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#-Universally bounded unitary operators and the stracture
of locally convex vector spaces

by

J. VUKMAN (Maribor)

Abstract, Let X he a real or complex Hausdordf locally convex vector space, and let LX)
be the algebra of all continuous linear operators of X into itself. Suppose there exists a x-algebra
B(X) < L{X) which contains the identity operator I and all continuous linear operators with
finite-dimensional range. If for some calibration # which generates the topology on X, the
relation p, (U/x) < p(x) holds for all p,e 2 and all unitary operators U B(X) (i.e. U¥U = UU*
= I), then an inner product (-, -} can be introduced into X so that X equipped with this inner
product is a Hilbert space and the topology induced by the inner product coincides with the
given topology on X. For each AeB(X) the relation (Ax, y) =(x, 4¥y) holds for all pairs
X, 1eX.

Let X be a real or complex locally convex vector space. A calibration is
any family # of seminorms generating the topology of X, in the sense that
the topology of X is the coarsest with respect to which all the seminorms in
# are continuous. A calibration 2 is characterized by the property that the
sets ’

ixeX: px)<sl, e>0, pes,

constitute a neighbourhood sub-base at 0. Let #(X) denote.the collection of
all calibrations # on X which determine the topology of X.

A linear operator A: X — X will be called 2-universally bounded if for
each p,e #, where # is a calibration, the relation p,{Ax) << Cp,(x) holds for
all xeX and some constant C. The set of all' #-universally bounded
operators will be denoted by B,(X). Obviously, each #-universally bounded
operator is continuous. We shall denote by L(X) the algebra of all
continuous linear operators of X into itself and by X* the space of all
continuous linear functionals acting on X. Let f'e X* be a fixed continuous
linear functional and xeX a-fixed vector. We shall write x® f for the
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continuous linear operator defined by the relation (x® f)y = f(y)x. By
involution we mean a linear (in the complex case a conjugate-linear) mapping
A+A* on L(X) or on some subalgebra of L(X) such that (AB)* = B* 4*
and 4** = 4. We call a continuous linear operator U unitary if U*U
= UU* =1, where I denotes the identity operator; a continuous linear
operator H is called hermitian if H* = H,

The #-universally bounded operators, which were to our knowledge
introduced by T. Moore [6], have been extensively studied (see [1], [3]
where further references can be found). Let us point out that B, (X) equipped
with the norm

|41l = sup {p,(4Ax); p,(x) <1 for all xeX and all p,e %}

is a unital normed algebra (see [6] for details). The main purpose of this
paper is to prove the result below which characterizes Hilbert spaces among
all Hausdorff locally convex vector spaces in terms of Z-universally bounded
unitary operators.

THEOREM 1. Let X be a real or complex Hausdorff locally convex vector
space and let B(X) be a subalgebra of L(X) containing the identity operator I
and all continuous linear operators with finite-dimensional range. Suppose
further that there exists an involution A s A* on B(X). If for some calibration
Pe P(X) the relation

p(Ux) < p, (%), xeX,

holds for all unitary operators UeB(X) and all p,e @, then an inner product
(, ) can be introduced into X so that X equipped with this inner product is a
Hilbert space and the topology induced by the inner product coincides with the
given topology on X. For each AeB(X) the relation (Ax, y) = (x, A*y) holds
for all pairs x, yeX.

Remarks. It is somewhat surprising that in the result above we obtain
the completeness of X without assuming the completeness of any kind. The
involution is not assumed to be continuous. The assumptions are almost
purely algebraic—the only condition in terms of seminorms is the condition
concerning the unitary operators, but there is no assumption concerning the
existence of nontrivial unitary operators. The question arises how can these,
by our opinion, weak conditions imply that X is not only complete but even
a Hilbert space. Speaking roughly, the completeness is a consequence of the
fact that for each normed space X the dual space X* equipped with the
usual norm is complete. More precisely, at the end of the proof of Theorem 1
we shall use the following well-known result whose proof is almost obvious
and will therefore be omitted.

Lemma 2. Let (X, (-, -)) be a real or complex pre-Hilbert space. If for each
linear functional f on X which is continuous with respect to (-, -), there exists
yeX such that f(x)=(x, y) for all xeX, then (X, (-, ")) is a Hilbert space.
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Speaking about the existence of nontrivial unitary operators, let us point
out that in the proof of Theorem 1 we shall construct these operators using
continuous linear idempotents and it is obvious that at least continuous
linear idempotents with finite-dimensional range exist in abundance since we
require that B(X) contains all continuous linear operators with finite-
dimensional range. :

Proof of Theorem 1. From the requirements of the theorem it
follows immediately that the relation

1) P2 (Ux) = p, (),

holds for all unitary operators UeB(X) and all p,e 2. We intend to prove
that for an arbitrary idempotent PeB(X) the implication

(2) P¥P=0= P=0

holds. Suppose on the contrary that there exists a mnonzero idempotent

xeX,

.PeB(X) such that P*P = 0. Then a routine calculation shows that for any

real number t the operator U, defined by the relation
U, = I+(expt—1) P+(exp(—1)—1) P*~4(expt +exp(—1)— 2) PP*

is unitary. Let ec X be a nonzero vector such that Pe =e. Then P*P =0
implies P*e = 0. Hence

()

Since e 0 there exists p,e# such that p,(e) # 0 (recall that X is by
assumption Hausdorff). Hence, according to (3) we have p,(U,e)
= (expt)p,(e) which is in contradiction with (1). The implication (2) is
proved. '

Now we are going to introduce an inner product into X. For this
purpose let us choose a one-dimensional hermitian operator He B (X). The
existence of such an operator is ensured by the implication (2). Namely, for
an arbitrary nonzero one-dimensional idempotent P we have a hermitian
operator P* P which is by (2) nonzero and it is obvious that the range of
P* P is one-dimensional. The operator H can be expressed in the form

4 H=e®f,

where ecX is a fixed nonzero vector, and foeX* a fixed nontrivial
functional. It is easy to see that for each AeB(X) we have HAH = f,(4e) H.
Therefore for each 4 e B(X) there exists a real (complex) number A such that

® HAH = AH.

Let us denote by L the left ideal B(X)H. Let A =4, H, B= B, H be
from L. Using the fact that H is hermitian, we obtain B* 4 = (B; H)*(4, H)
= HB¥ A, H. Hence, according to (5) for each pair 4, BeL there exists a

U,e = (expt)e.
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number A such that B*A = AH. In other words, one can introduce a
mapping (-, *) from L x L into the real (complex) field as follows:

(6) (A, B H=B*A, A, BelL.

It is easy to see that the left ideal L contains exactly those operators
which can be written in the form x ® f,,, where xe X is an arbitrary vector
and f; the functional from (4). Using the isomorphism x+—x ® f, one can
introduce a mapping (-, *) from X x X into the real (complex) field as follows:

0] (x, ) =x® fo, y® fo)s

where (x ® fo, ¥y ® fo) means the same as in (6). It is obvious that (-, *) is
linear in the first argument for the fixed second. From the fact that H is
hermitian, it follows immediately that (x, y) =(y, x) (in the complex case
(x. ¥) = (y, x)) for all pairs x, yeX. We do not know yet if the mapping
(v, *) is an inner product since we did not prove its positive definiteness. This
problem will be considered later on; now we are going to prove that

8 : (Ax, y) = (x, 4*y)

for each AeB(X) and all pairs x, ye X. Using the relation (Ax) ® f,
=A(x ® fo), we obtain

(Ax, y)H = (AX) ® fo, y ® fo) H
=(A(x ® fo), y ® fo) H =y ® fo)* A(x ® fo).
On the other hand
(e, A*Y)H = (x® fo, (4*)) ® fo) H = (x ® fo, A*(y ® fo)) H
=(A* (Y @ L) (X ® fo) = (1 ® fol* A(x ® fo).

Let us prove that all linear functionals of the form f(x) = (x, y) are
continuous. Let H, e and f;, be from (4), and let us choose ue X such that
Jo(w) = 1. Let p,e 2 be such that p,(e) % 0. We have

LS () p(&) = o ((x, ) Hu) = p, (v ® So* (x ® fo)u)
<q((x ® fo)u) = 4 ().
Hence |f(x)] < p,(e)™? q(x), where ¢ is some continuous seminorm, which
proves the continuity of the functional.

Now we intend to prove that each continuous linear functional f'e X*
can be written in the form f(x) = (x, y) for some fixed ye X. Let therefore
JeX* be given and let us choose z and y such that (y, z) = 1. According to
®) we have £(x) = ((y ® /) x, 2) = (x, (v ® f)*2).

All is now prepared to prove the implication

® (x, )=0 = x=0.

x, yeX,
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Assume on the contrary that there exists a nonzero vector ec X such that
(e, &) =0. Then the idempotent P defined by P=e® f, fe X*, f(e) =1, is
nonzero. For all pairs x,yeX we have (P*Px,y)=(Px, Py
=(f(x)e,f(y)e) = 0. Therefore P*P =0 which is in contradiction with
P #0 according to the implication (2).

Now we are going to prove that the mapping (-, -) is positive or negative
definite. We shall assume that X is a real space, the proof for the complex
case is similar. Suppose there exist vectors u, ve X such that (u, u) > 0, (v, v)
< 0. In this case there exists a real number t such that r?(u, u)+ 2r(u, v)
+(v, v) = 0. In other words, for some real number ¢ we have (1u+wv, tu+uv)
=0 which implies ru+v = 0 according to (9). Then (v, v) = 1*(u, 1) which is
in contradiction with the assumption.

We may assume that (-.-) is positive definite, since in case (-, ') is
negative definite one can introduce a positive definite mapping (-, ?) by
(x, ¥)o = —(x, y). Hence (-, ) can be considered an inner product.

Now we intend to prove that the topology induced by the inner product
(v, *) coincides with the given topology on X. For this purpose let us prove
that for each p,e £ the implication

(10) (€15 €1) = (€2, €2) =1 = p.(e)) = pe(er)

holds for all e, e, e X. Let therefore ey, e, € X be such that (e, e;) = (e, e,)
=1, and let us first assume that

an

Let us define P, and P, by the relations P, x = (x, e;) ey, P, x = (x, e;)e,. It
is not difficult to see that the idempotents P, and P, are hermitian. From
(11) we obtain P, P, =P, P, =0, whence it follows that the hermitian
operator P = P, + P, is also an idempotent. According to (11), e, and e, are
linearly independent. Denote by X, the two-dimensional subspace of X
determined by e; and e,, and let a subspace X, < X be such that X
= X, ® X, is a decomposition of X made by the idempotent P. Then each
xeX can be uniquely expressed in the form x = 4,e; +4,e,+x, x.€X,,
which allows us to introduce a linear operator U by the relation Ux = 1, e,
+Aye,+x,. It is not difficult to see that Ue B(X) and that U is unitary.
Therefore since Ue; = e, and since for each unitary operator the relation (1)
holds, we have p,(e;) = p,(Uey) = p,(e,), p,€ #, which proves the implication
(10) for the special case (e,, e;) =0.

Let us prove the general case. Let therefore e, e;eX be vectors such
that (e,, e;) = (e;, e;) = 1. There exists a nontrivial functional fe X* such
that f(e) = f(e;) = 0. Since we have proved that each continuous linear
functional can be represented by the inner product, it follows that there
exists a nonzero vector ee X such that (e, ) = (e,, ¢) = 0. We may assume
that (e, e) = 1. Hence p,(e;) = p,(es), p,€ %, which proves the implication

(e1, €2) = 0.
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(10) in its full generality. From the implication (10) we deduce that for each
D, € P there exists a constant C, such that

az - ' (%) = C, (x, )"

for all xe X. From (12) we can conclude that each p,e 2 is a norm and that
all these norms are not only equivalent but in fact even equal. Therefore X
equipped with the original topology can be considered a normed space, and
according to (12) the topology induced by the inner product coincides with
the original topology.

It remains to show that X equipped with the inner product is complete.
Since we have just proved that the topology induced by the inner product
coincides with the original topology, and since we know that linear
functionals which are continuous with respect to the original topology are
exactly those which can be represented by the inner product, all requirements
of Lemma 2 are fulfilled and X is complete. The proof of the theorem is
complete.

Remark. The proof of Theorem 1 is rather long, but it is elementary in
the sense that we do not use any results and methods from B*-algebra
theory.

We conclude with the result below which also characterizes Hilbert
spaces. )

THEOREM 3. Let X be a real or complex Hausdorff locally convex vector
space and let B(X) be a subalgebra of L(X) containing the identity operator I
and all continuous linear operators with finite-dimensional range. Suppose
Jurther that there exists an involution A A* on B(X). If the group of all
unitary operators in B(X) is equicontinuous, then an inner product (-, ) can be
introduced into X so that X equipped with this inner product is a Hilbert space
and the topology induced by the inner product coincides with the given topology
on X. For each AeB(X) the relation (Ax, y) = (x, A*y) holds for all pairs
x, yeX.

Proof. By Theorem 4 in [6] there exists a calibration #e#(X) such
that each unitary operator from B(X) is contained in the unit ball of B;(X)
{so-called recalibration). Therefore all requirements of Theorem 1 are fulfilled
and the proof is complete.

Concluding remarks. The history of the results presented in this
paper began with the classical result of Kakutani and Mackey [4], [5] which
characterizes real or complex Hilbert spaces among all Banach spaces in
terms of involution on L(X). A simple and elementary proof of the
Kakutani-Mackey theorem can be found in J. Bognar's paper [2]. Some
results in the sense of the Kakutani-Mackey theorem can be found in our
earlier paper [7].
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