,
1

" k= k=

for every fixed neN. (3.2) and (3.5) together now imply that

X\‘m""Xso”p =0
mer s
e, (X,)s Is continuous in the pth mean.

Remarks 1. Starting with a strongly continuous family (Q).s of
covariance operators, the continuity of the process (X)s in Theorem 2
implies that {Q,),.s must necessarily be norm continuous.

2. As mentioned above, the weak continuity of a family of Gaussian
measures (g,.s implies the norm continuity of the corresponding family
Qs Of covariance operators. Hence Theorem 2 could be equivalently
formulated as follows. To any weakly continuous family (0)s.s of Gaussian
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measures, there exists a Gaussian process (Xy)es such that the distribution of
X, is g, and s+ X, is continuous in the pth mean for any 1 <p < cc.

3. With similar arguments as in the proof of Theorem 2 one can also
show that the process (X,),.s of the theorem has the additional property that
lim Xs,,, = Xs0 a.s. for any sequence (S,)mzo With lim s, = 3,. But, of course,

m=w m=o

this does not necessarily imply that (X,),s iS a.s. continuous.
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