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On functions whose improper Riemann integral
is absolutely convergent

by
CHRISTOPH KLEIN (Karlsruhe)

Abstract. Absolutely convergent improper Darboux integrable functions on the compact
support of a nonnegative Radon ¢ are introduced.

Introduction. S. Rolewicz deduced in [10] that a consistent definition
of the Lebesgue integral is not possible for functions f: [0, 1] — X where X is
a non-locally convex linear metric space. Hence, D. Przeworska-Rolewicz
and S. Rolewicz [8] and independently B. Gramsch [1] introduced the
Riemann integral for that situation. S. Rolewicz and the author [4] defined
the Riemann integral for functions f: K — X where K is the compact support
of a nonnegative Radon measure p and where X is a topological linear
space.

In [4], [5] of S. Rolewicz and the author, the translation of the classical
result—i.e. a bounded function f: [0, 1]— R is Riemann integrable iff f is
continuous almost everywhere—was proved for Darboux integrable
functions. These functions are characterized by Darboux lower and upper
sums resp. by distance sums in the general case. Darboux integrable
functions are Riemann integrable but the converse is false in general.

In this paper we characterize the Darboux integrability by a kind of
fractional continuity. This allows us to obtain a definition of absolutely
convergent improper Darboux integrability with respect to K and u: Indeed,
an unbounded function g is absolutely convergent improper Darboux
integrable iff the following holds: (1) g fulfils the fractional continuity
property and (i) g is absolutely Ei-Bochner integrable (or equivalently: the
improper p-Riemann integral of g is absolutely convergent).

There are also recent studies on Riemann integrable functions: R.
Henstock [2], J. Kurzweil [6] and E. J. McShane [7] deduced that
modifications of the Riemann integral on [0, 1] yield the Lebesgue and even
the Perron-Ward integral. C. S. Honig [3] found examples of Hilbert space
valued functions on [0, 1] which are Riemann integrable but not measurable
with respect to the complete Lebesgue measure. G. C. da Rocha Filho [9]
analysed Riemann integration depending on the geometry of Banach spaces.
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A. Pelezynski gave a definition of Riemann integrability for functions defined
on an arbitrary measure space.
I am indebted to the referees for valuable remarks.

1. Preliminaries. Let K be a compact (Hausdorff) space. Let u be a

nonnegative Radon measure with supp(i) = K. Here supp(u
= {xeK| p(U(x)) >0 for every open nelghbourhood U(x) of x} is the

support of u.

Let S be a subset of K. Then cl(S) resp. int(S) denotes the closure resp.
the interior of § in K. If clint(S) = S then § is regular closed. The boundary
08 of S in K is 88:=cl(S)ncl(K\S). If 1(8S) =0 then § is called a U=
continuity set. We denote by rco (K, p) the class of all regular closed, nonvoid
p-continuity subsets of K. Then rc, (K, u) is a neighbourhood basis system of
K (cf. [4] of S. Rolewicz and the author).

A p-partition of K is a finite class 2:= {P,}]., < rco(K, u) such that

U P; =K and such that (P, P) =0 for i #j. The 1ntersectlon of finitely
i=1

many p-partitions yields a p-partition of K. Therefore, if S.#(u) denotes the
class of all p-partitions of K, then $2(u) is directed in a natural way: if
?:={P), and & := {Pj}i, then &' > @ iff for every j there is an i(j)
with P; Py, (cf. [4] for proofs and details).

A p-o-partition of K is a countable class ;= (P,}%, crco(K, ) such
that the followmg holds: (i) u(P,NP) =0 for i#j and (i) u(cl(Py)) =0

where P, := K\( U Pi) Instead of (ii) we can use the following equivalent

condition: (iii) Z #(P) = p(K). We denote by ¢-S2P(u) the class of all p-g-
. =1
partitions of K The following lemma 1 shows that ¢-S#(y) is analogously
directed as S2(w):
Lemma 1. Let 2:= {P}{2, and & := {P}}%2, be two p-c-partitions of K.
Then 2 :={clint(P, "\ P)| 1<i,j <o }\{@} is a u-o-partition of K.
Proof. #n 2 is a countable class of regular closed sets by its

definition. Since dclint (P, N P) = 0(P; " P)) it follows that &~ 2’ consists of
p-continuity sets. Let

or=K\( U

1€ij<w

clint(P; n P))).
If xeint(P)nint(P) for i, je N then x¢ Pg. Since
[cl(Po) L (Hv OP)] w[cl(Py) U (U oP))]

is a closed p-zero set containing P we obtain #(cl(Pg)) = 0. Hence # &
is a p-o-partition of K. m
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Let B be a Banach space over R or C. If M < B then dia(M) :=sup {||x
~Jylll x, ye M} denotes the diameter of M. We consider a function g: K — B.
Let #:= {P;};4 be a p-partition or a p-g-partition of K, i.e. I = {1,..., n} or
I = N. The p-distance sum of g with respect to 2 is

u-dis(g, P):= _Zldia(g (P) u(Py).

If x;eP; then x:=Y g(x)u(P)is a P-sum of g. We denote

iel
S(g, #):= (xeB| x is a #sum of g}.
Moreover, a:= ZHg(x,-)ll u(P;) is an absolute P-sum of g. We denote

AS(g, #):=

Remark that the above notations are meaningless if the existence of the
related sums is not guaranteed.

Let f K—~B be a bounded function. Then f is called u-Darboux
integrable iff influ-dis(f, #)f P<S#w) =0. If the indexed class
(S(f, P PeSP(w)} is converging in B with respect to the directed class
SP(p) then f is called u-Riemann integrable -and

“[fdu:= lim S(f,
K #eSAu)

{aeR| a is an absolute Z-sum of g!.

is the p-Riemann integral of f over K.

In [4] and [5], S. Rolewicz and the author characterized the bounded p-
Darboux integrable functions as follows: (i) If f is y-Darboux integrable then
fis pu-Riemann integrable (the converse is false in general). (i) fis p-Darboux
integrable iff f is continuous p-almost everywhere. (iii) If f is. u-Darboux
integrable then fis j-Bochner integrable and both integrals coincide. Here, jt
denotes the completion of u.

2. p-c-partitionable functions. A —not necessarily bounded —function g:
K — B is called u-o-partitionable iff for every & > 0 there is a p-o-partition
P(e):= [Pi(e)}&, of K with dia(g(P;(e))) <& for 1 <i<oo.

If xeK and a> 0 then x is called an a-discontinuity point of g iff in
every neighbourhood U (x) of x there are y, ze U(x) with |lg(»)—g(2)|| = a.
We denote by DClg, a) the closed set of all a-discontinuity points of g.

ProrositiON 2. Let K be the compact support of a nonnegative Radon
measure p. Let g: K — B be a function where B is a Banach space. Then the
Jollowing conditions are equivalent:

(a) g is p-g-partitionable.

(b) u(DC(g, @)) =0 for every a > 0.

(c) inf {u-dis(g, P)| Pea-SP ()} =0.
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Proof. The implications (a)=>(c), (a)=>(b) are obvious. We prove
(c)=>(b). Assume that there is an a >0 with b:= u(DC(g, a)) > 0. Then u-
dis(g, #) > ab for every Peo-SP(y). Indeed, this is a consequence of the
equality

kAU Q aP)) = 0.

Hence u(DC(g, 4)) =0 for every a > 0.

(b)y=(a). Let ¢>0. Then DC(g, ¢/2) is a compact subset of K with
u(DClg, ¢/2)) =0. Observe that u is regular and that rco(K, p) is a
neighbourhood basis system of K. This implies that there is a U, ercy(K, )
with DC(g, &/2) < int(U,) and u(U,) < u(K)/2".

Let Vy:=K\int(U,). If xeV; then x¢DC(g, ¢/2). Therefore there is a
U(x)erco(K, p), xeint(U(x)) with |lg(y)—g (@) <&/2 for all y, ze U(x). As
V; is compact there are finitely many x;eV;, 1<j<n(l), such that
{U(x)l 1 <j<n(1)}is a covering of V;. Let

{lint(U(x) nUx) n Vil 1<r, s < PO} =: {Vy,..., Vimw }-

Then {V;;| 1 <j<m(l)}is a p,-partition of V; where p, is the restriction of
u to V;. Moreover, dia(g(V)) <e/2 <& for 1<j<m(1).

By repeating successively the above construction we obtain a p-o-
partition 2(e):={¥| 1 €i<oo, 1 <j<m(i)} of K with dia(g (V) <e for
alli,j, = '

Observe that condition (b) can be formulated as follows: (b) g is
continuous  p-almost everywhere. Therefore, if we restrict ourselves to
bounded functions then Proposition 2 is a characterization of p-Darboux
integrable functions.

We denote by o-2(K, p, B) the class of all y-o-partitionable B-
valued functions (not necessarily bounded) on K. Then o-#(K, u, B) is a
linear space by Lemma 1. If B is an algebra then o-2(K, y, B) is an algebra
too.

" For geo-2?(K, u, B) we define

I9lless := inf {c > 0] F({xe K| llg()l| > c})=0)

provided that there exists a coeR with F({xeK| [lg(x)|| > co}) =0.
Otherwise we define [|glless := 0. Then || [, is an Ry u {00 }-valued mapping
defined on a-2(K, p, B). Let || |li: 0-2(K, 4, B)— [0, 1] be defined by
llglless : = min {1, |iglless}. Then the mapping || ||., induces canonically on o-
2(K, u, B) by (g, )= llg—gess 2 Pseudometric (ie. lglless = 0=>g = 0'is
not always fulfilled) denoted by || lle.‘s

We denote Zg-2(K, u, B):= gea P (K, i, B)| llglless = 0}. Then
geZa-2(K, u. B) iff g vanishes p-almost everywhere. Hence, Zo-?’(K i, B)
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is a closed subspace of o-2(K, u, B) with respect to the pseudometric || |i-
If B is a Banach algebra then Zos-2(K, p, B) is a closed ideal.

We denote " by oP(K, u, B):=0-P(K, u, B))Zo-P(K, u, B) the
quotient space (resp. the quotient algebra if B is a Banach algebra). Then
|l lless induces canonically a metric on ¢P(K, u, B) which we denote by
Il lless too. It follows that (6P (K, p, B), || |ltss) is 2 metric space and a linear
space. We do not obtain a metric linear space since the muluphcatlon by
scalars is discontinuous for unbounded functions.

We mention that || || restricted to the p-Darboux integrable (i.e.
bounded) functions yields the usual esssup norm. Moreover, || ||.. restricted
to the p-Darboux integrable functions yields the same topology and the same
uniformity as the esssup norm. Observe that || ||..s is 2 modular function on’
oP(K, u, B) and that the p-Darboux integrable functions are the related
modular space (cf. S. Rolewicz [10], Chapter 1.2).

ProrosiTioN 3. Let L be the compact support of a nonnegative Radon
measure |t Let B be a Banach space. Then oP (K, u, B) is a complete metric
space with respect to the metric || ||sss-

Proof. It suffices to prove that o-2(K, u, B) is complete with respect to
I less- Let {g,}nen be a Cauchy sequence in ¢-2(K, u, B) with respect to the
pseudometric || ||.,. We can assume that ||g,—glless < 1/4 for all n, meN,
ie. that “gn_gm“/ess = ”gn—'gm”ess for n, meN.

We define h,:=g,—g, for every ne N. It suffices to prove that {h,},.y is
converging in ¢-2(K, u, B). Observe that ||h,|l. < 1/2 for every neN.

By Proposition 2 every h, is continuous except on a p-zero set Z,. Then

= J Z, is a pzero set. We denote C:=K\Z. If xeC then h,(x) is a
neN
Cauchy sequence in B. This is a consequence of the definition of || || for x

is a common continuity point of all h,. We define h: C—~B by h(x)

1= lim h,(x).
neN
It remains to define & on Z. Let f=h, or f =h. Then we define

dc(f, a):= {zeZ| in every neighbourhood U (z) of z there are x, ye C with
If)—f(»ll=a)l. If zeZ then we denote r(f, z):=sup{a zedc(f, a)}.
Since ||f(x)|| < 1/2 for every xeC, we obtain 0<r(f,2)<1 for zeZ.
Moreover, r(h, z)—-hmsupr(h,,,z If r(h,z) =0 then h can be extended

and we define
h(z):=

continuously in z
lim h(x).
x —z,x6C

Suppose that zeZ and that r(h, z) > 0. Then there is an A(z)ercy (K, p)
with dia(h(4(z) N C)) < 2r(h, z). We choose a yoe h(A(z) " C) and we define
h(z):=y,. Then h is defined on K. Moreover, h is bounded on K.

We have to prove that heo-#(K, u, B). By Proposition 2(b) it suffices
0 for every a > 0. Let a > 0 and let xe DC(h, a).

4 — Studin "Mathematica 85.3
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We show that x ¢ C. Indeed, assume that xe C. Then there is a ke N with ||h,
~hyllus <a/6 for n,m>k. Let Aercy(K, s, xeint(d), with dia(h(4))
< a/6. Then

15 (2) = h(DI < [1h(2) — b )|+ 11 (2) = B DN+ 1 (D) = BN < o/2

if z,yeCnA. We choose Bcint(4), xeint(B), Bercy(K, ). Then
dia(h(B)) < 2dia(h(ANC))=a by the definition of h on Z. This implies
x¢DC(h, a) which 15 a contradiction. Hence x¢C which implies u(DC (h, a))
= (. Therefore hes-#(K, p, B).

We prove that [(h,—H|ls— 0 as n—oo. If 6>0 and keN with |k,
—Rplless < & for m, m >k then ||h,(x)—h(x)|| <& for n =k and xeC. Since
supp(y) = K and p(Z) = 0 we obtain ||k, —hlles <€ for n > k. Hence {h,},en
converges to h with respect to || |les. Therefore o-2(K, y, B) is complete
with respect to || |jes. ®

The limit function h constructed in the above proof is bounded on K.
Therefore, if we restrict ourselves to bounded p-o-partitionable functions —i.e.
to p-Darboux integrable functions—then it follows that these functions form
a Banach space with respect to the usual esssup norm (resp. a Banach
algebra if B is one).

3. Absolutely convergent improper - y-Darboux integrable functions. We

consider a function g: K — B. Then g is called absolutely convergent improper
u-Darboux integrable if the following two conditions are satisfied:

(i) inf {p-dis(g, P)| Peo-SP(w)} = 0.

(i) There is a Pyepu-SP(p) such that AS(g, P,) is bounded.

Suppose that d: K — B is an absolutely convergent improper u-Darboux
integrable function. Let P,e0-SP(u) be such that AS(d, #,) is bounded.
Assume that the indexed class {S(d, #)| Peo-S# (1), P > P,} is converging
in B with respect to the naturally directed system o-S2(y). Then d is called
improper u-Riemann integrable on K and

lim S(d, #) =:"ddp
K

Pea-SP(n)

is called the improper p-Riemann integral of d on K.

Since the improper p-Riemann integral is a limit, all operations
compatible with limits are compatible with the above integral (provided that
absolutely convergent improper p-Darboux integrable functions are involved
gnly). If Aercy(K, y) then the improper u-Riemann integral of d on A is the
improper u-Riemann integral of yx(4)d on K. Here y(4) denotes the
characteristic function of A. If Pec-SP(4), 2 = {P,}2,, then we obtain

R el R
iddu: Y *[ddp.

i=1 B
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The above definition of an improper p-Riemann integral is not a
complete generalization of the classical improper Riemann integral. Indeed,
for such a purpose it does not suffice to consider the natural directed system
-8 (4). It would be necessary to enumerate the u-g-partitions in an order
in the definition. However, since we have restricted ourselves to the class of
absolutely convergent improper u-Darboux integrable functions, we will
see that the above simplified definition is sufficient for our purposes, This is
shown by the following

ProrosiTioN 4. Let K be the compact support of a nonnegative Radon
measure p. Let d: K — B be an absolutely convergent improper p-Darboux
integrable function where B is a Banach space. Then

(@) d is improper p-Riemann integrable.

(b) d is absolutely p-Bochner integrable.

(¢) The improper u-Riemann integral of d coincides with the ji-Bochner
integral of d.

Proof. (a) There is a p-o-partition 2, of K such that AS(d, Z) is
bounded. Therefore S(d, #,) is bounded. Let # and 2 be p-o-partitions
with 2, <P < #. Then an easy calculation shows that dia(S(d, P))
> dia(S(d, #)) and that S(d, #) < closed convex hull of S(d, #). Hence d is
improper u-Riemann integrable iff there is a sequence %, > %, of p-o-
partitions of K with dia(S{d, #))— 0. The existence of such a sequence
follows from condition (i) of the definition of the absolutely convergent
improper u-Darboux integrability. .

(b) and (c) are easy consequences of the fact that AS(d, 2,) is bounded
and that d is p-o-partitionable. »

We can formulate a characterization of absolutely convergent improper
u-Darboux integrable functions as follows:

Remark 5. Let g: K — B be a p-g-partitionable function. Then g is
absolutely convergent improper pu-Darboux integrable iff ¢ is absolutely -
Bochner integrable.

We denote by P, (K, i, B):={f K- B| fea-?(K, p, B) and f is
bounded} the class of all y-Darboux integrable functions. The esssup norm
Il llews is a seminorm on 2, (K, u, B). Then

Z9,(K, 1, B):={fe D, (K, u, B)| feZo-P(K, p, B)}

is a linear space—resp. an ideal if B is a Banach algebra—which is
closed with respect to the seminorm || [ls. We denote D (K, g, B)
1= P4 (K, 1, BYZD (K, p, B). From the proof of Proposition 3 it follows
that D (K, u, B) is a Banach space with respect t0 || ||ess, TESP. Banach
algebra if B is one.

Let 0 < p < 0. We denote 2,(K, p, B):= {g: K— B| geo-2(K, , B)
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and |jg||” is absolutely convergent improper u-Darboux integrable on K}
Analogously as in the case of the L,-spaces one deduces that &, (K, u, B) is
a linear space. Indeed, ,(K, y, B) corresponds to those elements of
L,(K, i, B) which possess  a u-g-partitionable representative.

We consider the pseudometric | ||, on (K, u, B). Then
Zo-2(K, p, B) is a closed linear subspace of %,(K, p, B. We denote
D,(K, u, B):= @,(K, u, BYZo-P(K, u, B). Then || |[.s is a metric on
D,(K, i, B). A consequence of Proposition 3 is the following

CoroLLARY 6. Let K be the compact support of a nonnegative Radon
measure j. Let B be a Banach space.

(@If O<p<ow then D,(K,u,B) is a
(D,(K, y; B), || lloes) is @ complete metric space.

(b) (Do, (K, 1, B), || lless) is @ Banach space, resp. a Banach algebra ifBis

linear  space and

one.

We mention some points: (1) As in [4], the above results remain true if
we consider a locally convex Fréchet space F instead of a Banach space B.
(2) As in [5], we can consider D,(K, g, B) equivalently on dense subsets of
K. (3) Invariance properties of D,(K, u, B) with respect to K and u can be
obtained as in [5]. (4) Locally compact spaces can be treated in the same
way, ie. Propositions 2 and 3 are not affected by that alteration of the
assumptions. (5) Let M be a compact metric space. Let @ (K, u, M)
:={f: K — M| f fulfils condition (a) or (b) of Proposition 2}. Then Propo-
sition 3 can be applied analogously.
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