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A note on Lie nilpotency in operator algebras
by

C. ROBERT MIERS* (Victoria, B.C)

Abstract. A Lie algebra A of operators is called ad-nilpotent if for each ae 4 there exists a
positive integer n{(4) such that (ad a)"® =0, and A is called ad-quasi-nilpotent if for each ae A,
Ji(ad a)"l|"”—n» 0. It is shown that Lie algebras which arise as Lie ideals of certain associative
operator algebras and which are ad-quasi-nilpotent, are, in fact, central.

1. Introduction and notation. A Banach-Lie algebra 4 is a Banach space
and a Lie algebra with a Lie product [ , ]: A xA4 — 4 which is continuous
in the norm topology on A. In [8] such an algebra was called nilpotent if for
each ae A the operator ada: 4 — A defined by (ad a)(x) = [a, x] is- quasi-
nilpotent, ie. ||(ad @)"||'"" — 0. It was shown [8, Proposition 8] that if K (X) is
the collection of compact opérators on a Banach space X considered as a Lie
algebra with [S, T] = ST—TS, and L a Lie subalgebra consisting of quasi-
nilpotent operators, then the uniform closure 4 of L is a nilpotent Banach—
Lie subalgebra of K (X) in the above sense. And conversely, it was shown [8,
Theorem 1] that if A is a nilpotent Banach-Lie subalgebra of K (X), then
either X has a nonzero finite-dimensional A-invariant subspace or A consists
of quasi-nilpotent operators.

If A is finite-dimensional, then to say that 4 is nilpotent in the above
sense implies there is a positive integer ny such that (ada)™ = 0 for all ac A.
Engel’s Theorem (cf. [4, p. 12]) states that this is equivalent to the condition
that there exists a positive integer n, depending only on A4, such that
(ada; oada,0...0ada,)(x) =0 for all a, xed. This latter condition,
phrased in terms of the termination of the descending central series for A4 is
usually taken as the definition of a nilpotent Lie algebra (cf. [4, p. 11]).

We prefer to call a Lie algebra 4 of operators ad-nilpotent if for each
ae A there exists a positive integer n(a) such that (ad @)"® = 0. And we call
such an algebra ad-quasi-nilpotent if ||(ad a)"||1/"—">0 for each ae A. In this
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note we study ad-nilpotent and ad-quasi-nilpotent Lie algebras of operators
which arise as Lie ideals of certain associative operator algebras equipped
with the Lie product as above. Our study is restricted to classes of algebras
whose Lie ideal structure is well understood. It is shown that in these rather
special cases, the lower central series terminates quickly.

If A is an associative complex algebra with multiplication (x, y) — xy,
then 4 becomes a complex Lie algebra with [x, y] = xy—yx. For subsets
B, C = A we define

[B,C] = {Z [b;, ci]| beB, ¢;eC}.
i=1

A Lie ideal in A is a linear subspace U < A4 for which [4, U] < U, and the
centre of A is the Lie ideal Z, = {ze A| [z, A] = {0}}. We shall always
assume that our algebras contain an identity 1. An algebra of operators A
acting on a vector space X is called n-fold transitive if given independent
vectors X, ..., X, and arbitrary vectors y,, ..., y, in X there exists ae 4 such
that ax; = y,. If X is a Banach space we denote the algebra of all bounded
linear operators on X by B(X).

2. Ad-nilpotent Lie ideals in B(X).

Lemma 1. Let A be a 1-fold transitive algebra of operators acting on a
Banach space X with dim X = oo, and let U be a Lie ideal in A. If ad aly is
nilpotent for all acd, then U =Z,.

Pro pf. By [3, Lemma 1.3] either U € Z, or there exists a two-sided
nonzero ideal I € 4 such that [4, I] < U. In the latter case, I is also 1-fold
transitive and so by [2, Lemma 2] I is 2m-fold transitive for each m. If

Xy, -.o, Xy are linearly independent and yj, ..., y, arbitrary vectors in X,
choose jel such that
) 0, i=1,..,m,
JX = .
—Viem I=m+1,..., 2m,
and choose aeA such that
axi={xm+i’ l:=1:--'>m:
0, i=m+1,..., 2m.

Then. '[a,j](xi) =y for i=1,...,m This shows that [4, I] is m-fold
transitive, and .hence U is m-fold transitive for each m.

We now proceed much as in [5, Lemma 3 and Theorem 3]. Suppose
aeA and (ad a)y =0 where n will, in general, depend on a. We claim that

for each xe X the subspace W = Span {x, ax, ..., a"x} reduces a. For, if to
the contrary {x, ax, ..., a"x} is independent, let Ae C and ve X be arbitrary
and choose ueU such that ua"*x = A""*y for k =0,...,nby the m=n

+1-fold transitivity of U. Then .
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0=(adau)x)= Y %(-l)ka"ua""‘x |
K=okl

o1
= ﬁ(—l)"aki"”kv =(a—A)"v.
k=ok! :

Hence (a—~A)" =0 for all Ae C. The Hahn-Banach Theorem now implies a
contradiction so that {x, ax, ..., a"x} is dependent for each xe X. Thus, if
ae A there is an eigenvalue AeC and a corresponding eigenvector v # 0. If
beU, then i ’

0= ((ad@)"b)(v) = (ad (a=A)"b)(v) = ¥ %(—l)k(a~l)”'kb(a—l)kv

k=0

=(a—A\"bv.

By the transitivity of U, (a—1)" = 0 so that the spectrum of a consists of a
single point for each ae A. This is impossible by the 2-fold transitivity of A.

TueoreM 1. Let A be a semi-simple Banach algebra and U < A a Lie
ideal. If adaly is nilpotent for all ac A, then U = Z,.

Proof. Let I be a maximal modular left ideal in 4 and let T: 4
— B(A/I) be the left regular representation of 4 on A4/I. Then T(A) is a 1-
fold transitive algebra acting on X = A/I and T(U) is a Lie ideal in T'(4).
Moréover, if ac A then ad T'(a)|yy, is a nilpotent operator for all ag 4. If X
is finite-dimensional then, since T(A) is irreducible, T(A4) = B(X) and so
T(U) is one of {0}, C, the trace zero elements of B(X), or B(X) itself by [3,
Theorem 1.3]. If dim X > 1 the classical Engel’s Theorem rules out the last
two possibilities for T(U). Hence, if dimX < o, T(U) € C: If dim X = oo,
Lemma 1 implies T(U) = C. Hence in all cases, [T(v), T(a)] =0 for ueU,
ae A, or [u, a] Skernel T. Since each primitive ideal arises as the kernel of
such a T we have [u, a] =0 by the semi-simplicity of 4. Hence U = Z,.

3. Ad-quasi-nilpotent Lie ideals in vyon Neumann algebras.

THEOREM 2. Let U be a (not necessarily closed) Lie ideal in B(H) where H
is a separable Hilbert space. If adu|y is a quasi-nilpotent operator on U for
all ueU, then U = C.

Proof. By the proof of Corollary 3 in [1] either U< C or F, U
where %, is the collection of finite rank operators of trace zero. In the latter
case, [|(adu)"(x)||‘/"—n’0 for all xe&F,, |Ix|l =1, and all ueU since adu is
quasi-nilpotent. By [8, Lemma 13], this implies that the subspace H
= {veH| ||(u—A)"v||¥/"— 0} is x-invariant for each xe&,. Hence H} is x-
invariant for each xe % where & is the ideal of finite rank operators on H,
and so H} is {0} or H for each AeC, ue U. Neither of these possibilities can
occur since %, < U. ' \
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LemMa 2. Let A be a von Neumann algebra and J a uniformly closed two-
sided ideal in A. If adjy is quasi-nilpotent for each jeJ, then J is abelian.

Proof. If aeJ¥, the set of positive elements of J, and if {p}} is the
spectral resolution of a then 1—p} = q,eJ for 1 > 0. Since each self-adjoint
‘element is the difference of two positive clements in J and since J is
uniformly closed, it suffices to show that if geJ and ¢ is a projection, then
qeZ;.

If g =q*eJ then (adg)*(x) = (ad g) (x) for all xeA so (adg)*"*! =adg
for each positive integer n. Hence

Sup lltad g)**** (x)]| = Sup, [Itad @) (x)]].
xeJ xeJ

Since adg|, is quasi-nilpotent,

1/(2n+1) - (

sup l(ad g+ () "™V~ 0

bl =1
xeJ

( Sup, lI(ad ) (x)If)

so that sup [l(adg)(x)l| = 0. Consequently, [g, x] =0 for all xeJ.
Il*if=1

THeOREM 3. Let A be a von Neumann algebra, and let U be a uniformly
closed Lie ideal of A. If aduly is quasi-nilpotent for each ucU, then U cZ,.

Proof. By [6, Theorem 1] if A4 is infinite there exists a uniformly closed
two-sided ideal J with J € U < J+Z,. Hence in this case if jeJ then adj,
is quasi-nilpotent. Similarly, if 4 is finite there exists a uniformly closed two-
sided ideal J such that (1) J "4y = U where 4y = {ae | a* = 0} and a* is
the centre-valued trace on 4, and (2) J SU+Z, cJ+Z,. Now if jelJ, j
—j*eJ N4, €U so that ad(j—j*)|y = adjly is quasi-nilpotent. If xed, ||x]]
=1, then x—x*eJ N A, €U and |]x—x%| <2 so that

(sup, ads Col)™ = sup fady ()"
xeJ xed
<(sup liadjy @)™ 0.
MSL\/

Thus adj|; is quasi-nilpotent in the fnite case also.

In both cases, by Lemma 2, J is abelian. This implies that the ultra-
weak closure J=** of J is abelian and so J~" = 4¢ = {ac| ae A} where ¢ is a
central abelian projection’ in A. This implies J &J"" = Ac =2,
=(Z,)c <=Z,. Thus in both cases, U = Z,.

In general, if 4 is any von Neumann algebra, then A4 = Ac+A(1-c¢)
where Ac is finite, A(1—c) is infinite, and ¢ is a central projection in 4. The
above considerations then apply to both summands.
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