B. Kamiński

26

 $= P \vee P_G^-$, $P \in B(G)$. This question has a positive answer if h(G) = 0, because in this case every perfect partition is the partition into points and it is sufficient to use Corollary 2 and Proposition 2. We have been unable to decide whether this question has a positive answer in the general case.

References

- [1] J. P. Conze, Entropie d'un groupe abélien de transformations, Z. Wahrsch. Verw. Gebiete 25 (1972), 11-30.
- [2] B. Kamiński and E. Sąsiada, Spectrum of abelian groups of transformations with completely positive entropy, Bull. Acad. Polon. Sci. 24 (1976), 683-689.
- [3] B. Kamiński, The theory of invariant partitions for Z⁴-actions, ibid. 29 (1981), 349-362.
- [4] B. Kamiński and M. Kobus, Regular generators for multidimensional dynamical systems, Colloq. Math. (to appear).
- [5] Y. Katznelson and B. Weiss, Commuting measure-preserving transformations, Israel J. Math. 12 (1972), 161-173.
- [6] V. A. Rokhlin, Generators in ergodic theory, Vestnik Leningrad, Univ. Ser. Mat. Mekh. Astronom, 1963, no. 1, 26-32 (in Russian).
- [7] -, Generators in ergodic theory, II, ibid, 1965, no. 3, 68-72 (in Russian)
- [8] -, Lectures on the entropy theory of transformations with invariant measure, Uspekhi Mat. Nauk 22 (5) (967), 3-56 (in Russian).
- [9] V. A. Rokhlin and Ya. G. Sinai, Construction and properties of invariant measurable partitions, Dokl. Akad. Nauk SSSR 141 (1961), 1038-1041 (in Russian).
- [10] J. P. Thouvenot, Une classe de systèmes pour lesquels la conjecture de Pinsker est vraie, Israel J. Math. 21 (1975), 208-214.
- [11] H. Weizsäcker, Exchanging the order of taking suprema and countable intersections of σ-algebras. Ann. Inst. Henri Poincaré Sect. B 19 (1) (1983), 91-100.

INSTYTUT MATEMATYKI UNIWERSYTETU MIKOŁAJA KOPERNIKA INSTITUTE OF MATHEMATICS, NICHOLAS COPERNICUS UNIVERSITY Chopina 12/18, 87-100 Toruń, Poland

> Received January 28, 1985 (2029) Revised version September 16, 1985

On drop property

by

S. ROLEWICZ (Warszawa)

Abstract. Let (X, || ||) be a Banach space. We say that the norm || || has the drop property if for each closed set C dosjoint with the closed unit ball $B = \{x: ||x|| \le 1\}$, there is a point $a \in C$ such that $conv(a \cup B) \cap C = \{a\}$.

We say that a Banach space (X, || ||) has the drop property if there is a norm $|| ||_1$ equivalent to the given one such that $|| ||_1$ has the drop property.

In the paper it is shown that each superreflexive space has the drop property and each space X which has the drop property is reflexive.

Let (X, || ||) be a Banach space. Let B denote the unit ball in X. By a drop induced by a point $a \notin B$ we mean the set

$$D(a, B) = \operatorname{conv}(a, B).$$

Daneš [3] proved the following

THEOREM 1. (Drop theorem). Let C be a closed set such that

(2)
$$\inf\{||x||: x \in C\} = R > 1.$$

Then there is a point $a \in C$ such that

$$(3) D(a, B) \cap C = \{a\}.$$

The drop theorem was used in various situations (see [1], [2], [4], [5], $\lceil 10 \rceil$).

Recently Penot [9] discussed the relations between the drop theorem and Ekeland's variational principle [77].

It is a natural question to ask when we can replace in the drop theorem assumption (2) by the weaker assumption that C is disjoint with B.

We shall say that the norm $\| \|$ has the *drop property* if the drop theorem holds under this weaker assumption. If there is a norm $\| \|_1$ equivalent to the norm $\| \|$ and having the drop property, then we say that the space X has the *drop property*.

In this paper we shall show that the uniformly convex norms have the drop property and that the spaces X with the drop property are reflexive.

Let (X, || ||) be a Banach space. We recall that the space (X, || ||) is called *uniformly convex* if there is an increasing positive function $\delta(\varepsilon)$ defined

On drop property

29

for positive ε , such that ||x|| = 1 = ||y||, $||x - y|| \ge \varepsilon$ implies

$$\left\|\frac{x+y}{2}\right\| \leqslant 1 - \delta\left(\varepsilon\right).$$

Proposition 1. A Banach space (X, || ||) is uniformly convex if and only if there is a positive increasing function f(r) defined for positive r, such that

$$\lim_{r \to 0+0} f(r) = 0$$

and the diameter of the set $D(a, B)\backslash B$ is not greater than f(||a||-1),

(6)
$$\operatorname{diam}(D(a, B)\backslash B) \leq f(||a||-1).$$

Proof. Necessity. Suppose that the space (X, || ||) is uniformly convex, i.e. (4) holds.

Let $a \notin B$. Let $x \in D(a, B) \setminus B$, $x \neq a$. Of course

$$(7) 1 < ||x|| < ||a||.$$

Moreover,

(8)
$$1 < \left\| \frac{x+a}{2} \right\| = \|a\| \left\| \frac{1}{2} \left(\frac{x}{\|a\|} + \frac{a}{\|a\|} \right) \right\|$$

$$\leq \|a\| \left(\left\| \frac{1}{2} \left(\frac{x}{\|x\|} + \frac{a}{\|a\|} \right) \right\| + \frac{\|x\|}{2} \left\| \frac{1}{\|x\|} - \frac{1}{\|a\|} \right) \right)$$

$$\leq \|a\| \left(1 - \delta \left(\left\| \frac{x}{\|x\|} - \frac{a}{\|a\|} \right\| \right) + \|a\| \left(1 - \frac{1}{\|a\|} \right) \right).$$

Hence

(9)
$$\frac{1}{\|a\|} \le 1 - \delta \left(\left\| \frac{x}{\|x\|} - \frac{a}{\|a\|} \right\| \right) + \|a\| \left(1 - \frac{1}{\|a\|} \right)$$

and

$$(10) \quad \delta\left(\left\|\frac{x}{||x||} - \frac{a}{||a||}\right\|\right) \leqslant \left(1 - \frac{1}{||a||}\right)(1 + ||a||) = (||a|| - 1)\left(1 + \frac{1}{||a||}\right) \leqslant 2(||a|| - 1).$$

Therefore

(11)
$$\left\| \frac{x}{||x||} - \frac{a}{||a||} \right\| \le \delta^{-1} \left(2(||a|| - 1) \right).$$

On the other hand,

(12)
$$||x-a|| = ||a|| \left\| \frac{x}{||a||} - \frac{a}{||a||} \right\| \\ \leq ||a|| \left(\left\| \frac{x}{||x||} - \frac{a}{||a||} \right\| + ||x|| \left(\frac{1}{||x||} - \frac{1}{||a||} \right) \right)$$

and $f(r) = 2(1+r)(\delta^{-1}(2r)+r)$ is the required function.

Sufficiency. Suppose that a Banach space (X, || ||) is not uniformly convex. This implies that there are $\varepsilon > 0$ and sequences of elements $\{x_n\}, \{y_n\}, ||x_n|| = 1 = ||y_n||$ such that

$$||x_{-} - y_{-}|| \geqslant \varepsilon.$$

$$\left\| \frac{x_n + y_n}{2} \right\| > 1 - \frac{1}{n^2}.$$

Let
$$z_n = \frac{x_n + y_n}{2}$$
, $a_n = \left(1 + \frac{1}{n}\right)z_n$, $b_n = \frac{a_n + x_n}{2}$, $c_n = \frac{a_n + y_n}{2}$. Observe that

(15)
$$\frac{b_n + c_n}{2} = \frac{a_n}{2} + \frac{x_n + y_n}{4} = \left(\frac{1 + 1/n}{2} + \frac{1}{2}\right) z_n = \left(1 + \frac{1}{2n}\right) z_n$$

and by (14)

(16)
$$\left\| \frac{b_n + c_n}{2} \right\| > \left(1 + \frac{1}{2n} \right) \left(1 - \frac{1}{n^2} \right).$$

Therefore for $n \ge 3$, $||(b_n + c_n)/2|| > 1$, and this implies that either $||b_n|| > 1$ or $||c_n|| > 1$. Say $||b_n|| > 1$.

Observe that $b_n \in D(a_n, B) \setminus B$ and

$$\begin{aligned} ||a_n - b_n|| &= \left\| \left(1 + \frac{1}{n} \right) \frac{x_n + y_n}{2} - \frac{(3 + 1/n) x_n + (1 + 1/n) y_n}{4} \right\| \\ &= \left\| \frac{1 + 1/n}{4} y_n - \frac{1 - 1/n}{4} x_n \right\| \geqslant \frac{1}{4} ||y_n - x_n|| - \frac{1}{n} ||x_n + y_n|| > \frac{\varepsilon}{4} - \frac{1}{n} \to \frac{\varepsilon}{4}. \end{aligned}$$

Thus the diameter of $D(a_n, B)\backslash B$ does not tend to 0.

PROPOSITION 2. Let (X, || ||) be a Banach space. The norm || || has the drop property if and only if each sequence $\{x_n\}$ such that

$$(17) x_{n+1} \in D(x_n, B) \backslash B$$

contains a convergent subsequence.

Proof. Sufficiency. Suppose that the norm $\| \|$ does not have the drop property. This means that there is a closed set C disjoint with the unit ball B such that for each $a \in C$

(18)
$$\inf \{ ||x|| \colon x \in C \cap D(a, B) \} = 1.$$

On drop property

31

Indeed, if (18) does not hold, i.e.

(19)
$$\inf\{||x||: x \in C \cap D(a, B)\} = r > 1,$$

then using the classical drop theorem (Theorem 1) we deduce that there is $a_0 \in C \cap D(a, B)$ such that

(20)
$$C \cap D(a_0, B) = (C \cap D(a, B)) \cap D(a_0, B) = \{a_0\}.$$

Basing on (18) we can choose a sequence $\{x_n\}$ such that (17) holds and moreover

$$\lim_{n \to \infty} ||x_n|| = 1$$

Then by our assumption the sequence $\{x_n\}$ contains a convergent subsequence $\{x_{n_k}\}$. We denote

$$(22) x_0 = \lim_{k \to \infty} x_{n_k}.$$

By (21), $||x_0|| = 1$. Hence $x_0 \in B$. On the other hand, the set C is closed and $x_0 \in C$. This is a contradiction since B and C are disjoint.

Necessity. Suppose that there is a sequence $\{x_n\}$ such that (17) holds and the sequence $\{x_n\}$ does not contain any convergent subsequence. This means that the set C of all elements of the sequence $\{x_n\}$ is closed. By (17) the norm $\|\cdot\|$ does not have the drop property.

COROLLARY 1. Let (X, || ||) be a Banach space. The norm || || has the drop property if and only if for each separable subspace X_0 the norm || || restricted to the subspace X_0 has the drop property.

Proof. Suppose that the norm $\| \|$ has the drop property. Let C be a closed subset contained in the subspace X_0 disjoint with $B \cap X_0$. Then C is also disjoint with B and there is a point $a \in C$ such that

$$D(a, B) \cap C = D(a, B \cap X_0) \cap C = \{a\}.$$

On the other hand, if the norm $\| \|$ does not have the drop property, then there is a sequence $\{x_n\}$ satisfying (17) which does not contain any convergent subsequence. Let $X_0 = \overline{\lim \{x_n\}}$. The subspace X_0 is separable and the norm $\| \|$ restricted to the subspace X_0 does not have the drop property by Proposition 2.

Propositions 1 and 2 trivially imply

Theorem 2. Let (X, || ||) be a Banach space. Let the norm || || be uniformly convex. Then the norm || || has the drop property.

Proof. Let $|x_n|$ be an arbitrary sequence satisfying (17). Of course $||x_n|| \ge ||x_{n+1}||$. We have two possibilities: either

(23)
$$\lim_{n \to \infty} ||x_n|| = r > 1,$$

or

$$\lim_{n\to\infty}||x_n||=1.$$

In the first case using arguments similar to those given in the proof of Danes' theorem [3] we conclude that $\{x_n\}$ is convergent. In the second case $\{x_n\}$ is convergent by Proposition 1.

There are Banach spaces (X, || ||) having the drop property which are not superreflexive, i.e., such that there is no uniformly convex norm $|| ||_1$ equivalent to || ||. This follows from the following example given by P. Wojtaszczyk.

Example 1. Let l_n^{∞} denote the *n*-dimensional space \mathbb{R}^n with the sup norm

$$||y||_{\infty} = \max_{1 \le i \le n} |y_i|$$

where $y = (y_1, ..., y_n)$. Let $X = (l_n^{\infty})_{l^2}$ be the space of sequences $u = (u_n)$ where $u_n \in l_n^{\infty}$ and the norm in X is given by the formula

$$||u|| = \left(\sum_{n=1}^{\infty} ||u_n||_{\infty}^2\right)^{1/2}.$$

It is known that X is a reflexive space which is not superreflexive.

We shall show that the norm $\|\ \|$ has the drop property. Suppose that the norm $\|\ \|$ does not have the drop property. Then by Proposition 2, there is a sequence $\{x_n\}$ satisfying (17) which does not contain any convergent subsequence. Thus there is a $\delta > 0$ and a subsequence $\{x_{n_k}\}$ of the sequence $\{x_n\}$ such that

$$||x_{n_k} - x_{n_m}|| > 2\delta \quad \text{for } k \neq m.$$

Without loss of generality we may assume

$$\lim_{k \to r} ||x_{n_k}|| = 1$$

(compare the proof of Theorem 2).

The sequence $\{x_{n_k}\}$ is bounded and the space X is reflexive. Thus there is a subsequence $\{x_{n_{k_m}}\}$ tending weakly to some $x_0 \in B$. Let

$$(26) y_m = x_{n_{k...}} - x_0.$$

Of course the sequence $\{y_m\}$ tends weakly to 0. Observe that by (25), $\|y_m\| > \delta$ for all m except at most one.

Since the sequence $\{y_m\}$ tends weakly to zero, by the specific form of the norm and by (24) for each $\varepsilon>0$ we can find two elements of the sequence, say $y_{m_0}, y_{n_0}, m_0>n_0$, such that

(27)
$$||x_0||^2 + ||y_{m_0}||^2 \ge 1 + \varepsilon,$$

(28)
$$||x_0||^2 + ||y_{n_0}||^2 \ge 1 + \varepsilon,$$

(29)
$$||y_{n_0} + y_{m_0}||^2 \le (1 + \varepsilon) (||y_{n_0}||^2 + ||y_{m_0}||^2),$$

(30)
$$\left\| x_0 + \frac{y_{n_0} + y_{m_0}}{2} \right\|^2 \le (1 + \varepsilon) \left(||x_0||^2 + \left\| \frac{y_{n_0} + y_{m_0}}{2} \right\|^2 \right).$$

Then

$$\begin{split} \left\| x_0 + \frac{y_{n_0} + y_{m_0}}{2} \right\|^2 & \leq (1 + \varepsilon) \left[\|x_0\|^2 + \frac{1}{4} (1 + \varepsilon) (\|y_{n_0}\|^2 + \|y_{m_0}\|^2) \right] \\ & = (1 + \varepsilon) \left[\|x_0\|^2 + \frac{1}{2} (1 + \varepsilon) (\|y_{n_0}\|^2 + \|y_{m_0}\|^2) \right] \\ & - \frac{1}{4} (1 + \varepsilon)^2 (\|y_{n_0}\|^2 + \|y_{m_0}\|^2) \\ & \leq (1 + \varepsilon) \left[\|x_0\|^2 + \frac{1}{2} (1 + \varepsilon) (\|y_{n_0}\|^2 + \|y_{m_0}\|^2) \right] - \frac{1}{4} \delta^2. \end{split}$$

The arbitrariness of ε implies that for some m_0 , n_0

$$\left\|x_0 + \frac{y_{n_0} + y_{m_0}}{2}\right\|^2 < 1 - \frac{\delta^2}{5}.$$

This leads to a contradiction since $x_0 + y_{m_0} \in D(x_0 + y_{n_0}, B) \setminus B$ and thus

$$\frac{(x_0 + y_{m_0}) + (x_0 + y_{n_0})}{2} \notin B.$$

Theorem 2 can be generalized in the following way. We recall that Kuratowski's index of noncompactness of a set A is

 $\alpha(A) = \inf \{r: \text{ there is a finite system of sets} \}$

$$A_1, \ldots, A_n$$
 such that $A \subset \bigcup_{i=1}^n A_i$ and the

diameter of A_i is less than r.

Theorem 3. If there is a continuous increasing function f(r) such that f(0) = 0 and

(31)
$$\alpha(D(a, B)\backslash B) \leqslant f(||a||-1),$$

then the norm || || has the drop property.

Proof. Let $\{x_n\}$ be a sequence such that (17) holds. Then either $r = \lim_{n \to \infty} ||x_n|| > 1$ and by the Daneš theorem the sequence $\{x_n\}$ is convergent or $\lim_{n \to \infty} ||x_n|| = 1$ and by (31) it contains a convergent subsequence.

THEOREM 4. Let (X, || ||) be a real Banach space. Suppose that there is a continuous linear functional f of norm one, ||f|| = 1, such that Kuratowski's index of noncompactness of the set

$$G_{\varepsilon} = \{x \colon ||x|| \leqslant 1, \ f(x) \geqslant 1 - \varepsilon\}$$

does not tend to zero as $\varepsilon \to 0$.

$$\inf \alpha \left(G_{s}\right) >0.$$

Then the norm || || does not have the drop property.

Proof. It is easy to observe that for each $\varepsilon > 0$ and each finite-dimensional subspace L

(33)
$$\sup_{x \in G_{\varepsilon}} (\inf ||x - y||) \ge \frac{1}{2} \inf \alpha(G_{\varepsilon}).$$

Let δ be an arbitrary positive number smaller than $\frac{1}{2}\inf\alpha(G_{\epsilon})$. Now we shall construct by induction a sequence $\{x_0, x_1, \ldots, x_n, \ldots\}$ such that

$$(34)_{(n)} f(x_n) > 1,$$

(35)_(n)
$$\inf\{||x_n-z||: z \in \lim\{x_0, x_1, ..., x_{n-1}\}\} > \delta/2.$$

Let x_0 be an arbitrary element such that $f(x_0) > 1$. Suppose that the elements $\{x_0, \ldots, x_n\}$ satisfying $(34)_{(i)}$ and $(35)_{(i)}$, $i = 1, 2, \ldots, n$, have been constructed. Take $\varepsilon < f(x_n) - 1$. Let \overline{x}_{n+1} be an arbitrary element of G_{ε} such that

(36)
$$\inf \{ ||\bar{x}_{n+1} - z|| \colon z \in \lim \{x_0, \dots, x_n\} \} > \delta.$$

Such an element exists by (33) and the definition of δ . Let

$$x_{n+1} = \frac{x_n + \bar{x}_{n+1}}{2}.$$

Then by the definition of ε

$$(34)_{(n+1)} \qquad f(x_{n+1}) = \frac{1}{2}f(x_n) + \frac{1}{2}f(\bar{x}_{n+1}) \geqslant \frac{1}{2}f(x_n) + \frac{1}{2}(1-\varepsilon) > 1.$$

Moreover.

$$(35)_{(n+1)} \quad \inf \{ ||x_{n+1} - z|| \colon z \in \lim \{x_0, \dots, x_n\} \}$$

$$= \frac{1}{2} \inf \{ ||\bar{x}_{n+1} - z|| \colon z \in \lim \{x_0, \dots, x_n\} \} > \delta/2$$

by the definition of δ .

Let $C = \{x_0, x_1, \ldots, x_n, \ldots\}$. It is a closed set. By $(34)_{(n)}$, C is disjoint from B. Moreover, by the construction, $x_{n+1} \in D(x_n, B)$, hence the norm $\| \cdot \|$ does not have the drop property.

Corollary 2. Let $(X, ||\ ||)$ be a real Banach space. For each $\epsilon>0$ there is a norm $||\ ||_\epsilon$ such that

$$||x|| \le ||x||_{\varepsilon} \le (1+\varepsilon)||x||$$

and the norm $\| \cdot \|_{s}$ does not have the drop property.

Proof. Let f_0 be an arbitrary linear continuous functional of norm $\|f_0\| = 1$. Let

$$||x||_{\varepsilon} = \max(||x||, (1+\varepsilon) f_0(x)).$$

The unit ball B_{ε} contains on its boundary a flat face

$$H_0 = B \cap \{x: f_0(x) = 1/(1+\varepsilon)\}.$$

Since H_0 is an open set in an infinite-dimensional linear manifold, its index of noncompactness is positive. Taking $f = (1+\varepsilon) f_0$ and constructing the sets G_ε we observe that $H_0 \subset G_\varepsilon$ for all $\varepsilon > 0$, and therefore $\inf \alpha(G_\varepsilon) > 0$. Thus by Theorem 3 the norm $\|\cdot\|_{\varepsilon}$ does not have the drop property.

As a consequence of Theorem 4 we obtain

Theorem 5. If a real Banach space $(X, || \cdot ||)$ has the drop property, then X is reflexive.

Proof. Without loss of generality we may assume that the norm $\| \|$ has the drop property. By Theorem 4 for each linear continuous functional f the index of noncompactness of the set

$$G_{\varepsilon} = \{x \colon ||x|| \leqslant 1, f(x) \geqslant 1 - \varepsilon\}$$

tends to zero as $\varepsilon \to 0$.

By the properties of the index of noncompactness the set $G_0 = \bigcap_{\varepsilon>0} G_\varepsilon$ is a compact nonempty set. Observe that $G_0 = \{x \in B : f(x) = 1\}$. Thus each linear continuous functional f of norm one has a point at which it attains its supremum. Therefore by James' theorem [8] the space X is reflexive.

Theorems 4 and 5 and Corollary 2 are also valid for complex Banach spaces provided we define the sets G_{ϵ} in the following way:

$$G_{\varepsilon} = \{x \colon ||x|| \leqslant 1, \operatorname{Re} f(x) \geqslant 1 - \varepsilon\}.$$

The author wishes to express his gratitude to Professor P. Wojtaszczyk for valuable discussions and the construction of Example 1.

References

- [1] H. Brézis and F. E. Browder, A general principle on ordered sets in nonlinear functional analysis, Adv. in Math. 21 (3) (1976), 355-364.
- [2] F. Browder, Normal solvability and the Fredholm alternative for mappings into infinite dimensional manifolds, J. Funct. Anal. 8 (1971), 250-274.

- [3] J. Daneš, A geometric theorem useful in nonlinear functional analysis, Boll. Un. Mat. Ital. 6 (1972), 369-372.
- [4] M. M. Day, Normed Linear Spaces, Springer, 1985.
- [5] S. Dolecki and J. P. Penot, The Clarke's tangent cone and limits of tangent cones, Publ. Math. Pau (1983), II-1-11.
- [6] W. A. Eberlein, Weak compactness in Banach space, Proc. Nat. Acad. Sci. U.S.A. 33 (1947), 51-53.
- [7] I. Ekeland, On the variational principle, J. Math. Anal. Appl. 47 (1974), 324-353.
- [8] R. C. James, Reflexivity and the sup of linear functionals, Israel J. Math. 13 (1972), 289-300.
- [9] J. P. Penot, The drop theorem, the petal theorem and Ekeland's variational principle (in preparation).
- [10] M. Turcini, Mapping theorems via variable drops in Banach spaces, Rend. Istit. Lombardo Cl. Sci. A 114 (1980), 164-168.

INSTYTUT MATEMATYCZNY POLSKIEJ AKADEMII NAUK INSTITUTE OF MATHEMATICS, POLISH ACADEMY OF SCIENCES Sniadeckich 8, 06,050 Warszawa, Poland

> Received May 13, 1985 (2057) Revised version September 16, 1985