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Sharp local uncertainty inequalities
by
JOHN F. PRICE (Kensington, NS.W)

Abstract. For each measurable E S R! and a >d/2, the local uncertainty principle
inequality

fIF (@) deo < const -m{E) || fI13 =" llel* f114*

E

is established for all fe L*(R%) and the best constant found, where F denotes the Fourier
transform of f. The constant only depends on d and a.

1. Introduction. Uncertainty principles in Fourier analysis assert that the
more a function f is concentrated, the more its Fourier transform F will be
spread out. The stronger concept that not only must the transform of a
concentrated function be spread out, but that it cannot be “too” localized at
any point is now referred to as ‘the local uncertainty principle.

As an example, consider the following interpretation of certain Sobolev
inequalities. Sobolev norms of a function F involve I norms of F and its
derivatives, and derivatives of F are transforms of functions of the type
t* f (), so that concentration of f implies small Sobolev norms. Now the basic
Sobolev inequality gives bounds for ||f]|, in terms of its Sobolev norm.
Hence concentration of f implies smallness of the L* norm of its transform.

In this paper we develop a family of inequalities in their sharpest forms
which more directly displays the principle of local uncertainty. Unless stated
otherwise, all analysis will be over R? and j will denote integration over this
space. Given felL! = I} (R%, its Fourier transform F is defined by

F(o) = f(0) = [f(t)exp(~2nit-w)dt, wek,

where t-@ =t; w;+ ... +1t; ;. Throughout K, K,, ... will denote specific
constants defined as the need arises.

The following is the main result where 6(d) = 2n¥%/I'(d/2) and m(*)
denotes Lebesgue measure.

1.1. TueoreM. Suppose E < R? is measurable and o > df2. Then

(11 [IF (@) do < Ky m(E) || FI3~ || £UI7*
E
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for dll fel? where

(12 K, =9§?r(%)r(1_%>(%’5_

d/2a d\"!?
1 1 — e
J (=)
and K{m(E) is the smallest possible constant.
1.2. Remarks. (i) The above family of inequalities is a generalization of

‘ gw(co»zdw < 2mm(E) | f1l2 11t 1l

for feI!'(R) and measurable E < R, established in Faris [2, (3.2)]. (Notice
that K; =2n when d=1=0) It is also related to and partially
complements a family of inequalities developed in [5] which stem from [2]
as well. This family includes:

([IF @1*do)'” < const-m(EF 1

for all feI? and measurable E < R provided 0 <« <d/2.

(ii) The form of inequality (1.1) is unique in the following sense: given
o, r, s =0, an inequality of the type

13 . [IF (@)|* do> < const - m(E)|[f]15 116" £1I3
E

is possible for all feI? and measurable E < R* only if o > d/2, r = 2~dju
and s = d/o.
To see this, first note that homogeneity requires r-+s=2. Next,

replacement of f by its dilate f,: t— f(at), a >0, and E by ¢E converts the
inequality to

a“’“"glF(w)lzdw < const- m(E)|fI3™* | I1® f1ls.

{See the proof of Theorem 1.1 in § 3.) This requires s = d/a and hence r =2
~d/o. Finally, whenever o < d/2, there exist functions Jel? with ([)t* fll2
< oo so that F is infinitely differentiable everywhere except at w = 0 and as
@~ 0, F(w)— oo [8, Theorem 4]. By letting E range over a sequence of
balls with radii tending to O and centres at 0, it is evident that (1.3} is
contradicted. ‘

1.3. Constants. The usual proofs of the general Sobolev inequalities give
poor control of the constants. In linear partial differential equations this is of
little consequence but can be more serious in the nonlinear situation. In
quantum mechanics knowledge of the constants in Sobolev and related local
uncertalqty principle inequalities is frequently quite important since they can
appear in estimates of thresholds for various physical phenomena. For
example, such constants appear in certain descriptions of families of
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_potentials which do not have negative energy bound states [2, 5]. They also

appear in lower bounds for the energy per particle in bulk matter [4].

A number of authors, including Talenti [7] and Glaser, Martin, Grosse
and Thirring [3], have obtained best constants for certain special, but useful,
cases of the Sobolev inequality.

1.4. Contents. Throughout the paper care has been taken to obtain best
constants in all cases and to describe the functions, if they exist, which give
rise to them. Section 2 is concerned with a number of inequalities leading to
the ‘proof of the main result, Theorem 1.1, the proof being completed in
Section 3.

By using a modified version of the usual Sobolev norm, the results of
Section 2 are used in Section 4 to give a sharp form of a special case of the
Sobolev inequality. The results of Section 5 give some precision to the piece
of folklore that local uncertainty principles are strictly stronger than global
ones. 1 am grateful to Henry Landau for many helpful remarks and con-
versations during all stages of this paper, from the initial vague ideas to the
final typing.

2. Preliminary inequalities. This section opens with a pair of propositions
which are just different versions of each other, one additive and one
multiplicative. The process of passing from one to the other is the same as
that employed in [1, Lemma 2.1]. Here we prove the additive version first
and deduce the multiplicative from it. By using the calculus of variations it is
possible to begin with a proof of the multiplicative version and then pass to
the additive. .

When it is stated that equality is achieved only for certain functions, it is
meant that both sides of the inequality are to be equal and finite. B( , )
denotes the Beta function.

2.1. ProrosiTion. Suppose p, ge[l, ] and « >0 satisfy p<gq and
o > df where B=1/p—1/q. Given A, u >0,

21 IL/105 < Ko 72 Y™ ANFIg+ mlllel® £15)

Sfor all fel? where

(22) Ky =Ky(d, %, p, 9) = [(0(d/oa) B(d/ag, 1/Bq—dfeq)]"".
There is equality (with both sides finite) if and only if f satisfies
(2.3) |f] = const (A + p[f|4)~ e~ 2,

Proof. Assume the conditions of the theorem and let » = g/p > 1. Using
Holder’s inequality with parameter r,

112 = (fCA+ple 1P Gt o) ™4 def
<A ) LU N+ e ) =
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(As usual, »' is defined by 1/r+1/r =1 with 1’ =00 and oo’ = 1.) The first
norm is Al f||2+ ull|t)* fll2 while the second is

o0
(f(A+ plel*)= Y= @ ™1 = (B(d) [ (A+pud)™ V=D =L gy ™1,
[}
The substitution » = (u/A)u* shows that this last integral is K, A~ (4/u)*/=
which completes the demonstration of the inequality (2.1).

Equality can come about only if we have equality in Hélder’s inequality
which requires

A+ R )M | f17] = const - [(A+ e~ "]

Hence we have equality only if f is as described in (23). The proof is
completed by noting that functions f of this type satisfy [|f flgs NI Sl
<00. m

2.1". PROPOSITION. Suppose p, q and o are as in Proposition 2.1. Then

(24) 171, < K lLF1IE =92 | g 7 e
for all fel? where
2.5) Ky = K34 (a/dB— 1)*8/5 (1 — dp/a)~ /s

with equality if and only if f is of the form (2.3) for some A, p > O.
Proof. For each a > 0 define f, by f,(t) = f(at), te R’. Then
Il =a™?IIfll, and [llg fll, = @~ @40 |t 1],
Replacement of f by f, in (2.1) gives

(2.6) NG < Ko A7 (/= a®®e (4| f112+ a4 | 2l* £119).
The right side of (2.6) is minimized by choosing

@7 a = (a/dp —1)11% (uf A)Hma || ]| 12| 2] £{3F=.

When this is done, (2.6) simplifies to the required (2.4).

It is not difficult (but needs care) to show that equality occurs in (2.4)
when f is of the form (2.3) for some A, y > 0. To show that these are the only
functions for which equality is achieved, begin by assuming we have equality
in (24) for a particular function f. The argument in the preceding paragraph
can be reversed to show that, for all A, u>0, there is equality in (2.6)
whenever a satisfies (2.7). But equality in (2.6) means precisely that

Ifalls = Ko A7 /™= (41| £ 18+ el 121* £;119).
Proposition 2.1 now enters and confirms that f. must be of the form

|fal = const {4+ p Jt/4) = 1Ha=»

icm®

Sharp local uncertainty inequalities 41

Hence f must be of the form
|f1 = const - (1+ pa™% |f|*9)~ Ha=»)

which completes the proof since A, x>0 are arbitrary. =
2.2. CoroLLARY. Suppose qe(1, 0] and o > 0 satisfy o > d/q'. Then

(28) Flloo < Kallfllg ™% it 115
for all fel? where
29) Ky = K¥(ag'/d—1)"4%(1 —d/ag) ™

with equality if and only if f is of the form
(2.10) = cexp(2miw, - t) (A+ p|t[)~ a1
Jor some ceC, woeR® and A, u>0.

Proof. When the right side of (2.8) is finite, feL! by 2.1’ so that F is
defined and bounded. For such 7,

(2.1 1l < 1Al < Ko llAllg =4 [l |2l flI3=

by 2.1, which establishes (2.8). Assume we have equality in (2.8). This means
that the inequalities in (2.11) must be equalities. The second of these impiies
that f is of the form f =) A+ult]* Y4 D for some 4, u>0 and
measurable function ¢ with ¢} a constant. Since feL!, FeC, so that there
exists woeR? and beC, |b| =1, with ||F||,, = bF (w,). Equality in the first
inequality of (2.11) now means that

b f¢(t)(l+u|z|aq)—1/(q— D exp(— 2miwq - £y dt = bF ()
= 1Fllo = IIflly = o} J(A+ pfel)~ 1@~V dr.

This is possible only if be (f)exp(—2miw,-t) = |¢|, in other words, only if
@ (t) = cexp(2micw, - 1) for some ceC, which completes the proof. m

3. Proof of Theorem 1.1. We are now in a position to prove Theorem
1.1. Choose measurable E < R with 0 <m(E) < co. Since

(ERY [IF (@)*do> < m(E) || F||,
E
Corollary 2.2 with o > d/2 and g = 2 gives

JIF (@)*do < Ky mE) Y™ || £115

E

(3.2)

for all f e [*. What is now required is to show that equality is never attained
and that K, m(E) is the smallest possible constant.
Assume that (3.2) is valid for K instead of K, m(E) where K < K, m(E).
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Given a > 0, define f, by f,(t) = f(ar). Replacement of f by £, in the new (3.2)
yields

(3.3) m(a ' E)"" [ |F(w)?dw < Km(E)™ S|l 115,
a”1lp
where ¢« 'E = {a”'t: teE). (Use the identities at the commencement of the
proof of 2.1" along with m(a™'E) =a"*m(E) and [|(f)]*=a™" | |F%)
E a Vg

Without loss of generality assume that the right side of (3.2) is finite.
Consequently fe L' by Proposition 2.1’, whence F is continuous. With this
the case, the limit as a — oo of the left side of (3.3) is [F(O)}* (This result is
routine when E is bounded. For the general resuli, commence by
approximating E in measure by a bounded set) Replacement of f with
exp(2niw-1) f (1) for weR* means that the left side in the new (3.3) will
converge to |F(w)|?. Hence

IS, < Km(E)™ HLAIE = e 119"

Comparison of this inequality with Corollary 2.2 shows that Km(E) ™! = K,
so that K = K, m(E), as required.

Finally, suppose that equality in (3.2) is achieved by some function f.
This means that f must give equality in Corollary 2.2 with g = 2 and equality
in (3.1). This first equality requires that f be of the form (2.10) with ¢ =2
while the second requires that its transform satisfy F(w)=||F||, ae. lor
weE. These two requirements cannot be satisfied simultaneously since the
maximum of |F(w)| occurs at w, and nowhere else when f is of the form
(2.10). Hence there is never equality in (3.1). =

4. Sobolev inequalities. In this section we show our methods and results
can be used to obtain some simple Sobolev inequalities. For any no nnegative
integer k, the Sobolev space Lj = L% (R") is defined as the space of functions g
with the property that D%g exists in the weak sense with D'gel? for all f
=(fy, ..., 0,) satisfying 6] =0, + ... +-8, < k. (Details are contained in Stein
[6]) The standard norm on IZ is

lollzz = 3 10%l.
lo[<k

under which it becomes a Banach space.

Since the Fourier transform provides an isometry on I2? and since,
formally, (D%g)"= (2mit)"g, it is clear that gel? if and only if gel? and
F~ | §)e I2. Relaxing the restriction on k, for each x = 0 we define the
Bessel potential space ¥} as the space of functions g for which
g, F7H(t g e . For each A, x>0 define a norm on %2 by

@1 |7 H{(A+ w212 ).

gz =
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Evidently all these norms are equivalent for 4, 4 > 0 and make .7 into a
Banach space. (The usual norm on %2 is slightly different [6])
We can now give a sharp form of a Sobolev inequality.

4.1. CoroLLARY. Given i, u >0, suppose o> d/2. Each ge %2} can be
modified on a set of measure zero to become continuous and

(4.2) llgllo < Ks 27122/ Igll 2.4

for all ge L2 where

(4.3) Ks = (0(d)/22)" T (d/20)> T (1—df2)">.
There is equality if and only if ¢ satisfies

4.4) g = cexp(2miwg 1) (A+ult) ™!

for some ceC and wye k.

Proof. Given ge %2, choose f so that f = ¢. Under the conditions of
the corollary we have from Proposition 2.1 (taking p=1 and q = 2):

gl < LA < K3ATH /w2 (A1LA13 + el f113}

which gives (4.2). Arguing as in the proof of 2.2 shows that only the functions
of the form (4.4) give equality in (4.2). .

The first part of the corollary is a consequence of C, being dense in
L2 [6] = :

The preceding corollary can be used to obtain an explicit constant for
the embedding described in 4.1 using the standard Sobolev norm introduced
at the beginning of this section in place of the norm defined in (4.1). Given
keZ", define

C(d, k) = max (k!/6,!...0,5: 0, + ... +6, =k}.

It is easily seen that C(d, k) = k!/(u!) " */(u+1!) where k = du-+v withu >0
and 0 v <d.
4.2, CoroLLARY. Suppose ke Z* satisfies k > df2. For each ge L3,

llglle < Ks(2m)~42C* 5 |[Dg]|,.

18] <k
Proof. Let A=1 and u=(2m)*C~2 Then
llgllas = (JCL+ 11711 dr) " < llgll, + #2212 41l
< llgllz + a2 10t + .. +leahkglls

<ligly+p* € l; l11° 41l
o=k

=|lgll, + !> C(2m)~* w;kllD"gllz
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< Y |ID%ll,,
6] <k

with substitution in 4.2 completing the proof. m

5. Uncertainty principle inequalities. Classical uncertainty principles
assert that if fis concentrated, its transform F is spread out. However, they
do not preclude the possibility that this spreading could be a result of F
having a number of peaks far from the origin, whereas this is ruled out by
local uncertainty principles. Thus, intuitively speaking, local uncertainty
principle inequalities are strictly stronger than global ones.

One way to add precision to this is to notice that if f satisfies

-1 glF(w)lzdw < Cm(E) LA 1134 11114

for all measurable E < R? for some constant C and & > 0, then

62 /13

. Do \dH22+d) d \2H(2a+d)) (2a+dyf2d
< CH 9‘;’"{(—;} + (Z) } He® Fllz ol Fil,,

where Q; = n"%/T'(1+d/2) is the volume of the unit ball in R”. (To see this,
use (5.1) to establish :

IFlE = |

jo<b
< CH Q3= 11 F114°+ b 2 ||l FII3;

substitution of b = (2uB/dA)*/**9 where 4 = CQIFNE| |t f114* and B
=||lo* Fl|3 completes the result,

The significance of this is that smallness of the constant in (5.1) ensures
smallness of the constant in (5.2). However, this is not possible in the
opposite direction demonstrating the asymmetry between the families of
inequalities. (Let Y be a C* positive function with support in the unit ball
and define f, by

Fo(@) =y (w—(n,0,..., 0)+y (w+n 0, ..., 0) (weR:, nez*).

Suppose o > 0. Since ||f;}|, = ||F,ll, is constant and [le[* fill2 is uniformly
bounded by 2|l Jer F -1y ||,, it is readily seen that

IAIBAINEE iz ol Foll) » 0 as n—s oo

| IF (@) de

| >b

|F (w)|* doo+
I

whereas

sup {[|F, () deofm (E) || fyl3 == | ¢]* ;)14

measurable E < R}
E

is bounded away from 0.
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Finally we point out that the methods leading from (5.1) to (5.2) couple
with Theorem 1.1 to establish:

5.1. CoroLLARY. Suppose a > d/2; then (5.2) is valid for all f e I? with C
replaced by K.
Inequalities of this type are studied in detail in [1].
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